MapReduce: Simplified Data Processing on
Large Clusters

Nikhil Panpalia

Outline

4

vV Vv VvV Vv V9

What is MapReduce?
What are Map and Reduce?

Scalability

Implementing MapReduce
opportunities for parallelism
Input, output, execution
optimizations and extensions

Fault Tolerance

Performance

MapReduce on multicore platforms
MapReduce on mobile platforms
Does it work for any computation?

What is MapReduce?

» A framework for processing large-scale data sets using a cluster of
machines.

» Who should use MapReduce?

A programmer with:
Lots of data to store and analyze
Lots of machines available for processing the data

Doesn’t have the time to become a distributed systems expert who can build
an infrastructure to handle this task

What is MapReduce?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jetf@ google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce 1s a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

N 1A tnolre aea aveasancibllo e thic saadal ac choaasse

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with

A simple problem

» Search for a pattern “cs395t” in a collection of files

» You would typically run a command like this:
grep -r “cs395t” <directory>

» Now, suppose you have to do this search over
terabytes of data and you have a cluster of machines
at your disposal.

How can you make this grep faster?
Build a distributed grep!

Do we really need a distributed solution?

» Why can'’t | just use my desktop to do the processing?
How long does it take to read 1 TB of data?
Considering an average read speed of 90MB/s!ll: ~3.23 hours
If you use an SSD with read speed of 350MB/s!?l; ~50 minutes

» How much time it will take for searching through a
terabyte of data? Or maybe sorting it?

» MapReduce can sort 1000 TB of data in 33 minutes![3!

[1] Numbers are for Western Digital 1TB SATA/300 drive.
[2] Numbers are for Crucial 128 GB m4 2.5-Inch Solid State Drive SATA 6Gb/s
[3] using 8000 machines -

http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html

Should I build my own distributed
system /{framework?

» It's hard!
Machine and network management
Task management
Fault tolerance
Avallability despite failures
Scalability

Understanding Map and Reduce

var a = [1,2,3];

for (i=0; i1<a.length; i++)
a[i] = a[i] * 2;

for (i=0; i1<a.length; i++)
a[i] = a[i] + 2;

Understanding Map and Reduce

| can change it to:

function map(fn, a) {
for (1 = 0; 1 < a.length; 1++)
af1] = fn(alil);
}

map(function(xX){return x*2;}, a);
map(function(xX){return x+2;}, a);

Understanding Map and Reduce

function sum(a) {
var s = 0;
for (i = 0; 1 < a.length; 1++)
s += a[i];
return s;

}

function join(a) {
var s = "";
for (i = 0; 1 < a.length; 1++)
s += a[1];
return s;

}

alert(sum([1,2,3]));
alert(join(["a","b","c"D);

Understanding Map and Reduce

function reduce(fn, a, Init) {
var s = Init;
for (i = 0; 1 < a.length; 1++)
s = fn(s, a[il);
return s;

}

function sum(a) {
return reduce(function(a, b){return a+b;}, a, 0);

}

function join(a) {
return reduce(function(a, b){return a+b;}, a, “”

}

alert(sum([1,2,3]));
alert(join(["a","b","c"D);

Understanding Map and Reduce

» Passing functions as arguments — functional
programming

» map — does something to every element in an array
— can be done in any order!

amenable to parallelization

» So, If you have 2 CPUs, map will run twice as fast

» map Is an example of embarrassingly parallel
computation

Understanding Map and Reduce

» Suppose you have a huge array with elements which
are all the webpages from the Internet

» To search the entire Internet:
you just need to pass a string_searcher function to map
reduce will be an identity function
run a MapReduce job on a cluster

...that’s it! you are searching the Internet by writing just a
few lines of code!

Map and Reduce

» map — function that takes key/value pairs as input
and generates an intermediate set of key/value pairs

» reduce — function that merges all the intermediate
values associated with the same intermediate key

Map and Reduce

» User needs to define these 2 functions
» Inspired by functional primitives in Lisp

» Functional model — data is immutable, functions
don’t have side-effects

Allows automatic parallelization and distribution of large-
scale computations easily

MapReduce

map: (k1, vl) -2 list(k2, v2)
reduce: (k2, list(k2, v2)) =2 list(v2)

map -> shuffle -> reduce

(input key/value pair (groups all values associated (takes an intermediate key
and produces intermediate with the same intermediate key) and associated intermediate
key/value pairs) values and merges them to

form a possibly smaller set
of values)

Input data

kil

vl

Intermediate data

piece 1

piece M

partition 1

‘* (map 1 |

partition R

|
|
|
|
|

-
|
| ' 0
| partition 1
|

L’ ‘map M|

partition R

[v2]

.,

'

b,

2
reduce 1}

Output data

v3

reduce Rj'

