
�
�

�
�

Transformations and Dependences

�

�
�

�
�

Recall�

� Polyhedral algebra tools for

� determining emptiness of convex polyhedra

� enumerating integers in such a polyhedron�

� Central ideas�

� reduction of matrices to echelon form by unimodular

column operations�

� Fourier�Motzkin elimination

Let us use these tools to determine �i� legality of permutation and

�ii� generation of transformed code�
�

Dependence relation

Legal and impossible dependences

Distance vectors

Distance vectors

Computing distance vectors

Distance vectors: 2D loop nest

Direction vectors

Direction vectors for nested loops

Example

Example (contd.)

Example (contd.)

Dependence matrix

�
�

�
�

Questions:
 (1) How do we generate new loop bounds?
 (2) How do we modify the loop body?
 (3) How do we know when loop interchange is legal?

DO I = 1, N

X(I,J) = 5

DO U = 1, N

X(V,U) = 5

0 1
1 0

I
J

= U
V

DO J = I,N DO V = 1,U

Loop permutation can be modeled as a linear transformation on iteration space:

I

J

U

V

Permutation of loops in n-loop nest: nxn permutation matrix P

P I = U

�

�
�

�
�

J2J1

Dependence distance = I2 - I1
J2 - J1

Distance between iterations =

= I2 - I1
J2 - J1

J2 - J1
I2 - I1

I2
J2

T T I1
J1

T I1
J1

I2
J2

T

 T- =

I

J

U

V

0 1
1 0

I
J

= U
V

I2I1

Check for legality: interchange positions in distance/direction vector & check for lex +ve

DO I = 1, N

DO J = I,N

DO U = 1, N
 DO V = 1,U

..........

If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D.

��

�
�

�
�

Correctness of general permutation

Transformation matrix� T

Dependence matrix� D

Matrix in which each column is a distance	direction vector

Legality� T�D � �

Dependence matrix of transformed program� T�D

��

�
�

�
�

Examples�

DO I � ��N

DO J � ��N

X�I�J� � X�I
��J
��				

Distance vector
 ��
��
� permutation is legal

Dependence vector of transformed program
 ��
��

DO I � ��N

DO J � ��N

X�I�J� � X�I
��J���				

Distance vector
 ��
���
� permutation is not legal

�	

�
�

�
�

Code Generation for Transformed Loop Nest

Two problems� �
� Loop bounds ��� Change of variables in body

�
� New bounds�

Original bounds� A � I � b where A is in echelon form

Transformation� U � T � I

Note� for loop permutation� T is a permutation matrix

�� inverse is integer matrix

So bounds on U can be written as A � T��U � b

Perform Fourier�Motzkin elimination on this system of

inequalities to obtain bounds on U �

��� Change of variables�

I � T��U

Replace old variables by new using this formula

�

�
�

�
�

Example�

-1 0

 1 -1
 0 1

 1 0
0 1
1 0

< -1
N
0
N

U
V

I

J

U

V

DO I = 1, N

X(I,J) = 5

DO U = 1, N

X(V,U) = 5

0 1
1 0

I
J

= U
V

DO J = I,N DO V = 1,U

-1 0

 1 -1
 0 1

J
I < -1

 1 0 N
0
N

 elimination
Fourier-Motzkin

�

�
�

�
�

< -1
N
0
N

U
V

<

< <

< <

-1 0

 1 -1
 0 1

 1 0
0 1
1 0

 -1
N
0
N

U
V

-1 1
 1 0

 0 1
 0 -1

Projecting out V from system gives

U 1 N

Bounds for V are

min(U,N) 1 V

These are loop bounds given by FM elimination.
With a little extra work, we can simplify the upper bound of V to U.

