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What is MapReduce? 
 
 A framework for processing large-scale data sets using a cluster of 

machines. 
 
 
 Who should use MapReduce? 
    A programmer with: 

 Lots of data to store and analyze 
 Lots of machines available for processing the data 
 Doesn’t have the time to become a distributed systems expert who can build 

an infrastructure to handle this task 

 



What is MapReduce? 



A simple problem 
 

 Search for a pattern “cs395t” in a collection of files 
 

 You would typically run a command like this: 
grep -r “cs395t” <directory> 
 

 Now, suppose you have to do this search over 
terabytes of data and you have a cluster of machines 
at your disposal.  

   How can you make this grep faster? 
   Build a distributed grep! 



Do we really need a distributed solution? 
 

 Why can’t I just use my desktop to do the processing? 
 How long does it take to read 1 TB of data? 
   Considering an average read speed of 90MB/s[1]: ~3.23 hours 
   If you use an SSD with read speed of 350MB/s[2]: ~50 minutes 

 
 How much time it will take for searching through a 

terabyte of data? Or maybe sorting it? 
 
  MapReduce can sort 1000 TB of data in 33 minutes![3] 

 
[1] Numbers are for Western Digital 1TB SATA/300 drive. 
[2] Numbers are for Crucial 128 GB m4 2.5-Inch Solid State Drive SATA 6Gb/s  
[3] using 8000 machines - http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html 
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Should I build my own distributed 
system/framework? 

 
 It’s hard!  
 Machine and network management 
 Task management 
 Fault tolerance 
 Availability despite failures 
 Scalability 
 

 



Understanding Map and Reduce 
 

 

var a = [1,2,3]; 

 

for (i=0; i<a.length; i++)  

 a[i] = a[i] * 2; 

 

for (i=0; i<a.length; i++) 

 a[i] = a[i] + 2; 



Understanding Map and Reduce 
 

I can change it to: 
 

 function map(fn, a) { 

     for (i = 0; i < a.length; i++) 

         a[i] = fn(a[i]); 

 } 

 

map(function(x){return x*2;}, a); 

map(function(x){return x+2;}, a); 



Understanding Map and Reduce 
function sum(a) { 
        var s = 0; 
        for (i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
} 
     
function join(a) { 
        var s = ""; 
        for (i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
} 
     
alert(sum([1,2,3])); 
alert(join(["a","b","c"])); 



Understanding Map and Reduce 
function reduce(fn, a, init) { 
        var s = init; 
        for (i = 0; i < a.length; i++) 
            s = fn( s, a[i] ); 
        return s; 
} 
     
function sum(a) { 
 return reduce(function(a, b){return a+b;}, a, 0); 
}   
 
function join(a) { 
 return reduce(function(a, b){return a+b;}, a, “” ); 
} 
 
alert(sum([1,2,3])); 
alert(join(["a","b","c"])); 



Understanding Map and Reduce 
 Passing functions as arguments – functional 

programming 
 

 map – does something to every element in an array 
– can be done in any order! 
 amenable to parallelization 

 
 So, if you have 2 CPUs, map will run twice as fast 

 
 map is an example of embarrassingly parallel 

computation 
 



Understanding Map and Reduce 
 Suppose you have a huge array with elements which 

are all the webpages from the Internet 
 

 To search the entire Internet: 
 you just need to pass a string_searcher function to map  
 reduce will be an identity function 
 run a MapReduce job on a cluster 
 …that’s it! you are searching the Internet by writing just a 

few lines of code! 
 