Example — Word Count

» Problem: counting occurrences of words in a large
collection of documents

map(String key, String value):
// Key: document name
// value: document contents
for each word w 1n value:
Emitintermediate(w, "1');

reduce(String key, lterator values):
// Key: a word
// values: a list of counts
int result = O;
for each v 1In values:
result += Parselnt(v);
Emit(AsString(result));

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 —— = Bear, 2
Deer,1 ——»f Bear, 1
Deer Bear River ——» Bear, 1

River, 1
/ Car, 1
Car,1 ——m» Car,3 —m Bear,?2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——» CarCarRiver ——w» Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 ——w» Deer,2 —— =

Deer, 1
Deer, 1
Deer Car Bear ——» Car, 1
Bear, 1 River, 1 —— River, 2

River, 1

Word Counting using MapReduce

Example — Word Count

» Other than map and reduce, user needs to provide:
names of input and output files
optional tuning parameters (size of split, M, R, etc.)

» User’s code is linked with MapReduce library and
the binary is submitted to a task runner

Other Examples

» Distributed grep
map emits a line if it matches the given pattern
reduce just copies input to output

» Counting URL access frequency
map processes web server logs and outputs <URL, 1>
reduce sums all numbers for a single URL

Other Examples

» Inverted index
map function parses document and emits <word, doclD>
reduce gets all pairs for a given word and emits
<word, list(docID)>

» Distributed sort
map extracts key for a record and emits <key, record>
reduce emits all pairs unchanged

Implementing Map and Reduce
» Now, all we need is some “genius” to implement these 2
abstractions — map & reduce

Exploit parallelism in the computation

Massively scalable — can run on hundreds or thousands of
machines

Hide the details of cluster management tasks like scheduling of
tasks, partitioning of data, network communication from the
user

Fault tolerant (in large clusters failures are a norm rather than
being an exception)

Implementing MR:
Opportunities for Parallelism

» Input — all key/value pairs can be read and
processed in parallel by map

» Intermediate grouping of data — essentially a sorting
problem; can be done in parallel and results can be
merged

» Output — All reducers can work in parallel
each individual reduction can be parallelized

Input

Intermediate

kl:vkl:vk2v kl:v k3:v kd:y kd:v kS:v | kd:wv kl:vk3:wv
[[Gmup by Key]J
Grouped |kl:v,v,v,v |k2:v (k3:v,v | kd:v,v,v | kS:v

MR Execution

Qutput

HO® O

,

.

'

'

'

r-—- - - - - - - == A r-— - - - = = = L r— - - - - - = = =
: Map Task 1 | : Map Task 2 | : Map Task 3 |
| L L '
| L L '
| L L '
| L L '
| L L '
| I b '
|kl klw k2w klwv] | k3w kdw kdw k3w |l | ERY klw k3w I
| Partitioning Function I | Partitioning Function | | Partitioning Function I
______ —_ = — — d = — — == = = = 4

Sort and Group
klwvwvwvy | k3w

50

Reduce Task 2

Sort and Gmup
kd v v v

XX

Reduce Task 1

MR Parallel
Execution

Implementing MR:
Exploit parallelism using a cluster

» Characteristics of the cluster:
Lot of commodity PCs connected together
Network is a scarce resource
Failures are very common

Storage is provided by a distributed file system using
Inexpensive disks

File system replication is used to provide reliability and
availability

A scheduling system decides which jobs will run on which
machines

Distributed File System

» Allows access to files from multiple hosts over the
network

» Support concurrency (multiple clients reading/writing
the same file)

» Support for replication

» GFS: distributed file system used in Google’s
MapReduce Is important for achieving good
performance (high availability and durability via
replication)

Google File System (GFS)

» Motivation: redundant storage of massive
amounts of data on cheap unreliable machines

» Assumptions:
modest number of very large files
files are write-once, never modified, mostly appended
fast streaming reads — high throughput desired
large number of component failures

Google File System (GFS) - Design

» Files stored as chunks (typically of 64MB)

helps in load balancing and better distribution of data across
machines

can support files which cannot fit on 1 disk

» Each chunk is replicated multiple times (typically 3)
provides reliability and higher throughput for reads

» Single master (maintains all metadata) and multiple
chunkservers (store actual data chunks)

» No caching of data (little benefit since data sets are
large)
» Can (theoretically) scale to any number of chunkservers

» Writes at arbitrary positions in files supported but are not
efficient (mostly append operations on files)

Implementing MR:
Distributing the input

» Input data is partitioned into splits of size S and is
processed by M mappers
splitting the data helps exploit the data parallelism in the input

number of map tasks is usually more than the number of
available worker machines (better dynamic load balancing)

splits are of smaller size — typically the size of a filesystem
block
better load balancing for storage

faster recovery:
less repetition of work in case of failures
repeated work can also be parallelized

M and S can be configured by the user

(Note: this step is optional if the files blocks are already distributed across
machines by GFS.)

