
MapReduce: Simplified Data Processing on
Large Clusters

Nikhil Panpalia

Outline
 What is MapReduce?
 What are Map and Reduce?

 Scalability
 Implementing MapReduce
 opportunities for parallelism
 input, output, execution
 optimizations and extensions

 Fault Tolerance
 Performance
 MapReduce on multicore platforms
 MapReduce on mobile platforms
 Does it work for any computation?

What is MapReduce?

 A framework for processing large-scale data sets using a cluster of

machines.

 Who should use MapReduce?
 A programmer with:

 Lots of data to store and analyze
 Lots of machines available for processing the data
 Doesn’t have the time to become a distributed systems expert who can build

an infrastructure to handle this task

What is MapReduce?

A simple problem

 Search for a pattern “cs395t” in a collection of files

 You would typically run a command like this:
grep -r “cs395t” <directory>

 Now, suppose you have to do this search over
terabytes of data and you have a cluster of machines
at your disposal.

 How can you make this grep faster?
 Build a distributed grep!

Do we really need a distributed solution?

 Why can’t I just use my desktop to do the processing?
 How long does it take to read 1 TB of data?
 Considering an average read speed of 90MB/s[1]: ~3.23 hours
 If you use an SSD with read speed of 350MB/s[2]: ~50 minutes

 How much time it will take for searching through a

terabyte of data? Or maybe sorting it?

 MapReduce can sort 1000 TB of data in 33 minutes![3]

[1] Numbers are for Western Digital 1TB SATA/300 drive.
[2] Numbers are for Crucial 128 GB m4 2.5-Inch Solid State Drive SATA 6Gb/s
[3] using 8000 machines - http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html

http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html

Should I build my own distributed
system/framework?

 It’s hard!
 Machine and network management
 Task management
 Fault tolerance
 Availability despite failures
 Scalability

Understanding Map and Reduce

var a = [1,2,3];

for (i=0; i<a.length; i++)

 a[i] = a[i] * 2;

for (i=0; i<a.length; i++)

 a[i] = a[i] + 2;

Understanding Map and Reduce

I can change it to:

 function map(fn, a) {

 for (i = 0; i < a.length; i++)

 a[i] = fn(a[i]);

 }

map(function(x){return x*2;}, a);

map(function(x){return x+2;}, a);

Understanding Map and Reduce
function sum(a) {
 var s = 0;
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
}

function join(a) {
 var s = "";
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

Understanding Map and Reduce
function reduce(fn, a, init) {
 var s = init;
 for (i = 0; i < a.length; i++)
 s = fn(s, a[i]);
 return s;
}

function sum(a) {
 return reduce(function(a, b){return a+b;}, a, 0);
}

function join(a) {
 return reduce(function(a, b){return a+b;}, a, “”);
}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

Understanding Map and Reduce
 Passing functions as arguments – functional

programming

 map – does something to every element in an array
– can be done in any order!
 amenable to parallelization

 So, if you have 2 CPUs, map will run twice as fast

 map is an example of embarrassingly parallel

computation

Understanding Map and Reduce
 Suppose you have a huge array with elements which

are all the webpages from the Internet

 To search the entire Internet:
 you just need to pass a string_searcher function to map
 reduce will be an identity function
 run a MapReduce job on a cluster
 …that’s it! you are searching the Internet by writing just a

few lines of code!

Map and Reduce

 map – function that takes key/value pairs as input
and generates an intermediate set of key/value pairs

 reduce – function that merges all the intermediate
values associated with the same intermediate key

Map and Reduce

 User needs to define these 2 functions

 Inspired by functional primitives in Lisp

 Functional model – data is immutable, functions

don’t have side-effects
 Allows automatic parallelization and distribution of large-

scale computations easily

MapReduce

map: (k1, v1)  list(k2, v2)

reduce: (k2, list(k2, v2))  list(v2)

map  shuffle  reduce
(input key/value pair (groups all values associated (takes an intermediate key
and produces intermediate with the same intermediate key) and associated intermediate
key/value pairs) values and merges them to
 form a possibly smaller set
 of values)

Example – Word Count
 Problem: counting occurrences of words in a large

collection of documents
 map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

 reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Word Counting using MapReduce

Example – Word Count
 Other than map and reduce, user needs to provide:
 names of input and output files
 optional tuning parameters (size of split, M, R, etc.)