Map and Reduce 
 

 map – function that takes key/value pairs as input 
and generates an intermediate set of key/value pairs 
 
 

 reduce – function that merges all the intermediate 
values associated with the same intermediate key 
 



Map and Reduce 
 

 User needs to define these 2 functions 
 

 Inspired by functional primitives in Lisp 
 
 Functional model – data is immutable, functions 

don’t have side-effects 
 Allows automatic parallelization and distribution of large-

scale computations easily 



MapReduce 
 

map:  (k1, v1)  list(k2, v2) 

reduce:  (k2, list(k2, v2))  list(v2) 

 
 

map                     shuffle     reduce 
(input key/value pair     (groups all values associated           (takes an intermediate key  
and produces intermediate     with the same intermediate key)            and associated intermediate 
key/value pairs)                values and merges them to 
                 form a possibly smaller set 
                 of values) 





Example – Word Count 
 Problem: counting occurrences of words in a large 

collection of documents 
 map(String key, String value): 
   // key: document name 
   // value: document contents 
        for each word w in value: 
          EmitIntermediate(w, "1"); 
        
      reduce(String key, Iterator values): 
   // key: a word 
   // values: a list of counts 
   int result = 0; 
   for each v in values: 
     result += ParseInt(v); 
   Emit(AsString(result)); 



Word Counting using MapReduce 



Example – Word Count 
 Other than map and reduce, user needs to provide: 
 names of input and output files 
 optional tuning parameters (size of split, M, R, etc.) 

 
 User’s code is linked with MapReduce library and 

the binary is submitted to a task runner 



Other Examples 
 

 Distributed grep 
 map emits a line if it matches the given pattern 
 reduce just copies input to output 
 
 

 Counting URL access frequency 
 map processes web server logs and outputs <URL, 1> 
 reduce sums all numbers for a single URL 

 
 



Other Examples 
 

 Inverted index 
 map function parses document and emits <word, docID> 
 reduce gets all pairs for a given word and emits  
  <word, list(docID)> 
 

 Distributed sort 
 map extracts key for a record and emits <key, record> 
 reduce emits all pairs unchanged 

 
 



Implementing Map and Reduce 
 Now, all we need is some “genius” to implement these 2 

abstractions – map & reduce 
 
 Exploit parallelism in the computation 
 
 Massively scalable – can run on hundreds or thousands of 

machines 
 

 Hide the details of cluster management tasks like scheduling of 
tasks, partitioning of data, network communication from the 
user 
 

 Fault tolerant (in large clusters failures are a norm rather than 
being an exception) 
 

 



Implementing MR: 
Opportunities for Parallelism 

 
 Input – all key/value pairs can be read and 

processed in parallel by map 
 

 Intermediate grouping of data – essentially a sorting 
problem; can be done in parallel and results can be 
merged 
 

 Output – All reducers can work in parallel 
 each individual reduction can be parallelized 
 
 



MR Execution 



MR Parallel 
  Execution 



Implementing MR:  
Exploit parallelism using a cluster 

 
 Characteristics of the cluster: 
 Lot of commodity PCs connected together 
 Network is a scarce resource 
 Failures are very common 
 Storage is provided by a distributed file system using 

inexpensive disks 
 File system replication is used to provide reliability and 

availability 
 A scheduling system decides which jobs will run on which 

machines 



Distributed File System 
 

 Allows access to files from multiple hosts over the 
network 

 Support concurrency (multiple clients reading/writing 
the same file) 

 Support for replication 
 

 GFS: distributed file system used in Google’s 
MapReduce is important for achieving good 
performance (high availability and durability via 
replication) 
 



Google File System (GFS) 
 Motivation: redundant storage of massive 

amounts of data on cheap unreliable machines 
 

 Assumptions: 
 modest number of very large files 
 files are write-once, never modified, mostly appended 
 fast streaming reads – high throughput desired 
 large number of component failures  
 

 



Google File System (GFS) - Design 
 Files stored as chunks (typically of 64MB) 

 helps in load balancing and better distribution of data across 
machines 

 can support files which cannot fit on 1 disk 

 Each chunk is replicated multiple times (typically 3) 
 provides reliability and higher throughput for reads 

 Single master (maintains all metadata) and multiple 
chunkservers (store actual data chunks) 

