Dynamic Load Balancing

Rashid Kaleem and M Amber Hassaan

Scheduling for parallel processors

· Story so far

- Machine model: PRAM
- Program representation
 - control-flow graph
 - basic blocks are DAGs
 - nodes are tasks (arithmetic or memory ops)
 weight on node = execution time of task
 - edges are dependencies
- Schedule is a mapping of nodes to (Processors x Time):
- which processor executes which node of the DAG at a given time

Recall: DAG scheduling

- Schedule work on basis of "length" and "area" of DAG.
- We saw
 - $-T_1 = Total Work (Area)$
 - $-T_{\infty}$ = Critical path (Length)
- Given P processors, any schedule takes time ≥ max(T₁/P, T_∞)
- Computing an optimal schedule is NP-complete – use heuristics like list-scheduling

Reality check

- PRAM model gave us fine-grain synchronization between processors for free
 - processors operate in lock-step
- As we saw last week, cores in real multicores do not operate in lock-step
 - synchronization is not free
 therefore, using multiple cores to exploit instruction-level
 - therefore, using multiple cores to exploit instruction-level parallelism (ILP) within a basic block is a bad idea
- Solution:
 - raise the granularity of tasks so that cost of synchronization between tasks is amortized over more useful work
 - in practice, tasks are at the granularity of loop iterations or function invocations
 - let us study coarse-grain scheduling techniques

Lecture roadmap

Work is not created dynamically

- (e.g.) for-loops with no dependences between loop iterations
 number of iterations is known before loop begins execution but work/iteration is unknown
- → structure of computation DAG is known before loop begins execution, but not weights on nodes lots of work on this problem
- Work is created dynamically
- (e.g.) worklist/workset based irregular programs and function invocation
 even structure of computation DAG is unknown
 three well-known techniques
 work stealing
 work stealing
 diffusive load-balancing

- Locality-aware scheduling
- techniques described above do not exploit locality
- goal: co-scheduling of tasks and data Application-specific techniques
- Barnes-Hut

For-loop iteration scheduling

- · Consider for-loops with independent iterations
 - number of iterations is known just before loop begins execution
 - very simple computation DAG
 - · nodes represent iterations
 - · no edges because no dependences
- · Goal:
- assign iterations to processors so as to minimize execution time · Problem:
 - if execution time of each iteration is known statically, we can use list scheduling
 - what if execution time of iteration cannot be determined until iteration is complete?
 - · need some kind of dynamic scheduling

Constant Work	Variable work
For (i=0 to N) { doSomething(); }	For (I=0 to N) {
Increasing Work	Decreasing Work
For (i=0;i <n;i++) { SerialFor (j=1 to i) doSomething(); }</n;i++) 	For (i=0 to N) { SerialFor (j=1 to N-i) doSomething(); }

Dynamic loop scheduling strategies

- · Model:
 - centralized scheduler hands out work
 - free processor asks scheduler for work
 - scheduler assigns it one or more iterations
 - when processor completes those iterations, it goes back to scheduler for more work
- · Question: what policy should scheduler use to hand out iterations?
 - many policies have been studied in the literature

Loop scheduling policies

- Self Scheduling (SS)
 One iteration at a time. If a processor is done with an iteration, it requests another iteration.
- Chunked SS (CSS)
 - Hand out 'k' iterations at a time, when k is determined heuristically before loop begins execution
- Guided SS (GSS)
 - Start with larger "chunks", and decrease to smaller chunks with time. Chunk size = remaining work/processors.
- Trapezoidal SS (TSS)
 - GSS with linearly decreasing size function
 - TSS is parameterized by two parameters F,L
 - initial chunk size: F
 - final chunk size: L

Trapezoidal SS(F,L)

- Given the initial chunk size F and ending chunk size L, TSS can be adapted to SS, CSS or GSS.
 - -SS = TSS(1,1)
 - -CSS(k) = TSS(k,k)
 - $-GSS(k) \approx TSS(Work/P, 1)$
- So, TSS(F,L) can perform as others, but can we do better?

Optimal TSS(F,L)

- Consider TSS (Work/(2xP),1)
 - We divide the initial work into two, which we distribute amongst the P processors.
 - We linearly reduce the chunk size based on:

TO

- Delta = (F L) / (N 1)
- Where N = (2 x Work) / (F + L)

Performance of TSS

- If F and L are determined statically, TSS performs as good as other self-sched schemes
- Larger initial chunk size reduces task assignment overhead similar to GSS
- GSS faces problem in decreasing workload since the initial allocation maybe the critical chunk. TSS handles this by ensuring half of work is divided in first allocation.
- Subsequent allocation reduce linearly, with all parameters pre-determined, hence efficiently.