Implementing MR:
Master

» Only 1 Master per MR computation

» Master:

assigns map and reduce tasks to the idle workers
Informs the location of input data to mappers

stores the state (idle, in-progress, completed) and identity
of each worker machine

for each completed map task, master stores the location
and sizes of intermediate files produced by the mapper;
this information is pushed to workers which have in-
progress reduce tasks

(1) fork .~ - "
ok (1) fork 1) fork

Master
. (2)
@ " assign
. agﬁ,]gn reduce .)

map

worker

p

split 0

(6) write

output
file O

worker

split 1

(5) remote read

spli[2 JM.@ (4) local write
worker
split 3

output
file |

split 4

[nput Map [ntermediate files Reduce Output
files phase (on local disks) phase files

MR: Step-by-Step Execution

» Split the input into M pieces and start copies of
program on different machines

» One Iinvocation acts as the master which assigns
work to idle machines

» Map task:
read the input and parse the key/value pairs
pass each pair to user-defined Map function

write intermediate key-value pairs to disk in R files
partitioned by the partitioning function

pass location of intermediate files back to master

MR: Step-by-Step Execution

» Master notifies the reduce worker

» Reduction is distributed over R tasks which cover
different parts of the intermediate key’s domain

» Reduce task:
read the intermediate key/value pairs

sort the data by intermediate key (external sort can be used)
(note: many different keys can map to the same reduce task)

iterate over sorted data and for each unique key, pass the key
and set of values to user-defined Reduce function

output of Reduce is appended to final output for the reduce
partition

» MR completes when all map and reduce tasks have
finished

MR: Output

» The output of MR is R output files (one per reduce
task)

» The partitioning function for intermediate keys can
be defined by the user

by default, it is “hash(key) mod R” to generate well-
balanced partitions

» Result files can be combined or fed to another MR
job

MR: Handling Faults

» With thousands of machines all made of cheap
hardware, faults are very common

» MR library must tolerate any faults in the machines
of the network gracefully without significantly
Impacting the speed of the computation

Fault Tolerance: Scenarios

» worker failure

» master failure

» network failure

» file system or disk failure — data corruption
» malformed records in input

» bugs in user code

Fault Tolerance: Worker Failures

» Master pings every worker periodically (alternatively, the
worker can send a heartbeat message periodically)

» If worker does not respond, master marks it as failed

» Map worker:
any completed or in-progress tasks are reset to idle state

completed tasks need to be re-run since output is stored on a
local file system

all reduce workers notified of this failure (to prevent duplication
of data)

» Reduce worker:
any in-progress tasks are reset to idle state

no need to re-run completed tasks since output stored in global
file system

Fault Tolerance: Master Failure

» Master periodically checkpoints its data structures

» On failure, new master can be elected using some
leader election algorithm

» Theoretically, the new master can start off from this
checkpoint

» Implementation: MR job Is aborted if the master fails

Fault Tolerance: Network Failure

» Smart replication of input data by underlying file-
system

» Workers unreachable due to network failures are
marked as failed since its hard to distinguish this
case from worker failure

» Network partitions can slow down the entire
computation and may need a lot of work to be re-
done

Fault Tolerance: Filesystem/Disk failure

» Depend on the filesystem replication for reliability

» Each data block is replicated f number of times

(default: 3)

replication across machines on the same rack (machine
failure)

replication across machines on different racks (rack
failure)

replication across data-center (data-center failure)

Fault Tolerance: Malformed input

» Malformed input records could cause the map task to
crash

» Usual course of action: fix the input

» But what if this happens at the end of a long-running
computation?

» Acceptable to skip some records (sometimes)
word count over very large dataset
» MR library detects bad records which cause crashes
deterministically

Signal handler catches error and communicates to the master

If more than 1 failure seen for the same record, master
Instructs the mapper to skip that record

Fault Tolerance: Bugs in user code

» Bugs in user provided Map and Reduce functions
could cause crashes on particular records

» This case similar to the failure due to malformed
Input

Fault Tolerance: Semantics

» Map and Reduce must be deterministic functions of
their input values

output produced by the distributed execution is same as
the one produced by non-faulting sequential execution

» Atomic commit of output

on completion, map task sends names of R intermediate
files to master (master ignores this if the map task was
already completed elsewhere)

on completion, reduce task atomically renames its
temporary file to final output file (on a global file system)

Locality Optimization

» Effective utilization of network
» Move computation near the input data

» Input data (managed by GFS) stored on local disks
several copies of each block

» Master considers this block location information when
scheduling map task on a machine

» Most input data is read locally and consumes zero
network bandwidth

Task Granularity

» M map tasks and R reduce tasks

» M and R much larger than the number of machines
Improves dynamic load balancing (add/remove machines)
Speeds up recovery

less work needs to be redone

work already completed by a failed task can be distributed across
multiple idle workers

