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Dynamic Load Balancing

Rashid Kaleem and M Amber Hassaan

Scheduling for parallel processors

• Story so far
– Machine model: PRAM
– Program representation

• control-flow graph
• basic blocks are DAGs

– nodes are tasks (arithmetic or memory ops)
– weight on node = execution time of task

• edges are dependencies

– Schedule is a mapping of nodes to (Processors x Time):
• which processor executes which node of the DAG at a given time

Recall: DAG scheduling

• Schedule work on basis of “length” and “area” of 
DAG.

• We saw 
– T1 = Total Work (Area)
– T∞ = Critical path (Length)

• Given P processors, any schedule takes time  
≥ max(T1/P, T∞)

• Computing an optimal schedule is NP-complete
– use heuristics like list-scheduling

Reality check
• PRAM model gave us fine-grain synchronization 

between processors for free
– processors operate in lock-step

• As we saw last week, cores in real multicores do not 
operate in lock-step
– synchronization is not free
– therefore, using multiple cores to exploit instruction-level 

parallelism (ILP) within a basic block is a bad idea
• Solution: 

– raise the granularity of tasks so that cost of synchronization 
between tasks is amortized over more useful work

– in practice, tasks are at the granularity of loop iterations or 
function invocations

– let us study coarse-grain scheduling techniques
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Lecture roadmap
• Work is not created dynamically

– (e.g.) for-loops with no dependences between loop iterations
– number of iterations is known before loop begins execution but work/iteration is 

unknown 
structure of computation DAG is known before loop begins execution, but not 
weights on nodes

– lots of work on this problem
• Work is created dynamically

– (e.g.) worklist/workset based irregular programs and function invocation
• even structure of computation DAG is unknown

– three well-known techniques
• work stealing
• work sharing
• diffusive load-balancing

• Locality-aware scheduling
– techniques described above do not exploit locality
– goal: co-scheduling of tasks and data

• Application-specific techniques
– Barnes-Hut

For-loop iteration scheduling
• Consider for-loops with independent iterations

– number of iterations is known just before loop begins execution
– very simple computation DAG

• nodes represent iterations
• no edges because no dependences

• Goal:
– assign iterations to processors so as to minimize execution time

• Problem:
– if execution time of each iteration is known statically, we can use 

list scheduling
– what if execution time of iteration cannot be determined until 

iteration is complete?
• need some kind of dynamic scheduling 

Important special cases

Constant Work Variable work

For (i=0;i<N;i++)
{

SerialFor (j=1 to i)
doSomething();

}

For (i=0 to N)
{

SerialFor (j=1 to N-i)
doSomething();

}

For (i=0 to N)
{

doSomething();
}

For (i=0 to N)
{

if (checkSomething(i)   doSomething();
else                           doSomethingElse();

}

Increasing Work Decreasing Work

Dynamic loop scheduling strategies

• Model:
– centralized scheduler hands out work
– free processor asks scheduler for work
– scheduler assigns it one or more iterations
– when processor completes those iterations, it goes 

back to scheduler for more work
• Question: what policy should scheduler use to 

hand out iterations?
– many policies have been studied in the literature
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Loop scheduling policies
– Self Scheduling (SS)

• One iteration at a time. If a processor is done with an 
iteration, it requests another iteration.

– Chunked SS (CSS)
• Hand out `k’ iterations at a time, when k is determined 

heuristically before loop begins execution
– Guided SS (GSS)

• Start with larger “chunks”, and decrease to smaller chunks 
with time. Chunk size = remaining work/processors.