 No caching of data (little benefit since data sets are 
large) 

 Can (theoretically) scale to any number of chunkservers 
 Writes at arbitrary positions in files supported but are not 

efficient (mostly append operations on files) 
 
 
 

 



Implementing MR: 
Distributing the input 
 Input data is partitioned into splits of size S and is 

processed by M mappers 
 splitting the data helps exploit the data parallelism in the input 
 number of map tasks is usually more than the number of 

available worker machines (better dynamic load balancing) 
 splits are of smaller size – typically the size of a filesystem 

block 
 better load balancing for storage 
 faster recovery: 

 less repetition of work in case of failures  
 repeated work can also be parallelized 

 M and S can be configured by the user 
 

(Note: this step is optional if the files blocks are already distributed across 
machines by GFS.) 



Implementing MR: 
Master 
 Only 1 Master per MR computation 
 Master: 
 assigns map and reduce tasks to the idle workers 
 informs the location of input data to mappers  
 stores the state (idle, in-progress, completed) and identity 

of each worker machine 
 for each completed map task, master stores the location 

and sizes of intermediate files produced by the mapper; 
this information is pushed to workers which have in-
progress reduce tasks 

 
 





MR: Step-by-Step Execution 
 Split the input into M pieces and start copies of 

program on different machines 
 One invocation acts as the master which assigns 

work to idle machines 
 Map task: 
 read the input and parse the key/value pairs 
 pass each pair to user-defined Map function 
 write intermediate key-value pairs to disk in R files 

partitioned by the partitioning function 
 pass location of intermediate files back to master 

 



MR: Step-by-Step Execution 
 Master notifies the reduce worker 
 Reduction is distributed over R tasks which cover 

different parts of the intermediate key’s domain 
 Reduce task: 
 read the intermediate key/value pairs 
 sort the data by intermediate key (external sort can be used) 
     (note: many different keys can map to the same reduce task) 

 iterate over sorted data and for each unique key, pass the key 
and set of values to user-defined Reduce function 

 output of Reduce is appended to final output for the reduce 
partition 

 MR completes when all map and reduce tasks have 
finished 

 
 
 



MR: Output 
 

 The output of MR is R output files (one per reduce 
task) 
 

 The partitioning function for intermediate keys can 
be defined by the user 
 by default, it is “hash(key) mod R” to generate well-

balanced partitions 
 

 Result files can be combined or fed to another MR 
job 
 



MR: Handling Faults 
 

 With thousands of machines all made of cheap 
hardware, faults are very common 
 

 MR library must tolerate any faults in the machines 
of the network gracefully without significantly 
impacting the speed of the computation 
 
 



Fault Tolerance: Scenarios 
 worker failure 

 
 master failure 

 
 network failure 

 
 file system or disk failure – data corruption 

 
 malformed records in input 

 
 bugs in user code 

 
 



Fault Tolerance: Worker Failures 
 Master pings every worker periodically (alternatively, the 

worker can send a heartbeat message periodically) 
 If worker does not respond, master marks it as failed 
 Map worker: 
 any completed or in-progress tasks are reset to idle state 
 completed  tasks need to be re-run since output is stored on a 

local file system 
 all reduce workers notified of this failure (to prevent duplication 

of data) 
 Reduce worker: 
 any in-progress tasks are reset to idle state 
 no need to re-run completed tasks since output stored in global 

file system 
 
 

 



Fault Tolerance: Master Failure 
 Master periodically checkpoints its data structures 

 
 On failure, new master can be elected using some 

leader election algorithm 
 

 Theoretically, the new master can start off from this 
checkpoint 
 

 Implementation: MR job is aborted if the master fails 
 
 

 



Fault Tolerance: Network Failure 
 Smart replication of input data by underlying file-

system 
 

 Workers unreachable due to network failures are 
marked as failed since its hard to distinguish this 
case from worker failure 
 