Bounds:
Master makes O(M+R) scheduling decisions
Master maintains O(M*R) state in memory

» M is chosen such that each task works on one block of
data (maximize locality)

» R is usually constrained by users to reduce the number
of output files

Stragglers and Backup tasks

» Straggler: machine that takes unusually long to
complete one of the last few map/reduce tasks
reasons: bad disk, incorrect configuration, heavy load
significantly lengthens the total time of execution

» Solution: master schedules backup tasks for all in-
progress tasks when MR is near completion

task marked complete when either primary or backup task
finishes

tuned such that it does not increase the overall resource
consumption by more than a few percent

Refinements/Extensions

» Partitioning function for intermediate keys
default: “hash(key) mod R”

user can provide custom function

eg: keys are URLs and we want all entries for a host in a single
output file — “hash(Hostname(urlkey)) mod R”

» Ordering guarantees

within a partition, all intermediate key/values pairs are
processed in increasing key order

generates a sorted output file per partition

Refinements/Extensions

» Combiner

same map task produces a lot of values for a single
iIntermediate key
If Reduce is commutative and associative:

user can specify an optional combiner function

combiner runs on the same machine as the map task

combiner does partial reduction of the output of map before the
data is send to the reducer

preserves network bandwidth and speeds up overall computation

Example — word count
every map task will produce hundreds of pairs of the form

<“the”, 1> which will be sent over the network
combiner can do partial reduction
only 1 pair is sent to the reducer from every map with key “the”

Refinements/Extensions

» Local Execution
all map/reduce tasks can be executed locally
helps with testing/debugging/profiling

» Counters

count occurrences of various events
Counter® uppercase;
uppercase = GetCounter(''uppercase’™);
map(String name, String contents):
for each word w 1n contents:
iIT (IsCapitalized(w)):
uppercase->Increment();
Emitintermediate(w, "1");

updated counters propagated to master periodically

Refinements/Extensions

» Support for arbitrary input types and sources
user needs to implement a reader interface

» Status Information
master runs an HTTP server and exports status pages
progress of computation
processing rate for input data
status of map/reduce tasks

failed workers
various counters — number of input key/value pairs, number of
output records, etc.

Started: Fn Nov 7 09:51:07 2003 -- up 0 hr 00 mun 18 sec

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

323 workers; 0 deaths

Type Shards Done Active Input(ME) Done(MB) Output(ME)
Map 13853 0| 323 8789346 1314 4 717.0
Shuffle 500 0| 323 717.0 0.0 0.0
Reduce| 500 0 0 0.0 0.0 0.0
100
90
80
37
-g 60
o 50
f «
L
20
10

|

100

Reduce Shard

Counters
Variable, Minute
Mapped
72.5
(MEfs)
Shuffle
0.0
(B/fs)
Cutput
(MBfs) =
doc- |
e it 145825686 |
docs-
o 506631
dups-n-
index- 0
merge
rnr-
operator-| 508192
calls
I‘nr-
306631

Started: Fn Nov 7 09:51:07 2003 -- up 0 hr 05 mun 07 sec

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

1707 workers, 1 deaths
Type |Shards Done Active Input(ME) Done(MB) Output(ME)
Map | 13853| 1857 1707| 878934.6| 1919958 113936.6
Shuffle 500 0] 3500 113936.6| 571137 37113.7
Eeduce| 500 0 0| 571137 0.0 0.0
1)
90
80
T 70
-
2 60
-
Fu
§ 40
[
$
20

(=
[=

=

.

Reduce Shard

Counters
Yanabhle Minute
e 6991
(ME/s) '
Shuffle
449 5
(MB/s)
Output 0.0
(MB/s)
doc-
i 50044115944
docs-
A 17290135
0
17331371
rnr-
|operator-| 17290135

Started: Fri Nov 7 09:51:07 2003 --up 0 hr 10 run 18 sec

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

1707 workers; 1 deaths
Type Shards Done Active Input(MB) Done(ME) Output(MB)
Map | 13853| 5354| 1707| 878934.6| 406020.1| 2410582
Shuffle 500 0| 500 241058.2| 1963625 1963625
Reduce| 500 0 0| 1963625 0.0 0.0
L
90
80
'E 70
§ 60
S 50
=]
§ 40
[
S 3

s B

ﬂﬁ

8

Reduce Shard

-

Counters
Variable Minute
Mapped

704 .4
(MB/s)
Shuffle

371.9
(2B/s)
Chutput 0.0
(MB/s) '
doc-
e 5000364228
docs-
e 17300709
dups-n-
mndex- 0
Mmerge
ﬂh"-
operator-| 17342493
calls
lm_
operator-| 17300709

outputs

Started: Fn Nov 7 09:51:07 2003 -- up 0 hr 15 min 31 sec
1707 workers, 1 deaths

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Type Shards Done Active Input(MB) Done(ME) Output(MB)
Iap 13853 8841 1707 878934.6| 6216085 269459 8
Shuffle 500 0| 500| 369459.8| 326986.8| 326986.8
Reduce| 500 0 0] 326986.8 0.0 0.0
100
90
80
E 70
o
= 60
T
3 50
§
.
& 30
20