 User’s code is linked with MapReduce library and

the binary is submitted to a task runner

Other Examples

 Distributed grep
 map emits a line if it matches the given pattern
 reduce just copies input to output

 Counting URL access frequency
 map processes web server logs and outputs <URL, 1>
 reduce sums all numbers for a single URL

Other Examples

 Inverted index
 map function parses document and emits <word, docID>
 reduce gets all pairs for a given word and emits
 <word, list(docID)>

 Distributed sort
 map extracts key for a record and emits <key, record>
 reduce emits all pairs unchanged

Implementing Map and Reduce
 Now, all we need is some “genius” to implement these 2

abstractions – map & reduce

 Exploit parallelism in the computation

 Massively scalable – can run on hundreds or thousands of

machines

 Hide the details of cluster management tasks like scheduling of
tasks, partitioning of data, network communication from the
user

 Fault tolerant (in large clusters failures are a norm rather than
being an exception)

Implementing MR:
Opportunities for Parallelism

 Input – all key/value pairs can be read and

processed in parallel by map

 Intermediate grouping of data – essentially a sorting
problem; can be done in parallel and results can be
merged

 Output – All reducers can work in parallel
 each individual reduction can be parallelized

MR Execution

MR Parallel
 Execution

Implementing MR:
Exploit parallelism using a cluster

 Characteristics of the cluster:
 Lot of commodity PCs connected together
 Network is a scarce resource
 Failures are very common
 Storage is provided by a distributed file system using

inexpensive disks
 File system replication is used to provide reliability and

availability
 A scheduling system decides which jobs will run on which

machines

Distributed File System

 Allows access to files from multiple hosts over the
network

 Support concurrency (multiple clients reading/writing
the same file)

 Support for replication

 GFS: distributed file system used in Google’s
MapReduce is important for achieving good
performance (high availability and durability via
replication)

Google File System (GFS)
 Motivation: redundant storage of massive

amounts of data on cheap unreliable machines

 Assumptions:
 modest number of very large files
 files are write-once, never modified, mostly appended
 fast streaming reads – high throughput desired
 large number of component failures

Google File System (GFS) - Design
 Files stored as chunks (typically of 64MB)

 helps in load balancing and better distribution of data across
machines

 can support files which cannot fit on 1 disk

 Each chunk is replicated multiple times (typically 3)
 provides reliability and higher throughput for reads

 Single master (maintains all metadata) and multiple
chunkservers (store actual data chunks)

 No caching of data (little benefit since data sets are
large)

 Can (theoretically) scale to any number of chunkservers
 Writes at arbitrary positions in files supported but are not

efficient (mostly append operations on files)

Implementing MR:
Distributing the input
 Input data is partitioned into splits of size S and is

processed by M mappers
 splitting the data helps exploit the data parallelism in the input
 number of map tasks is usually more than the number of

available worker machines (better dynamic load balancing)
 splits are of smaller size – typically the size of a filesystem

block
 better load balancing for storage
 faster recovery:

 less repetition of work in case of failures
 repeated work can also be parallelized

 M and S can be configured by the user

(Note: this step is optional if the files blocks are already distributed across
machines by GFS.)

Implementing MR:
Master
 Only 1 Master per MR computation
 Master:
 assigns map and reduce tasks to the idle workers
 informs the location of input data to mappers
 stores the state (idle, in-progress, completed) and identity

of each worker machine
 for each completed map task, master stores the location

and sizes of intermediate files produced by the mapper;
this information is pushed to workers which have in-
progress reduce tasks

MR: Step-by-Step Execution
 Split the input into M pieces and start copies of

program on different machines
 One invocation acts as the master which assigns

work to idle machines
 Map task:
 read the input and parse the key/value pairs
 pass each pair to user-defined Map function
 write intermediate key-value pairs to disk in R files

partitioned by the partitioning function
 pass location of intermediate files back to master

MR: Step-by-Step Execution
 Master notifies the reduce worker
 Reduction is distributed over R tasks which cover

different parts of the intermediate key’s domain
 Reduce task:
 read the intermediate key/value pairs
 sort the data by intermediate key (external sort can be used)
 (note: many different keys can map to the same reduce task)

 iterate over sorted data and for each unique key, pass the key
and set of values to user-defined Reduce function

 output of Reduce is appended to final output for the reduce
partition

 MR completes when all map and reduce tasks have
finished

MR: Output

 The output of MR is R output files (one per reduce
task)