 Network partitions can slow down the entire 
computation and may need a lot of work to be re-
done 
 

 



Fault Tolerance: Filesystem/Disk failure 
 Depend on the filesystem replication for reliability 

 
 Each data block is replicated f number of times 

(default: 3) 
 replication across machines on the same rack (machine 

failure) 
 replication across machines on different racks (rack 

failure) 
 replication across data-center (data-center failure) 



Fault Tolerance: Malformed input 
 Malformed input records could cause the map task to 

crash 
 Usual course of action: fix the input 
 But what if this happens at the end of a long-running 

computation? 
 Acceptable to skip some records (sometimes) 
 word count over very large dataset 

 MR library detects bad records which cause crashes 
deterministically 
 Signal handler catches error and communicates to the master 
 If more than 1 failure seen for the same record, master 

instructs the mapper to skip that record 
 



Fault Tolerance: Bugs in user code 
 Bugs in user provided Map and Reduce functions 

could cause crashes on particular records 
 

 This case similar to the failure due to malformed 
input 

 



Fault Tolerance: Semantics 
 Map and Reduce must be deterministic functions of 

their input values 
 output produced by the distributed execution is same as 

the one produced by non-faulting sequential execution 
 

 Atomic commit of output 
 on completion, map task sends names of R intermediate 

files to master (master ignores this if the map task was 
already completed elsewhere) 

 on completion, reduce task atomically renames its 
temporary file to final output file (on a global file system) 
 



Locality Optimization 
 Effective utilization of network 

 
 Move computation near the input data 

 
 Input data (managed by GFS) stored on local disks 
 several copies of each block 

 
 Master considers this block location information when 

scheduling map task on a machine 
 

 Most input data is read locally and consumes zero 
network bandwidth 
 
 



Task Granularity 
 M map tasks and R reduce tasks 
 M and R much larger than the number of machines 
 Improves dynamic load balancing (add/remove machines) 
 Speeds up recovery 

 less work needs to be redone 
 work already completed by a failed task can be distributed across 

multiple idle workers 
 Bounds: 

 Master makes O(M+R) scheduling decisions 
 Master maintains O(M*R) state in memory 

 M is chosen such that each task works on one block of 
data (maximize locality) 

 R is usually constrained by users to reduce the number 
of output files 
 



Stragglers and Backup tasks 
 Straggler: machine that takes unusually long to 

complete one of the last few map/reduce tasks 
 reasons: bad disk, incorrect configuration, heavy load 
 significantly lengthens the total time of execution 

 
 Solution: master schedules backup tasks for all in-

progress tasks when MR is near completion 
 task marked complete when either primary or backup task 

finishes 
 tuned such that it does not increase the overall resource 

consumption by more than a few percent 
 
 



Refinements/Extensions 
 Partitioning function for intermediate keys 
 default: “hash(key) mod R” 
 user can provide custom function  

 eg: keys are URLs and we want all entries for a host in a single 
output file – “hash(Hostname(urlkey)) mod R” 

 
 Ordering guarantees 
 within a partition, all intermediate key/values pairs are 

processed in increasing key order 
 generates a sorted output file per partition 

 
 



Refinements/Extensions 
 Combiner 
 same map task produces a lot of values for a single 

intermediate key 
 if Reduce is commutative and associative: 

 user can specify an optional combiner function 
 combiner runs on the same machine as the map task 
 combiner does partial reduction of the output of map before the 

data is send to the reducer 
 preserves network bandwidth and speeds up overall computation 

 Example – word count 
 every map task will produce hundreds of pairs of the form  
   <“the”, 1> which will be sent over the network 
 combiner can do partial reduction 
 only 1 pair is sent to the reducer from every map with key “the” 

 
 
 
 



Refinements/Extensions 
 Local Execution 
 all map/reduce tasks can be executed locally 
 helps with testing/debugging/profiling 
 