Dynamic work creation

Dynamic work creation

 In some applications, doing some piece of work creates more work

- Examples
 - irregular applications like DMR
 - function invocations
- For these applications, the amount of work that needs to be handed out grows and shrinks dynamically
 - contrast with for-loops
- Need for dynamic load-balancing

 processor that creates work may not be the best one to perform that work

Task Pools

- Basic mechanism: task pool (aka task queue)
 all tasks are put in task pool
 - free processor goes to task pool and is assigned one or more
 - tasks

 if a processor creates new tasks, these are put into pool
 - Variety of designs for task queues
- Vallety of designs for task queue
 - Single task queue
 Load balancing
 - guided scheduling
 - Split task queue
 - Load balancing
 - Passive approaches
 Work stealing
 - Active approaches
 - » Work sharing
 - » Diffusive load balancing

Single Task Queue

- A single task queue holds the "ready" tasks
- The task queue is shared among all threads
- Threads perform computation by:
 - Removing a task from the queue
 - Adding new tasks generated as a result of executing this task

Single Task Queue

- · This scheme achieves load balancing
- No thread remains idle as long as the task queue is non-empty
- Note that the order in which the tasks are processed can matter
 - not all schedules finish the computation in same time

Single Task Queue: Issues

- The single shared queue becomes the point of contention
- The time spent to access the queue may be significant as compared to the computation itself
- · Limits the scalability of the parallel application
- Locality is missing all together
 - Tasks that access same data may be executed on different processors
 - The shared task queue is all over the place

Single Task Queue: Guided Scheduling

- The work in the queue is chunked
- · Initially the chunk size is big
 - Threads need to access the task queue less often
 - The ratio of computation to communication increases
- The chunk size towards the end of the queue is small
 - Ensures load balancing

Split Task Queues

- · Let each thread have its own task queue
- The need to balance the work among threads arises
- Two kinds of load balancing schemes have been proposed
 - Work Sharing:
 - Threads with more work push work to threads with less work
 A centralized scheduler balances the work between the threads
 - Work Stealing:
 - A thread that runs out of work tries to steal work from some other thread

Work Stealing

- Early implementations are by:
 - Burton and Sleep 1981
 - Halstead 1984 (Multi-Lisp)
- Leiserson and Blumofe 1994 gave theoretical bounds:
 - A work stealing scheduler produces an optimal schedule
 - Space required by execution is bounded
 - Communication is limited
 - $O(PT_{\infty}(1+n_d)S_{max})$

Strict Computations.

- Threads are sequence of unit time instructions.
- A thread can spawn, die, join.
 - A thread can only join to its parent thread.
 A thread can only stall for its child thread.
- Each thread has an activation record.

Example.

- T1 is root thread. It spawns T2, T6 and Stalls for T2 at V22,V23 and T6 at V23.
- Any multithreaded Computation that can be executed in a depth first manner on a single processor can be converted to fully strict w/o changing the semantics.

Why fully Strict?

- · A "realistic" model easier to analyze
- A fully strict computation can be executed depth-first by a single thread
- Hence we can always execute the "Leaf"
 Tasks in parallel.
 - Busy Leaves Property
- Consider any fully strict computation:
 T₁ = total work
 - $-T_{\infty}$ = critical path length
- For a greedy schedule X,
- T(X) <= T₁/P + T_∞

Randomized Work-stealing

- Processor has ready deque. For itself, this is a stack, others can "steal" from top.
 - A.Spawn(B)
 Push A to bottom, start working on B.
 - A.Stall()
 - Check own "stack" for ready tasks. Else "steal" topmost from other random processor.
 Diac()
 - B.Die()
 Same as Stall
 - A.Enable(B)
 - Push B onto bottom of stack.
- Initially, a processor starts with the "root" task, all other work queues are empty.

Work Stealing example: Unbalanced Tree Search

- The benchmark is synthetic
 - It involves counting the number of nodes in an unbalanced tree
 - No good way of partitioning the tree
- Olivier & Prins 2007 used work stealing for this benchmark
 - A thread traverses the tree Depth-First
 - Threads steal un-traversed sub-trees from a traversing thread
 - Work stealing gives good results

Work Stealing: Advantages

- Work Stealing algorithm can achieve optimal schedule for "strict" computations
- · As long as threads are busy no need to steal
- The idle threads initiate the stealing
 Busy ones keep working
- · The scheme is distributed
- Known to give good results on Cilk and TBB

Work Stealing: Shortcomings

- Locality is not accounted for
 - Tasks using same data may be executing on different processors
 - Data gets moved around
- Still need mutual exclusion to access the local queues
 - Lock free designs have been proposed
 - Split the local queue into two parts:
 - Shared part for other threads to steal fromLocal part for the owner thread to execute from
- Other Issues:
 - How to select a victim for stealing
 - How much to steal at a time

Work Sharing

- · Proposed by Rudolph et al. in 1991
- · Each thread has its local task queue
- · A thread performs:
 - A computation
 - Followed by a possible balancing action
- A thread with L elements in its local queue performs a balancing action with probability 1/L
 - Processor with more work will perform less balancing actions

Work Sharing

• During a balancing action:

- The thread picks a random partner thread
- If the difference between the sizes of the local queues is greater than some threshold:
 - Local queues are balanced by migrating tasks
- Authors prove that load balancing is achieved.
- · The scheme is distributed and asynchronous
- Load balancing operations are performed with the same frequency throughout.