(=
(=3

o
L

Reduce Shard

400
Fnly

outouts

Counters
Variable Minute
Mapped
706.5
(MB/s)
Shuffle
(MBYs) 4192
Qutput
(MB/s) ey
doc-
o dex-hite 4982870667
docs-
o doxed 17229926
dups-n-
ndex- 0
merge
I‘I‘u"-
operator-| 17272056
calls
:m-.
‘loperator-| 17229926

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fn Now 7 09:51:07 2003 -- up 0 hr 29 min 45 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(ME) Output(ME)
Map 13853|13853 0 878934.6) B78934.6 223499 2
Shuffle 500 195| 305| 523499.2| 523389.6 523389.6
Reduce| 500 0 195] 523389.6 2685.2 27426
100
90
80
B 70
-
2 60
5w
=
§ 40
(2]
$ 3
20
10
0 =] =] E=
- & a

Reduce Shard

Gl

B

outputs

Counters
Variable | Minute |
Mapped
(ME/s) = _
Shuffle
(MEB/s) = _
Chatput
(MB/s) < _
doc- |
. . 7 E
il 23131 3. 10
docs- |
mdexed etz _
dups-m-
mdex- 0
merge
M=
merge- (1954105
calls
merge- 1954105

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fn NMov 7 09:51:07 2003 -- up 0 hr 31 min 34 sec

1707 workers: 1 deaths

Type |Shards Done Active Input(MB) Done(MB) Output(ME)
Map | 13853[13853] 0| 878934.6] 878934.6| 523499.2
Shuffle | 500| 500| 0| 5234992| 5234995 5234995
Reduce| 500| 0| 500| 523499.5| 133837.8| 136929.6

@ @ ¥ 2 € g

Percent Conpleted
2 2 8 35

o

. = &

Reduce Shard

400

Counters
Vanahle DMinute
Mapped 0.0
(MBs) i
Shuffle 0.1
(MEB/fs) '
Output
QdBls) 1238.8 i
doc-

[

mndex-hits 01
docs- 0
ndexed
dups-in-
mndex- 0
merge
[m_
merge- |51738599
calls

| ol

‘|merge- |51738599

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 33 rmun 22 sec
1707 workers; 1 deaths Counters

Iype Shards Done Active Input(ME) Done(ME) Output{ME) Vanable Minute
Map | 13853[13853| 0| 9789346| 8789346 5234992 Mapped o]
Shuffle | 500 500| 0| 523499.2| 5234995 5234995 (MB/s) |
Reduce| 500 0| 500] 523499.5| 2632833 2693512 Shuffle 0.0

(MEB/s)
100
S0
a0
70
TH]
a0
i
30
20
16

Cutput
Q

QMBS 1223.1

doc-

mdex-hits o

docs- 0 |
mdexed
dups-in-
mndex- 0
merge

FPercent Conpleted

n'_u'_
merge- |51842100
calls

H'u'_
merge- |51842100
outputs

o
=
=i

300
G0
B0

b=
=
U |

Reduce Shard

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fn Now 7 09:51:07 2003 -- up 0 hr 35 min 08 sec

1707 workers, 1 deaths | _ Counters |
Type Shards| Done Active Input(MB) Done(MB) Output{ME) Variable| Minute
Map | 13853 13853: 0| 878934.6| 878934.6| 5234992 Mapped 0.0
Shuffle | 500| 500| 0| 523499.2| 523499.5 5234995 |(M0/s) |
Reduce| 500 EI: 500| 5234995 3904476 3994572 Shuffle 0.0
100 Qutput
1222.0
50 (fB/s) |
B0 doc-
: : 0]
3 7 .mde:-:-futs
E docs- 0
g~ indexed
: 50 dups-in-
E 40 index- 0
:ih. 30 merge
20 P
merge- | 51640600
10 calls
0
} 5 & 3 g &l
- merge- | 51640600

outouts

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fn Nov 7 09:51:07 2003 -- up 0 hr 37 mun 01 sec