�

�
�

�
�

Key points�

� Loop bounds determination in transformed code is mechanical�

� Polyhedral algebra technology can handle very general bounds

with max
s in lower bounds and min
s in upper bounds�

� No need for pattern matching etc for triangular bounds and the

like�

�

�
�

�
�

Theory for permutations applies to other loop transformations that

can be modeled as linear transformations� skewing� reversal�scaling�

Transformation matrix� T �a non�singular matrix�

Dependence matrix� D

Matrix in which each column is a distance�direction vector

Legality� T�D � 	

Dependence matrix of transformed program� T�D

Small complication with code generation if scaling is included�

�

�
�

�
�

Motivating example� Wavefront code

���� �� �� ���� ��
��
��
��

�
�
�
�

���� �� �� ���� ���� ��

���� �� �� ���� ���� ��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� �� �� ���� ��
��
��
��

�
�
�
�

I

J

1 2 3 54

1

2

3

4

5

DO I = 1,N
 DO J = 1,N
 X(I,J) = X(I-1,J+1)......

Dependence matrix =
-1

 1

Dependence between two iterations

�� iterations touch the same location

�� potential for exploiting data reuse�

N iteration points between executions of dependent iterations�

Can we schedule dependent iterations closer together�

�

�
�

�
�

For now� focus only on reuse opportunities between dependent

iterations�

This exploits only one kind of temporal locality�

There are other kinds of locality that are important�

� iterations that read from the same location� input dependences

� spatial locality

Both are easy to add to basic model as we will see later�

	

�
�

�
�

Exploiting temporal locality in wavefront

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�� ���� �� ���� �
�
�
�

��
��
��
��

�� ���� �� ���� �
�
�
�

��
��
��
��

���� ���� �� �� �� ��

���� ���� �� �� �
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ��

���� ���� �� �� �
�
�
�

�
�
�
�

I

J

1 2 3 54

1

2

3

4

5

I

J

1 2 3 54

1

2

3

4

5

Tiling is illegal!Permutation is illegal!

We have studied two transformations� permutation and tiling�

Permutation and tiling are both illegal�

�

�
�

�
�

Height Reduction

��

�
�

�
�

One solution� schedule iterations along �� degree planes �

H

G

J

I

Note�
� Transformation is legal�

� Dependent iterations are scheduled close together� so good for

locality�

Can we view this in terms of loop transformation�

Loop skewing followed by loop reversal�

��

�
�

�
�

Loop Skewing� a linear loop transformation

I

J

U

V

I
J

= U
V1 1

1 0

1
-1

1
0

Skewing of inner loop by outer loop:

Skewing of inner loop by an outer loop: always legal

New dependence vectors: compute T*D

In this example, D = T*D =

This skewing has changed dependence vector but it has not brought dependent iterations

closer together....

1 0
k 1

(k is some fixed integer)

��

�
�

�
�

Skewing outer loop by inner loop

I
J

= U
V

I

J

U

V

1 1
0 1

1 k
0 1

Outer loop skewing:

Skewing of outer loop by inner loop: not necessarily legal

In this example, D =
-1

T*D = 0
-1

1 incorrect

Dependent iterations are closer together (good) but program is illegal (bad).
How do we fix this??

��

�
�

�
�

Loop Reversal�a linear loop transformation

0 0I U

U = [-1][I]

DO I = 1, N

X(I) = I+2 X(-U) = -U +2

DO U = -N,-1

Transformation matrix = [-1]

Another example: 2-D loop, reverse inner loop U
V

I
J

1 0
0 -1

=

Legality of loop reversal: Apply transformation matrix to all dependences & verify lex +ve

5 -5

Code generation: easy

��

�
�

�
�

Need for composite transformations

1 1
0 1

1 0
0 -1

I

J

U

V

I
J

= U
V

U
V

= G
H

G

H

Composition of linear transformations
= another linear transformation!

Composite transformation matrix is

* =
1 0
0 -1

1 1
0 1

1 1
0 -1

How do we synthesize this composite transformation??