Diffusive Load Balancing

Proposed by Cybenko (1989)

• Main idea is:

- Load can be thought of as a fluid or gas
 - Load is equal to number of tasks at a processor
- The actual processor network is a graph
 The communication links between processors have a bandwidth
 Which determines the rate of fluid flow
- A processor sends load to its neighbors
 If it has higher load than a neighbor
- Amount of load transferred = (difference in load) x (rate of flow)
- The algorithm periodically iterates over all processors

Diffusive Load Balancing

- Cybenko showed that for a D-dimensional hypercube the load balances in D+1 iterations
- Subramanian and Scherson 1994 show general bounds on the running time of load balancing algorithm
- The bounds on running time of actual parallel computation are not known

Parallel Depth First Scheduling

- Blelloch et al. in 1999 give a scheduling algorithm, which:
 - Assumes a centralized scheduler
 - Has optimal performance for strict computations
 - The space is bounded to 1+O(1) of sequential execution for strict computations
- Chen et al. in 2007 showed that Parallel Depth First has lower cache misses than Work Stealing algorithm

Parallel Depth First Scheduling

- · The schedule follows the depth first schedule of a single thread
- Maintains a list of the ready nodes
- Tries to schedule the ready nodes on P threads
- When a node is scheduled it is replaced by its ready children in the list
 - Ready children are placed in the list left to right

Key idea

- · None of the techniques described so far take locality into account
 - tasks are moved around without any consideration about where their data resides
- Ideally, a load-balancing technique would be locality-aware
- · Key idea:
 - partition data structures
 - bind tasks to data structure partitions
 - move (task+data) to perform load-balancing

Partitioning

- Partition the Graph data structure into P partitions and assign to P threads
- Galois uses partitioning with lock coarsening: - The number of partitions is a multiple of number of threads
- Uniform partitioning of a graph does not guarantee uniform load balancing
 - E.g.: in DMR there may be different number of bad triangles in each partition
 - Bad triangles generated over the execution are not known
- Partitioning the graph for ordered algorithms is hard

Application-specific techniques

N-body Simulation: Barnes-Hut

- Singh et al.(1995) studied hierarchical N-body methods
 Barnes-Hut, Fast Multipole, Radiosity
 - They proposed techniques for load balancing and locality based on insights into the algorithms
- · We'll look at Barnes-Hut
- Iterate over time steps
 - 1. Subdivide space until at most one body per cell

 Record this spatial hierarchy in an octree
 - 2. Compute mass and center of mass of each cell
 - 3. Compute force on bodies by traversing octree
 - Stop traversal path when encountering a leaf (body) or an internal node (cell) that is far enough away
 - 4. Update each body's position and velocity

Barnes-Hut: Load Balancing Insights

- Around 90% of the time is spent in force calculation
- The partitioning requirements are not same among all four phases
- Distribution of the particles determines:
 - Structure of the octree
 - Work per particle/cell
 - More work in denser parts of the domain
 Dividing particular aqually among processors does not help?
- Dividing particles equally among processors does not balance loads Introduce a cost metric per particle
- = number of interactions required for force computation
- Cost per particle is not known before hand
- The distribution of particles changes very slowly over time
 Cost per particle does not change very often
- Cost per particle does not change
 Can be used for load balancing
- Not good for position update phase

Barnes-Hut: Locality Insights

• Partition the actual 3D space

- Use Orthogonal Recursive Bisection (ORB)
- Divides the space into 2 subspaces recursively
- Based on a cost function
- The cost function here is the profiled cost per particle
- Introduces a new data structure to manage
- Number of processors should be a power of 2
- Partition the octree
 - Octree captures the spatial distribution of particles
 - Traverse the leaves left-to-right and sum the particle costs
 - Divide the leaves (and subtrees above them) based on cost
 - Leaves near each other in octree may not be near in 3D space
 Needed for efficient tree building
 - · Can be achieved by careful number of child cells

<u>Summary</u>

- · We reviewed some research on load balancing
- High-level idea
 - computation DAG is available statically: schedule at compile time
 - otherwise: some kind of dynamic scheduling/loadbalancing is needed
- Almost all existing techniques ignore locality altogether
 - can you do better?
- Algorithm-specific insights may be necessary to achieve performance
 - can we use our science of parallel programming approach to design general-purpose mechanisms that achieve the same level of performance?