1707 workers, 1 deaths _ Counters
Type Shards Done|Active Input(MB) Done(MB) Output(MB) | Variable| Minute
Map 1385313853 0| 8789346| B78934.6 523499.2: Mapped 0.0
Shuffle | 500/ 500| 0| 523499.2| 5204686 520468.6| (ME/s) |
Reduce| 500| 406 94| 5204686 5122652 514373.3| Shufle 0.0
: (MEB/s)
100 Chutput
849.5
9 (MB/s)
doc-
B0
; : 0110
2 7% mndex-luts
E docs- 0
g " indexed
ﬁ » dups-m-
E 40 mndex- 0
:ih. 30 merge |
20 5
merge- |[35083350
10 calls
QG =) i = =
g & & 3 Ll

merge- |35083350

outouts

Reduce Shard

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fnn Nowv 7 09:51:07 2003 -- up 0 hr 38 mun 56 sec
1707 workers, 1 deaths
Type |Shards Done Active Input(MB) Done(ME) Output(MBE)

Map | 1385313853 0| 878934.6| 8789346, 5234992
Shuffle 500{ 500 0| 5234992 519781.8| 5197818
Reduce| 500| 498 2| 515781.8| 5193%477 5154407

100

9

L=

o

8

7

L=

6

L=

5
4

L=

Percent Completed
=

L=

3
2

&

1

f=]

L

or
=
[

Reduce Shard

1600
300

Counters

Varnable Minute

Mapped
(MB/s)
Shuffle
(MEB/s)
Output
(MB/s)
doc-
mdex-hits

docs-
mndexed
dups-mn-
index-
merge
i =
merge-
calls
merge-
oufouts

0.0

0.0

94

394792

394792

105t

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51:07 2003 -- up 0 hr 40 min 43 sec
1707 workers; 1 deaths
Type Shards Done Active Input(ME) Done(MB) Output(ME)

Map | 13853|13853 0| 878934.6| 8789346 5234992
=huifle 2001 500 0| 523499.2| 519774.3] 5197743
FEeduce| 3500| 49% 1| 5197743 5197352 519764.0

100

9

L=

&

L=

7

L=

&

L=

=

=

4

Percent Conpleted
L

3

L=

L=

2

1

L=

=
F0n)

1000

&

Reduce Shard

Qi)
Bl

(Counters
Vanable Minute

Mapped
(ME/s)
Shuffle
(MB/s)
Output
(MB/s)
doc-
mndex-hits

0.0
0.0
1.9

0]105

docs-

mndexed

dups-in-

mndex- ()
merge

Im-

merge- 73442
calls

merge- | 73442
outDULs

Performance

» Benchmarks:

MR_Grep - Scan 101° 100-byte records to extract records
matching a pattern (92K matching records)

MR_Sort - Sort 101° 100-byte records (similar to TeraSort
benchmark)

» Testbed:

Cluster of 1800 machines
Each machine has:
4 GB of memory

Dual-processor 2 GHz Xeons with HT
Dual 160 GB IDE disks
Gigabit Ethernet

Performance

» MR_Grep
M=15000, R=1 (64 MB input splits)
total time — 150 secs

30000 -

20000 —

10000 —

Input (MB/s)

[} I | I | I | I | I |
20 40 60 80 100

Seconds

peak rate ~ 31GB/s
w/o locality optimization, peak rate < 10GB/s

Performance

» MR_Sort
M=15000, R=4000
(64 MB input splits)
1 TB input
2 TB output
(2-way replication)
total time — 891 seconds

Input (MBE/s)

Shuffle (MB/s)

Output (MB/s)

20000
15000 -
1m+:u:r—|”|
5000 4| |

20000 =
1 5000 —
10000 —
5 _

50060 I,-.r".l

200000
150060
10000

SO0

e conds

Performance

» Impact of Backup Tasks — MR_Sort

After 960 seconds, all except 5 reduce tasks are
completed — take 300 additional seconds to finish

MR_sort takes 44% more time overall if backup tasks are
disabled

» Impact of Machine Failures — MR_Sort

Intentionally killed 200 workers some time after the
computation started

overall time — 933 seconds (+5%)

Input i(MEB/s)

Shulfle (MB/s)

Output (MB/s)

20000
15000
10000 —
5000

20000 -
15000
10000
5000

20000 -
15000
10000
5000

I T
500

Seconds

(a) Normal execution

ELELI R
15000 —
1000 —

5000 —

20 —
15000 —
1000 —

5000 —

1000

ELELI R
15000 —
OO0 —

5000 —

500 1000
Seconds
(b) No backup tasks

20000 —
15000 —
10000 —
5000 —

g

20000 -
15000 —
10000 —
5000 —

20000
15000 —
10000 —
5000 —

ALY

Seconds

1000

(c) 200 tasks killed

Chaining MR jobs

» Many problems which cannot be expressed easily with a
single MR job
use a chain of MR jobs!

Mapl - Reducel - Map2 - Reduce2 - Map3 - Reduce3 - ...