– Trapezoidal SS (TSS)
• GSS with linearly decreasing size function
• TSS is parameterized by two parameters F,L

– initial chunk size: F
– final chunk size: L

Scheduling policies(I)
• Chunk Size C(t) vs Time 

“chore” index
• Task size L(i) Vs Iteration 

index i

Self Scheduling

Chunked SS

Scheduling policies (II)
• Chunk Size C(t) vs Time 

“chore” index Task size L(i) Vs Iteration 
index i

Guided SS

Trapezoidal SS

Problems

• SS and CSS are not adaptive, so they 
may perform poorly when work/iteration 
varies widely, such as with increasing and 
decreasing loads

• GSS would perform poorly on decreasing 
work load, especially if the initial chunk is 
the critical chunk.
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Trapezoidal SS(F,L)

• Given the initial chunk size F and ending 
chunk size L, TSS can be adapted to SS, 
CSS or GSS.
– SS = TSS(1,1)
– CSS(k) = TSS(k,k)
– GSS(k) ≈ TSS(Work/P, 1)

• So, TSS(F,L) can perform as others, but 
can we do better?

Optimal TSS(F,L)
• Consider TSS (Work/(2xP),1)

– We divide the initial work into two, which we 
distribute amongst the P processors.

– We linearly reduce the chunk size based on:
• Delta = (F - L) / (N - 1)
• Where N = (2 x Work) / (F + L)

Performance of TSS

• If F and L are determined statically, TSS performs as 
good as other self-sched schemes

• Larger initial chunk size reduces task assignment 
overhead similar to GSS

• GSS faces problem in decreasing workload since the 
initial allocation maybe the critical chunk. TSS handles 
this by ensuring half of work is divided in first allocation.

• Subsequent allocation reduce linearly, with all 
parameters pre-determined, hence efficiently.

Dynamic work creation
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Dynamic work creation
• In some applications, doing some piece of work 

creates more work 
• Examples

– irregular applications like DMR
– function invocations

• For these applications, the amount of work that 
needs to be handed out grows and shrinks 
dynamically
– contrast with for-loops

• Need for dynamic load-balancing
– processor that creates work may not be the best one 

to perform that work

Task Pools

• Basic mechanism: task pool (aka task queue)
– all tasks are put in task pool
– free processor goes to task pool and is assigned one or more 

tasks
– if a processor creates new tasks, these are put into pool

• Variety of designs for task queues
– Single task queue

• Load balancing
– guided scheduling

– Split task queue
• Load balancing

– Passive approaches
» Work stealing

– Active approaches
» Work sharing
» Diffusive load balancing

Single Task Queue

• A single task queue holds the “ready”
tasks

• The task queue is shared among all 
threads

• Threads perform computation by:
– Removing a task from the queue
– Adding new tasks generated as a result of 

executing this task

Single Task Queue

• This scheme achieves load balancing
• No thread remains idle as long as the task 

queue is non-empty
• Note that the order in which the tasks are 

processed can matter
– not all schedules finish the computation in 

same time
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Single Task Queue: Issues
• The single shared queue becomes the point of 

contention
• The time spent to access the queue may be 

significant as compared to the computation itself
• Limits the scalability of the parallel application
• Locality is missing all together

– Tasks that access same data may be executed on 
different processors

– The shared task queue is all over the place

Single Task Queue: Guided Scheduling

• The work in the queue is chunked
• Initially the chunk size is big

– Threads need to access the task queue less often
– The ratio of computation to communication increases

• The chunk size towards the end of the queue is 
small
– Ensures load balancing

Split Task Queues
• Let each thread have its own task queue
• The need to balance the work among threads 

arises
• Two kinds of load balancing schemes have been 

proposed
– Work Sharing:

• Threads with more work push work to threads with less work
• A centralized scheduler balances the work between the 

threads
– Work Stealing:

• A thread that runs out of work tries to steal work from some 
other thread

Work Stealing

• Early implementations are by:
– Burton and Sleep 1981
– Halstead 1984 (Multi-Lisp)

• Leiserson and Blumofe 1994 gave theoretical 
bounds:
– A work stealing scheduler produces an optimal 

schedule
– Space required by execution is bounded
– Communication is limited

• O(PT∞(1+nd )Smax )
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Strict Computations.

• Threads are sequence of unit time 
instructions.

• A thread can spawn, die, join.
– A thread can only join to its parent thread.
– A thread can only stall for its child thread.

• Each thread has an activation record.

• T1 is root thread. It spawns T2, T6 and Stalls for T2 at 
V22,V23 and T6 at V23.