 The partitioning function for intermediate keys can
be defined by the user
 by default, it is “hash(key) mod R” to generate well-

balanced partitions

 Result files can be combined or fed to another MR
job

MR: Handling Faults

 With thousands of machines all made of cheap
hardware, faults are very common

 MR library must tolerate any faults in the machines
of the network gracefully without significantly
impacting the speed of the computation

Fault Tolerance: Scenarios
 worker failure

 master failure

 network failure

 file system or disk failure – data corruption

 malformed records in input

 bugs in user code

Fault Tolerance: Worker Failures
 Master pings every worker periodically (alternatively, the

worker can send a heartbeat message periodically)
 If worker does not respond, master marks it as failed
 Map worker:
 any completed or in-progress tasks are reset to idle state
 completed tasks need to be re-run since output is stored on a

local file system
 all reduce workers notified of this failure (to prevent duplication

of data)
 Reduce worker:
 any in-progress tasks are reset to idle state
 no need to re-run completed tasks since output stored in global

file system

Fault Tolerance: Master Failure
 Master periodically checkpoints its data structures

 On failure, new master can be elected using some

leader election algorithm

 Theoretically, the new master can start off from this
checkpoint

 Implementation: MR job is aborted if the master fails

Fault Tolerance: Network Failure
 Smart replication of input data by underlying file-

system

 Workers unreachable due to network failures are
marked as failed since its hard to distinguish this
case from worker failure

 Network partitions can slow down the entire
computation and may need a lot of work to be re-
done

Fault Tolerance: Filesystem/Disk failure
 Depend on the filesystem replication for reliability

 Each data block is replicated f number of times

(default: 3)
 replication across machines on the same rack (machine

failure)
 replication across machines on different racks (rack

failure)
 replication across data-center (data-center failure)

Fault Tolerance: Malformed input
 Malformed input records could cause the map task to

crash
 Usual course of action: fix the input
 But what if this happens at the end of a long-running

computation?
 Acceptable to skip some records (sometimes)
 word count over very large dataset

 MR library detects bad records which cause crashes
deterministically
 Signal handler catches error and communicates to the master
 If more than 1 failure seen for the same record, master

instructs the mapper to skip that record

Fault Tolerance: Bugs in user code
 Bugs in user provided Map and Reduce functions

could cause crashes on particular records

 This case similar to the failure due to malformed
input

Fault Tolerance: Semantics
 Map and Reduce must be deterministic functions of

their input values
 output produced by the distributed execution is same as

the one produced by non-faulting sequential execution

 Atomic commit of output
 on completion, map task sends names of R intermediate

files to master (master ignores this if the map task was
already completed elsewhere)

 on completion, reduce task atomically renames its
temporary file to final output file (on a global file system)

Locality Optimization
 Effective utilization of network

 Move computation near the input data

 Input data (managed by GFS) stored on local disks
 several copies of each block

 Master considers this block location information when

scheduling map task on a machine

 Most input data is read locally and consumes zero
network bandwidth

Task Granularity
 M map tasks and R reduce tasks
 M and R much larger than the number of machines
 Improves dynamic load balancing (add/remove machines)
 Speeds up recovery

 less work needs to be redone
 work already completed by a failed task can be distributed across

multiple idle workers
 Bounds:

 Master makes O(M+R) scheduling decisions
 Master maintains O(M*R) state in memory

 M is chosen such that each task works on one block of
data (maximize locality)

 R is usually constrained by users to reduce the number
of output files

Stragglers and Backup tasks
 Straggler: machine that takes unusually long to

complete one of the last few map/reduce tasks
 reasons: bad disk, incorrect configuration, heavy load
 significantly lengthens the total time of execution

 Solution: master schedules backup tasks for all in-

progress tasks when MR is near completion
 task marked complete when either primary or backup task

finishes
 tuned such that it does not increase the overall resource

consumption by more than a few percent

Refinements/Extensions
 Partitioning function for intermediate keys
 default: “hash(key) mod R”
 user can provide custom function

 eg: keys are URLs and we want all entries for a host in a single
output file – “hash(Hostname(urlkey)) mod R”

 Ordering guarantees
 within a partition, all intermediate key/values pairs are

processed in increasing key order
 generates a sorted output file per partition

Refinements/Extensions
 Combiner
 same map task produces a lot of values for a single

intermediate key
 if Reduce is commutative and associative:

 user can specify an optional combiner function
 combiner runs on the same machine as the map task
 combiner does partial reduction of the output of map before the

data is send to the reducer
 preserves network bandwidth and speeds up overall computation