Example: Count the average number of characters in a line
with has a particular pattern

Distributed grep - Average calculator

MR on multicore systems

» MPI and shared-memory threads implementations
are too complex and error-prone

» Needs to be tuned for efficiency on different
platforms by the programmer

» Can we develop a simple interface like MR on
multicore platforms?

MR on multicore systems

» To simplify parallel programming we need 2
components:

practical programming model - allows to specify
concurrency and locality at a high level

efficient runtime system — handles low-level mapping,
resource management and fault tolerance

MR on multicore systems

» Phoenix: implementation of MR on shared-memory
symmetric multiprocessor systems

Evaluating MapReduce for Multi-core and Multiprocessor Systems

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis®

Computer Systems Laboratory
Stanford University

Abstract

This paper evaluates the suitability of the MapReduce
model for multi-core and multi-processor systems. MapRe-
duce was created by Google for application development
on data-centers with thousands of servers. It allows pro-
grammers to write functional-stvle code that is automati-

efficient runtime system that handles low-level mapping, re-
source management, and fault tolerance issues automati-
cally regardless of the system characteristics or scale. Nat-
urally, the two components are closely linked. Recently,
there has been a significant body of research towards these
goals using approaches such as streaming [13, 15], mem-
ory transactions [14, 5], data-flow based schemes [2], asyn-

Phoenix

» uses threads instead of machines in a cluster for
parallelism

» communication done via shared-memory instead of
the network

» Phoenix Runtime:

assigns map and reduce to threads; handles buffer
allocation and communication

dynamic scheduling for load balancing

locality optimization via granularity adjustment
(input/output for map should fit in L1 cache)

detects and recovers from faults

mainly, hides a lot of low-level detalls from the
programmer

Map Stage Reduce Stage

Input

Output

Worker 1 Worker 1
_) N / ’_\I _
i1 > Reduce 3 |} -
— _/ >/ N\
/o — - | Merge |
n {} o
: . ?/Merge '—P
i -M/Reduce nj-—l) }
/, \ L Merge J.:r}
1] il - Reduce - | ___,/
Worker N Worker M

Phoenix - Performance

» Performance evaluated on 2 systems:

CMP: 1.2GHz Sun Fire T1200 (8 CPUs, 4 threads/CPU)

SMP: 250MHz Sun Ultra-Enterprise 6000 (24 CPUs, 1
thread/CPU)

» Computations:

word count, string match, reverse index, linear regression,

matrix multiply, Kmeans, PCA, histogram of RGB
components in an image

datasets of different sizes are used for different
computations

3538

- [o]
(&3] [=]
!

CMP Speedup

—
=
!

43 72
@2 Cores 30 o2 Cores
W4 Cores W4 Cores
08 Cores 08 Cores
25] 016 Cores
W24 Cores

]
[=]

SMP Speedup
o

I
=
1

WordCount MatrixMuit StringMatch Kmaans Reversslndex PCA

. . L 0
Histogram Linsarfisg WordCount MatriMult StingMatch Kmeans Reversaindax BCA Histogram Lingarfiag

52 72
30
O Pihreads
25 W Phoenix
20

CMP Speedup
o

10 +

Lingar_reg

Wordcount Matrx_mult Sirng_match Kmeans Reverssindsx PCA Histogram

30
EPthreads
B Phoenix
25
20

SMP Speedup
&

—
=
I

Wordcount Matrx_mult String_match Kmeans Reverssindsx PCA Hstogram

Lingar_rag

MR on mobile platforms

» Misco: MapReduce framework for mobile systems

uses mobile devices as nodes to schedule map and
reduce tasks

works on any device which supports Python and has
network connectivity

tested using 10 Nokia N95 phones connected to a
Linksys router

can be used by applications which require more
computing power than locally available

eg: processing images/videos

MapReduce — works everywhere?

» Real time computations
MR can be used for preprocessing data

» Small datasets
too much overhead

» Interactive analysis of data

» Anything which requires a lot of communication
between tasks

» Anything where tasks depend on each other

» Stream processing
reduce waits for map to finish

Criticism for MapReduce

» nothing new — just a specific implementation of 25-
30 year old techniques

MR imposes “simplified” data processing with cluster of
cheap commodity machines

» hot a DBMS
MR is a framework for one-off processing of data

» sub-optimal implementation (uses brute force
Instead of indexing to process data)

MR can be used to generate indexes but its not an
optimized data storage and retrieval system

Conclusion

» MapReduce programming model has been a huge
success

easy to use for programmers with no experience in
distributed systems

hides details of parallelization, load balancing, fault
tolerance, task management from the user

massively scalable
provides status monitoring tools

» Many open source implementations
eg. Hadoop

Thank you!

Questions?