 Counters 
 count occurrences of various events 

Counter* uppercase; 
uppercase = GetCounter("uppercase"); 
map(String name, String contents): 
 for each word w in contents: 
  if (IsCapitalized(w)): 
   uppercase->Increment(); 
  EmitIntermediate(w, "1"); 

 updated counters propagated to master periodically 
 
 
 



Refinements/Extensions 
 Support for arbitrary input types and sources 
 user needs to implement a reader interface 
 

 Status Information 
 master runs an HTTP server and exports status pages 

 progress of computation 
 processing rate for input data 
 status of map/reduce tasks 
 failed workers 
 various counters – number of input key/value pairs, number of 

output records, etc. 
 
 
 

























Performance 
 Benchmarks: 
 MR_Grep - Scan 1010 100-byte records to extract records 

matching a pattern (92K matching records) 
 MR_Sort - Sort 1010 100-byte records (similar to TeraSort 

benchmark) 
 

 Testbed: 
 Cluster of 1800 machines 
 Each machine has: 

 4 GB of memory  
 Dual-processor 2 GHz Xeons with HT 
 Dual 160 GB IDE disks 
 Gigabit Ethernet 



Performance 
 MR_Grep 
 M=15000, R=1 (64 MB input splits) 
 total time – 150 secs 

 
 
 
 
 
 
 

 peak rate ~ 31GB/s 
 w/o locality optimization, peak rate < 10GB/s 



Performance 
 MR_Sort 
 M=15000, R=4000 
   (64 MB input splits) 
 1 TB input 
 2 TB output  
   (2-way replication) 
 total time – 891 seconds 

 



Performance 
 Impact of Backup Tasks – MR_Sort 
 After 960 seconds, all except 5 reduce tasks are 

completed – take 300 additional seconds to finish 
 MR_sort takes 44% more time overall if backup tasks are 

disabled 
 

 Impact of Machine Failures – MR_Sort 
 intentionally killed 200 workers some time after the 

computation started 
 overall time – 933 seconds (+5%) 





Chaining MR jobs 
 Many problems which cannot be expressed easily with a 

single MR job 
 use a chain of MR jobs! 

 
Map1  Reduce1  Map2  Reduce2  Map3  Reduce3  … 
 
 

Example: Count the average number of characters in a line 
with has a particular pattern 
 
Distributed grep  Average calculator 



MR on multicore systems 
 MPI and shared-memory threads implementations 

are too complex and error-prone 
 

 Needs to be tuned for efficiency on different 
platforms by the programmer 

 
 Can we develop a simple interface like MR on 

multicore platforms? 



MR on multicore systems 
 

 To simplify parallel programming we need 2 
components: 

 
 practical programming model -  allows to specify 

concurrency and locality at a high level 
 

 efficient runtime system – handles low-level mapping, 
resource management and fault tolerance 
 

 



MR on multicore systems 
 Phoenix: implementation of MR on shared-memory 

symmetric multiprocessor systems 
 



Phoenix 
 uses threads instead of machines in a cluster for 

parallelism 
 communication done via shared-memory instead of  

the network 
 Phoenix Runtime: 
 assigns map and reduce to threads; handles buffer 

allocation and communication 
 dynamic scheduling for load balancing  
 locality optimization via granularity adjustment 

(input/output for map should fit in L1 cache) 
 detects and recovers from faults 
 mainly, hides a lot of low-level details from the 

programmer 
 





Phoenix - Performance 
 Performance evaluated on 2 systems: 
 CMP: 1.2GHz Sun Fire T1200 (8 CPUs, 4 threads/CPU) 
 SMP: 250MHz Sun Ultra-Enterprise 6000 (24 CPUs, 1 

thread/CPU) 
 

 Computations: 
 word count, string match, reverse index, linear regression, 

matrix multiply, Kmeans, PCA, histogram of RGB 
components in an image 

 datasets of different sizes are used for different 
computations 

 
 