close together!
In final program, dependent iterations are

Transformation: skewing followed by reversal

��

�
�

�
�

Some facts about permutation�reversal�skewing

� Transformation matrices for permutation�reversal�skewing are

unimodular�

� Any composition of these transformations can be represented

by a unimodular matrix�

� Any unimodular matrix can be decomposed into product of

permutation�reversal�skewing matrices�

� Legality of composite transformation T � check that T�D � 	�

�Proof� T� � �T� � �T� �D�� � �T� � T� � T�� �D��

� Code generation algorithm�

� Original bounds� A � I � b

� Transformation� U � T � I

� New bounds� compute from A � T��U � b

��

�
�

�
�

Synthesizing composite transformations using matrix�based

approaches

� Rather than reason about sequences of transformations� we can

reason about the single matrix that represents the composite

transformation�

� Enabling abstraction� dependence matrix

��

�
�

�
�

Height reduction� move reuse into inner loops

Dependence vector is
�

�
��

�
�

Prefer not to have dependent iterations in di�erent outer loop iterations�

So dependence vector in transformed program should look like
�

�
��

�
�

So T �
�

�
��

�
�

�
�

��
�

This says 	rst row of T is orthogonal to
�

�
��

�
�

So 	rst row of T can be chosen to be
� ���

What about second row�

�	

�
�

�
�

Second row of T �call it s� should satisfy the following properties�

� s should be linearly independent of 	rst row of T
non�singular

matrix��

� T �D should be a lexicographically positive vector�

� Determinant of matrix should be
� or ��
unimodularity��

One choice�
� � ��� giving T �
�

� �

� ��
�

�

�

�
�

�
�

General questions

� How do we choose the �rst few rows of the transformation

matrix to push reuses down�

�� How do we �ll in the rest of the matrix to get unimodular

matrix�

��

�
�

�
�

Linear loop transformations to enable tiling

�

�
�

�
�

In general� tiling is not legal�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�� ���� ���� �� ���� ��

I

J

1 2 3 54

1

2

3

4

5

Tiling is illegal!

D =
-1
 1

Tiling is legal if loops are fully permutable �all permutations of

loops are legal��

Tiling is legal if all entries in dependence matrix are non�negative�

� Can we always convert a perfectly nested loop into a fully

permutable loop nest�

� When we can� how do we do it�
��

�
�

�
�

Theorem� If all dependence vectors are distance vectors� we can

convert entire loop nest into a fully permutable loop nest�

Example� wavefront

Dependence matrix is
�

�

�

�
A�

Dependence matrix of transformed program must have all positive

entries�

So �rst row of transformation can be �
 	��

Second row of transformation �m
� �for any m � 	��

General idea� skew inner loops by outer loops su�ciently to make

all negative entries non�negative�
��

�
�

�
�

Transformation to make �rst row with negative entries into row

with non�negative entries

...

....

-k-n-m

...

...
first row
with negative entries...

....

row a

...

......
p3p1 ...

...
row b

(a) for each negative entry in the first row with negative entries,
 find the first positive number in the corresponding column

assume the rows for these positive entries are a,b etc as shown above

(b) skew the row with negative entries by appropriate multiples of
 rows a,b....
 For our example, multiple of row a = ceiling(n/p2)

multiple of row b = ceiling(max(m/p1,k/p3))

Transformation: I
0 0 ..0 ceiling(n/p2) 0 0 ceiling(max(m/p1,k/p3))0...0
 I

p2

��

�
�

�
�

General algorithm for making loop nest fully permutable�

If all entries in dependence matrix are non�negative� done�

Otherwise�

� Apply algorithm on previous slide to �rst row with

non�negative entries�

�� Generate new dependence matrix�

�� If no negative entries� done�

�� Otherwise� go step �
��

��

�
�

�
�

Result of tiling transformed wavefront

���� ���� �� ���� ��
��
��
��

��
��
��
��

���� ���� �� ���� ��
��
��
��

��
��
��
��

���� ���� �� ���� ���� ����

���� ���� �� ���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

���� ����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

���� ����

���� �� ���� ���� ��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

���� ����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

���� �� ���� ���� ���� ����

I

J

1 2 3 54

1

2

3

4

5

I

J

1 2 3 54

1

2

3

4

5

1 1
1 0

Original loop Tiled fully permutable loop

Tiling generates a ��deep loop nest�

Not as nice as height reduction solution� but it will work �ne for

locality enhancement except at tile boundaries �but boundary

points small compared to number of interior points��

��

	transformations
	transformations.pdf
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12

	lecture9.pdf
	transformations
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12

	Dependence relation
	transformations.pdf
	transformations.pdf
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12

	lecture9.pdf
	transformations
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12
	transformations.pdf
	lecture9.pdf
	lecture6.pdf
	lecture9
	lecture12