• Any multithreaded Computation that can be executed in a 
depth first manner on a single processor can be converted to 
fully strict w/o changing the semantics.

Example.

Why fully Strict?
• A “realistic” model easier to analyze
• A fully strict computation can be executed 

depth-first by a single thread
• Hence we can always execute the “Leaf”

Tasks in parallel.
– Busy Leaves Property

• Consider any fully strict computation:
– T1 = total work
– T∞ = critical path length

• For a greedy schedule X, 
– T(X) <= T1/P + T∞

Randomized Work-stealing
• Processor has ready deque. For itself, this is a stack, others 

can “steal” from top.
– A.Spawn(B)

• Push A to bottom, start working on B.
– A.Stall()

• Check own “stack” for ready tasks. Else “steal” topmost from other 
random processor.

– B.Die()
• Same as Stall

– A.Enable(B)
• Push B onto bottom of stack.

• Initially, a processor starts with the “root” task, all other work 
queues are empty.
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2-processors, at t=3

T1

P1 P2

Time 1 2 3 4
P1 V1 V2 

(spawn T2)
V3 

(spawn T3)
V4

P2 V16
(steal T1)

V17

Work-list after t-3, P2 will “steal” T1 and begin executing V16.

2-processors, at t=5

T2

P1

T1

P2

Time 1 2 3 4 5 6
P1 V1 V2

(spawn T2)
V3
(spawn T3)

V4 V5
(die T3)

V6
(spawn T4)

P2 V16
(steal T1)

V17
(spawn T6)

V18 V19

Work-list after t-5, P2 will work on T6 with T1 on its work-list 
and P1 is executing V5 with T2 on its work-list.

Work Stealing example: 
Unbalanced Tree Search

• The benchmark is synthetic
– It involves counting the number of nodes in an 

unbalanced tree
– No good way of partitioning the tree

• Olivier & Prins 2007 used work stealing for this 
benchmark
– A thread traverses the tree Depth-First
– Threads steal un-traversed sub-trees from a 

traversing thread
– Work stealing gives good results

Unbalanced Tree Search

Variation of efficiency with work-steal chunk size
Results on a Tree of 4.1 million nodes on SGI Origin 2000
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Unbalanced Tree Search

Speed up results for  shared and distributed memory
Results on a Tree of 157 billion nodes on SGI Altix 3700

Work Stealing: Advantages

• Work Stealing algorithm can achieve optimal 
schedule for “strict” computations

• As long as threads are busy no need to steal
• The idle threads initiate the stealing 

– Busy ones keep working
• The scheme is distributed
• Known to give good results on Cilk and TBB

Work Stealing: Shortcomings 
• Locality is not accounted for

– Tasks using same data may be executing on different 
processors

– Data gets moved around
• Still need mutual exclusion to access the local 

queues
– Lock free designs have been proposed
– Split the local queue into two parts:

• Shared part for other threads to steal from
• Local part for the owner thread to execute from

• Other Issues:
– How to select a victim for stealing
– How much to steal at a time

Work Sharing

• Proposed by Rudolph et al. in 1991
• Each thread has its local task queue
• A thread performs:

– A computation 
– Followed by a possible balancing action

• A thread with L elements in its local queue 
performs a balancing action with probability 1/L
– Processor with more work will perform less balancing 

actions
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Work Sharing

• During a balancing action:
– The thread picks a random partner thread
– If the difference between the sizes of the local queues 

is greater than some threshold:
• Local queues are balanced by migrating tasks

• Authors prove that load balancing is achieved.
• The scheme is distributed and asynchronous
• Load balancing operations are performed with 

the same frequency throughout.