Comparison with Parallel DBMS

» Parallel DBMS — similar to MR?
Parallelize query operation across multiple machines

» MapReduce:
Distributed file system
MR scheduler
Map, Combine and Reduce operations

» Parallel DBMS
Relational tables
Data spread over cluster nodes
SQL for programming

Comparison with Parallel DBMS

» Indexing

MR:

No direct support; indexes can be built
Customized indexes harder to reuse and share

DBMS

Use hash or b-tree for indexing
Fast access to any data

» Data format

MR:
No specific format required

DBMS:
Relational schema required

Comparison with Parallel DBMS

» Fault Tolerance:

MR:
Intermediate results stored to files
Quicker to recover from faults
DBMS:

No storage of intermediate results (send over network)
Lot of rework needed if a node fails

Comparison with Parallel DBMS

» Performance:

Cluster configuration:
100 nodes

Each 2.4GHz Intel Core 2 Duo, 4GB RAM, 2 256GB SATA
HDDs

Comparison of:

Hadoop
DBMS-X (row store)
Vertica (column store)

Comparison with Parallel DBMS

» Benchmark — Data Loading

Hadoop
Copy file in parallel to HDFS

DBMS-X
SQL load in parallel
Distribute records to machines, build index, compress data

Vertica
Load data in parallel; compress data

Comparison with Parallel DBMS

30000

1250

1000

750

seconds

seconds

1Modes 10Nodes 25MNodes 50 Modes 100 Nodes

| -‘Jerljca E DBMS—XD Hadu-:p|

25 Nodes 50 Nodes 100 Modes

| I veriics [l DBMS—X[__adoop |

Figure 1: Load Times — Grep Task Data Set Figure 2: Load Times — Grep Task Data Set

(535MB/node)

(1TB/cluster)

50000

40000

» 30000
b

“ 20000

10000

1MNodes 10 MNodes 25MNodes 50 Nodes 100 Nodes

| -‘u'erti-::a Ij DBMS—}{D Hadoop |

Figure 3: Load Times — UserVisits Data Set

(20GB/node)

Comparison with Parallel DBMS

» Benchmark — grep for pattern

Hadoop
Map outputs line what matches a pattern
ldentity Reduce

DBMS-X
SELECT * FROM data WHERE field LIKE “%XYZ%”

Vertica
SELECT * FROM data WHERE field LIKE “%XYZ%”"

Comparison with Parallel DBMS

|
=

[=7]
=

o
=

=
=

seconds

(]
=

[
=

—
=

1Nodes 10 MNodes 25 Modes 50 Nodes 100 Nodes

Il Vertica] 0BMS—X[_~"] Hadoop

Figure 4: Grep Task Results — 535MB/node Data Set

seconds

1500 ..

125ﬂ ..

1DDD ..

750

500

250+

25 Nodes 50 Nodes 100 Nodes

B v<rtica] pBMS—x[_~"|Hadoop

Figure 5: Grep Task Results — 1TB/cluster Data Set

Comparison with Parallel DBMS

» Conclusion

Advantages over MR:

Provide schema support

Indexing for faster access to data

Programming model is more expressive and easier
Disadvantages over MR:

Cant work with any arbitrary data

Load times for data are very high

MR is better at fault tolerance (less repeated work)

	MapReduce: Simplified Data Processing on Large Clusters
	Outline
	What is MapReduce?
	What is MapReduce?
	A simple problem
	Do we really need a distributed solution?
	Should I build my own distributed system/framework?
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Map and Reduce
	Map and Reduce
	MapReduce
	Slide Number 17
	Example – Word Count
	Slide Number 19
	Example – Word Count
	Other Examples
	Other Examples
	Implementing Map and Reduce
	Implementing MR:�Opportunities for Parallelism
	Slide Number 25
	Slide Number 26
	Implementing MR: �Exploit parallelism using a cluster
	Distributed File System
	Google File System (GFS)
	Google File System (GFS) - Design
	Implementing MR:�Distributing the input
	Implementing MR:�Master
	Slide Number 33
	MR: Step-by-Step Execution
	MR: Step-by-Step Execution
	MR: Output
	MR: Handling Faults
	Fault Tolerance: Scenarios
	Fault Tolerance: Worker Failures
	Fault Tolerance: Master Failure
	Fault Tolerance: Network Failure
	Fault Tolerance: Filesystem/Disk failure
	Fault Tolerance: Malformed input
	Fault Tolerance: Bugs in user code
	Fault Tolerance: Semantics
	Locality Optimization
	Task Granularity
	Stragglers and Backup tasks
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Performance
	Performance
	Performance
	Performance
	Slide Number 68
	Chaining MR jobs
	MR on multicore systems
	MR on multicore systems
	MR on multicore systems
	Phoenix
	Slide Number 74
	Phoenix - Performance
	Slide Number 76
	Slide Number 77
	MR on mobile platforms
	MapReduce – works everywhere?
	Criticism for MapReduce
	Conclusion
	Slide Number 82
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Slide Number 92