 Example – word count
 every map task will produce hundreds of pairs of the form
 <“the”, 1> which will be sent over the network
 combiner can do partial reduction
 only 1 pair is sent to the reducer from every map with key “the”

Refinements/Extensions
 Local Execution
 all map/reduce tasks can be executed locally
 helps with testing/debugging/profiling

 Counters
 count occurrences of various events

Counter* uppercase;
uppercase = GetCounter("uppercase");
map(String name, String contents):
 for each word w in contents:
 if (IsCapitalized(w)):
 uppercase->Increment();
 EmitIntermediate(w, "1");

 updated counters propagated to master periodically

Refinements/Extensions
 Support for arbitrary input types and sources
 user needs to implement a reader interface

 Status Information
 master runs an HTTP server and exports status pages

 progress of computation
 processing rate for input data
 status of map/reduce tasks
 failed workers
 various counters – number of input key/value pairs, number of

output records, etc.

Performance
 Benchmarks:
 MR_Grep - Scan 1010 100-byte records to extract records

matching a pattern (92K matching records)
 MR_Sort - Sort 1010 100-byte records (similar to TeraSort

benchmark)

 Testbed:
 Cluster of 1800 machines
 Each machine has:

 4 GB of memory
 Dual-processor 2 GHz Xeons with HT
 Dual 160 GB IDE disks
 Gigabit Ethernet

Performance
 MR_Grep
 M=15000, R=1 (64 MB input splits)
 total time – 150 secs

 peak rate ~ 31GB/s
 w/o locality optimization, peak rate < 10GB/s

Performance
 MR_Sort
 M=15000, R=4000
 (64 MB input splits)
 1 TB input
 2 TB output
 (2-way replication)
 total time – 891 seconds

Performance
 Impact of Backup Tasks – MR_Sort
 After 960 seconds, all except 5 reduce tasks are

completed – take 300 additional seconds to finish
 MR_sort takes 44% more time overall if backup tasks are

disabled

 Impact of Machine Failures – MR_Sort
 intentionally killed 200 workers some time after the

computation started
 overall time – 933 seconds (+5%)

Chaining MR jobs
 Many problems which cannot be expressed easily with a

single MR job
 use a chain of MR jobs!

Map1  Reduce1  Map2  Reduce2  Map3  Reduce3  …

Example: Count the average number of characters in a line
with has a particular pattern

Distributed grep  Average calculator

MR on multicore systems
 MPI and shared-memory threads implementations

are too complex and error-prone

 Needs to be tuned for efficiency on different
platforms by the programmer

 Can we develop a simple interface like MR on

multicore platforms?

MR on multicore systems

 To simplify parallel programming we need 2
components:

 practical programming model - allows to specify

concurrency and locality at a high level

 efficient runtime system – handles low-level mapping,
resource management and fault tolerance

MR on multicore systems
 Phoenix: implementation of MR on shared-memory

symmetric multiprocessor systems

Phoenix
 uses threads instead of machines in a cluster for

parallelism
 communication done via shared-memory instead of

the network
 Phoenix Runtime:
 assigns map and reduce to threads; handles buffer

allocation and communication
 dynamic scheduling for load balancing
 locality optimization via granularity adjustment

(input/output for map should fit in L1 cache)
 detects and recovers from faults
 mainly, hides a lot of low-level details from the

programmer

Phoenix - Performance
 Performance evaluated on 2 systems:
 CMP: 1.2GHz Sun Fire T1200 (8 CPUs, 4 threads/CPU)
 SMP: 250MHz Sun Ultra-Enterprise 6000 (24 CPUs, 1

thread/CPU)

 Computations:
 word count, string match, reverse index, linear regression,

matrix multiply, Kmeans, PCA, histogram of RGB
components in an image

 datasets of different sizes are used for different
computations

MR on mobile platforms

 Misco: MapReduce framework for mobile systems
 uses mobile devices as nodes to schedule map and

reduce tasks
 works on any device which supports Python and has

network connectivity
 tested using 10 Nokia N95 phones connected to a

Linksys router
 can be used by applications which require more

computing power than locally available
 eg: processing images/videos

MapReduce – works everywhere?
 Real time computations
 MR can be used for preprocessing data

 Small datasets
 too much overhead

 Interactive analysis of data
 Anything which requires a lot of communication

between tasks
 Anything where tasks depend on each other
 Stream processing
 reduce waits for map to finish

Criticism for MapReduce
 nothing new – just a specific implementation of 25-

30 year old techniques
 MR imposes “simplified” data processing with cluster of

cheap commodity machines

 not a DBMS
 MR is a framework for one-off processing of data

 sub-optimal implementation (uses brute force

instead of indexing to process data)
 MR can be used to generate indexes but its not an

optimized data storage and retrieval system

Conclusion
 MapReduce programming model has been a huge

success
 easy to use for programmers with no experience in

distributed systems
 hides details of parallelization, load balancing, fault

tolerance, task management from the user
 massively scalable
 provides status monitoring tools

 Many open source implementations
 eg: Hadoop

 Thank you!
 Questions?