 
 



 
 



MR on mobile platforms 
 

 Misco: MapReduce framework for mobile systems 
 uses mobile devices as nodes to schedule map and 

reduce tasks 
 works on any device which supports Python and has 

network connectivity 
 tested using 10 Nokia N95 phones connected to a 

Linksys router 
 can be used by applications which require more 

computing power than locally available 
 eg: processing images/videos 



MapReduce – works everywhere? 
 Real time computations 
 MR can be used for preprocessing data 

 Small datasets 
 too much overhead 

 Interactive analysis of data 
 Anything which requires a lot of communication 

between tasks 
 Anything where tasks depend on each other 
 Stream processing 
 reduce waits for map to finish 



Criticism for MapReduce 
 nothing new – just a specific implementation of 25-

30 year old techniques 
 MR imposes “simplified” data processing with cluster of 

cheap commodity machines 
 

 not a DBMS 
 MR is a framework for one-off processing of data 

 
 sub-optimal implementation (uses brute force 

instead of indexing to process data) 
 MR can be used to generate indexes but its not an 

optimized data storage and retrieval system 
 



Conclusion 
 MapReduce programming model has been a huge 

success 
 easy to use for programmers with no experience in 

distributed systems 
 hides details of parallelization, load balancing, fault 

tolerance, task management from the user 
 massively scalable 
 provides status monitoring tools 

 
 Many open source implementations 
 eg: Hadoop 



 
 

 Thank you! 
    Questions? 



Comparison with Parallel DBMS 
 Parallel DBMS – similar to MR? 
 Parallelize query operation across multiple machines 
 

 MapReduce: 
 Distributed file system 
 MR scheduler 
 Map, Combine and Reduce operations 
 

 Parallel DBMS 
 Relational tables 
 Data spread over cluster nodes 
 SQL for programming 

  
 



Comparison with Parallel DBMS 
 Indexing 
 MR: 

 No direct support; indexes can be built 
 Customized indexes harder to reuse and share 

 DBMS 
 Use hash or b-tree for indexing 
 Fast access to any data 

 
 Data format 
 MR: 

 No specific format required 
 DBMS: 

 Relational schema required 



Comparison with Parallel DBMS 
 Fault Tolerance: 
 MR: 

 Intermediate results stored to files 
 Quicker to recover from faults 

 DBMS: 
 No storage of intermediate results (send over network) 
 Lot of rework needed if a node fails 

 

 
 



Comparison with Parallel DBMS 
 Performance: 
 Cluster configuration: 

 100 nodes 
 Each 2.4GHz Intel Core 2 Duo, 4GB RAM, 2 256GB SATA 

HDDs 
 

 Comparison of: 
 Hadoop 
 DBMS-X (row store) 
 Vertica (column store) 

 



Comparison with Parallel DBMS 
 Benchmark – Data Loading 
 Hadoop 

 Copy file in parallel to HDFS 
 

 DBMS-X  
 SQL load in parallel 
 Distribute records to machines, build index, compress data 

 
 Vertica 

 Load data in parallel; compress data 
  

 



Comparison with Parallel DBMS 
  

 



Comparison with Parallel DBMS 
 Benchmark – grep for pattern 
 Hadoop 

 Map outputs line what matches a pattern 
 Identity Reduce 

 
 DBMS-X  

 SELECT * FROM data WHERE field LIKE “%XYZ%” 
 

 Vertica 
 SELECT * FROM data WHERE field LIKE “%XYZ%” 
  

 
  

 



Comparison with Parallel DBMS 
  

 



Comparison with Parallel DBMS 
 Conclusion 
 Advantages over MR: 

 Provide schema support 
 Indexing for faster access to data 
 Programming model is more expressive and easier  

 Disadvantages over MR: 
 Cant work with any arbitrary data 
 Load times for data are very high 
 MR is better at fault tolerance (less repeated work) 
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