Diffusive Load Balancing
• Proposed by Cybenko (1989)
• Main idea is:

– Load can be thought of as a fluid or gas
• Load is equal to number of tasks at a processor

– The actual processor network is a graph
– The communication links between processors have a bandwidth 

• Which determines the rate of fluid flow

• A processor sends load to its neighbors
– If it has higher load than a neighbor
– Amount of load transferred = (difference in load) x (rate of flow)

• The algorithm periodically iterates over all processors

Diffusive Load Balancing

• Cybenko showed that for a D-dimensional 
hypercube the load balances in D+1 
iterations

• Subramanian and Scherson 1994 show 
general bounds on the running time of 
load balancing algorithm

• The bounds on running time of actual 
parallel computation are not known

Parallel Depth First Scheduling
• Blelloch et al. in 1999 give a scheduling 

algorithm, which:
– Assumes a centralized scheduler
– Has optimal performance for strict computations
– The space is bounded to 1+O(1) of sequential 

execution for strict computations
• Chen et al. in 2007 showed that Parallel Depth 

First has lower cache misses than Work Stealing 
algorithm
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Parallel Depth First Scheduling

Parallel Depth First Schedule 
on p=3 threads

Depth First Schedule on a single thread

Parallel Depth First Scheduling

• The schedule follows the depth first schedule of 
a single thread

• Maintains a list of the ready nodes
• Tries to schedule the ready nodes on P threads
• When a node is scheduled it is replaced by its 

ready children in the list
– Ready children are placed in the list left to right

Locality-aware techniques

Key idea

• None of the techniques described so far take 
locality into account
– tasks are moved around without any consideration 

about where their data resides
• Ideally, a load-balancing technique would be 

locality-aware
• Key idea:

– partition data structures
– bind tasks to data structure partitions
– move (task+data) to perform load-balancing
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Partitioning
• Partition the Graph data structure into P 

partitions and assign to P threads
• Galois uses partitioning with lock coarsening:

– The number of partitions is a multiple of number of 
threads

• Uniform partitioning of a graph does not 
guarantee uniform load balancing
– E.g.: in DMR there may be different number of bad 

triangles in each partition
– Bad triangles generated over the execution are not 

known
• Partitioning the graph for ordered algorithms is 

hard

Application-specific 
techniques

N-body Simulation: Barnes-Hut
• Singh et al.(1995) studied hierarchical N-body methods

– Barnes-Hut, Fast Multipole, Radiosity
– They proposed techniques for load balancing and locality based 

on insights into the algorithms
• We’ll look at Barnes-Hut
• Iterate over time steps

1. Subdivide space until at most one body per cell
• Record this spatial hierarchy in an octree

2. Compute mass and center of mass of each cell
3. Compute force on bodies by traversing octree

• Stop traversal path when encountering a leaf (body) or an internal 
node (cell) that is far enough away

4. Update each body’s position and velocity

Barnes-Hut: Load Balancing Insights

• Around 90% of the time is spent in force calculation
• The partitioning requirements are not same among all four phases
• Distribution of the particles determines:

– Structure of the octree
– Work per particle/cell
– More work in denser parts of the domain
– Dividing particles equally among processors does not balance loads

• Introduce a cost metric per particle 
– = number of interactions required for force computation
– Cost per particle is not known before hand
– The distribution of particles changes very slowly over time

• Cost per particle does not change very often
– Can be used for load balancing

• Not good for position update phase



13

Barnes-Hut: Locality Insights
• Partition the actual 3D space 

– Use Orthogonal Recursive Bisection (ORB)
– Divides the space into 2 subspaces recursively

• Based on a cost function
• The cost function here is the profiled cost per particle

– Introduces a new data structure to manage
– Number of processors should be a power of 2

• Partition the octree
– Octree captures the spatial distribution of particles
– Traverse the leaves left-to-right and sum the particle costs
– Divide the leaves (and subtrees above them) based on cost
– Leaves near each other in octree may not be near in 3D space

• Needed for efficient tree building
• Can be achieved by careful number of child cells

Barnes-Hut: Tree Partitioning

Barnes-Hut: Results Barnes-Hut: Simulation stats for 8K particles
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Summary
• We reviewed some research on load balancing
• High-level idea

– computation DAG is available statically: schedule at 
compile time

– otherwise: some kind of dynamic scheduling/load-
balancing is needed

• Almost all existing techniques ignore locality 
altogether
– can you do better?

• Algorithm-specific insights may be necessary to 
achieve performance
– can we use our science of parallel programming 

approach to design general-purpose mechanisms that 
achieve the same  level of performance?