Comparison with Parallel DBMS
 Parallel DBMS – similar to MR?
 Parallelize query operation across multiple machines

 MapReduce:
 Distributed file system
 MR scheduler
 Map, Combine and Reduce operations

 Parallel DBMS
 Relational tables
 Data spread over cluster nodes
 SQL for programming

Comparison with Parallel DBMS
 Indexing
 MR:

 No direct support; indexes can be built
 Customized indexes harder to reuse and share

 DBMS
 Use hash or b-tree for indexing
 Fast access to any data

 Data format
 MR:

 No specific format required
 DBMS:

 Relational schema required

Comparison with Parallel DBMS
 Fault Tolerance:
 MR:

 Intermediate results stored to files
 Quicker to recover from faults

 DBMS:
 No storage of intermediate results (send over network)
 Lot of rework needed if a node fails

Comparison with Parallel DBMS
 Performance:
 Cluster configuration:

 100 nodes
 Each 2.4GHz Intel Core 2 Duo, 4GB RAM, 2 256GB SATA

HDDs

 Comparison of:
 Hadoop
 DBMS-X (row store)
 Vertica (column store)

Comparison with Parallel DBMS
 Benchmark – Data Loading
 Hadoop

 Copy file in parallel to HDFS

 DBMS-X
 SQL load in parallel
 Distribute records to machines, build index, compress data

 Vertica

 Load data in parallel; compress data

Comparison with Parallel DBMS

Comparison with Parallel DBMS
 Benchmark – grep for pattern
 Hadoop

 Map outputs line what matches a pattern
 Identity Reduce

 DBMS-X

 SELECT * FROM data WHERE field LIKE “%XYZ%”

 Vertica
 SELECT * FROM data WHERE field LIKE “%XYZ%”

Comparison with Parallel DBMS

Comparison with Parallel DBMS
 Conclusion
 Advantages over MR:

 Provide schema support
 Indexing for faster access to data
 Programming model is more expressive and easier

 Disadvantages over MR:
 Cant work with any arbitrary data
 Load times for data are very high
 MR is better at fault tolerance (less repeated work)

	MapReduce: Simplified Data Processing on Large Clusters
	Outline
	What is MapReduce?
	What is MapReduce?
	A simple problem
	Do we really need a distributed solution?
	Should I build my own distributed system/framework?
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Map and Reduce
	Map and Reduce
	MapReduce
	Slide Number 17
	Example – Word Count
	Slide Number 19
	Example – Word Count
	Other Examples
	Other Examples
	Implementing Map and Reduce
	Implementing MR:�Opportunities for Parallelism
	Slide Number 25
	Slide Number 26
	Implementing MR: �Exploit parallelism using a cluster
	Distributed File System
	Google File System (GFS)
	Google File System (GFS) - Design
	Implementing MR:�Distributing the input
	Implementing MR:�Master
	Slide Number 33
	MR: Step-by-Step Execution
	MR: Step-by-Step Execution
	MR: Output
	MR: Handling Faults
	Fault Tolerance: Scenarios
	Fault Tolerance: Worker Failures
	Fault Tolerance: Master Failure
	Fault Tolerance: Network Failure
	Fault Tolerance: Filesystem/Disk failure
	Fault Tolerance: Malformed input
	Fault Tolerance: Bugs in user code
	Fault Tolerance: Semantics
	Locality Optimization
	Task Granularity
	Stragglers and Backup tasks
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Performance
	Performance
	Performance
	Performance
	Slide Number 68
	Chaining MR jobs
	MR on multicore systems
	MR on multicore systems
	MR on multicore systems
	Phoenix
	Slide Number 74
	Phoenix - Performance
	Slide Number 76
	Slide Number 77
	MR on mobile platforms
	MapReduce – works everywhere?
	Criticism for MapReduce
	Conclusion
	Slide Number 82
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Slide Number 92

