
�-Stepping : A Parallel Single Source ShortestPath AlgorithmU. Meyer, P. SandersMax-Planck-Institut f�ur Informatik,Im Stadtwald, 66123 Saarbr�ucken, Germany.E-mail: {umeyer,sanders}@mpi-sb.mpg.deWWW: http://www.mpi-sb.mpg.de/{~umeyer,~sanders}Abstract. In spite of intensive research, little progress has been madetowards fast and work-e�cient parallel algorithms for the single sourceshortest path problem. Our �-stepping algorithm, a generalization ofDial's algorithm and the Bellman-Ford algorithm, improves this situa-tion at least in the following \average-case" sense: For random directedgraphs with edge probability dn and uniformly distributed edge weights aPRAM version works in expected time O�log3 n= log log n� using linearwork. The algorithm also allows for e�cient adaptation to distributedmemory machines. Implementations show that our approach works onreal machines. As a side e�ect, we get a simple linear time sequential al-gorithm for a large class of not necessarily random directed graphs withrandom edge weights.1 IntroductionThe shortest path problem is a fundamental and well-studied combinatorial op-timization problem with many practical and theoretical applications [2]. LetG = (V;E) be a directed graph, jEj = m, jV j = n, let s be a distinguished ver-tex of the graph, and c be a function assigning a non-negative real-valued weightto each edge of G. The single source shortest path problem (SSSP) is that ofcomputing, for each vertex v reachable from s, the weight of a minimum-weightpath from s to v; the weight of a path is the sum of the weights of its edges.The theoretically most e�cient sequential algorithm on directed graphs withnon-negative edge weights is Dijkstra's algorithm [11]. Using Fibonacci heaps itsrunning time is bounded by O(n logn+m) 1. Dijkstra's algorithm is inherentlysequential since its work e�ciency depends on the fact that nodes are consideredin a �xed priority order. On the other hand, the Bellmann-Ford algorithm allowsto consider all nodes in parallel but for that very reason it is not work e�cient.Therefore, we propose the following generalization named �-stepping: Nodesare ordered using buckets representing priority ranges of size �. Each bucket may1 There is also an O(n +m) time RAM algorithm for undirected graphs [25] whichrequires n > 21220 due to the usage of atomic heaps however.

be processed in parallel. This can be implemented using only linear work if � isnot too small. Refer to Sect. 2 for details.From now on, with random edge weights we mean uniformly distributedweights in [0; 1] and random graphs are chosen from the set G(n; dn), i.e, have nnodes and edge probability dn . In Sect. 3 we show that choosing � = ��1d� willnot signi�cantly increase the work performed and that only O�log2 n= log logn�buckets have to be emptied to solve the SSSP on random graphs. Then, in sec-tions 4 and 5, �-stepping is adapted to the arbitrary CRCW-PRAM2 model andto distributed memory machines respectively such that the work remains linearand timeO�log3 n= log logn� su�ces for random graphs. Sect. 6 complements thetheoretical analysis with simulation and implementation results. Finally, Sect. 7summarizes the most important aspects and sketches some possible future im-provements.Previous WorkThe SSSP problem has so far resisted fast e�cient parallel solutions: Most pre-vious work was done in the PRAM model. The work of a parallel algorithm isgiven by the product of its running time and the number of processing units(PUs) p. There is no parallel O(n logn+m) work PRAM algorithm with sublin-ear running time for general digraphs with non-negative edge weights. The bestO(n logn+m) work solution (re�ning [22] with [13]) has running timeO(n logn).All known algorithms with polylogarithmic execution time are work-ine�cient.(The algorithm in [16] uses O(log2 n) time and O(n3(log logn= logn)1=3) work.)An O(n) time algorithm requiring O((n +m) logn) work was presented in [4].For special classes of graphs, like planar digraphs [27] or graphs with sepa-rator decomposition [8], some less ine�cient algorithms are known. Randomiza-tion was used in order to �nd approximate solutions with small error probability[19,7]. For random graphs only unit weight edges have been considered so far[6]: This solution is restricted to constant edge probabilities or edge probability�(logk n=n) (k > 1). In the latter case O(n logk+1 n) work is needed.Experimental studies for distributed computation of SSSP with multiplequeues and some forms of oblivious parallel expansion strategies are provided in[5,1, 26]. No profound theoretical analysis beyond correctness proofs are given,the experimental results yield only quite limited speedup.2 The �-Stepping AlgorithmOur algorithm can be viewed as a variant of Dijkstra's algorithm. Dijkstra'salgorithm maintains a partition of V into settled, queued and unreached nodesand for each node v a tentative distance tent(v); tent(v) is always the weightof some path from s to v and hence an upper bound on dist(v), the weight ofthe shortest path from s to v. For unreached nodes, tent(v) = 1. Initially, s is2 Concurrent read concurrent write parallel random access machine [18].

queued, tent(s) = 0, and all other nodes are unreached. In each iteration thequeued node v with smallest tentative distance is selected and declared settledand all edges (v; w) are relaxed, i.e., tent(w) is set to minftent(w); tent(v) +c(v; w)g. If w was unreached, it is now queued. It is well known that tent(v) =dist(v) when v is selected from the queue.foreach v 2 V do {{ Initialize node data structuresheavy(v) := f(v;w) 2 E : c(v;w) > �g {{ Find heavy edgeslight (v) := f(v;w) 2 E : c(v;w) � �g {{ Find light edgestent (v) := 1 {{ Unreachedrelax(s, 0); i := 0 {{ Source node at distance 0while :isEmpty(B) do {{ Some queued nodes leftS := ; {{ No nodes deleted for this bucket yetwhile B[i] 6= ; do {{ New phaseReq := f(w; tent(v) + c(v;w)) : v 2 B[i]^ (v;w) 2 light(v)gS := S [B[i]; B[i] := ; {{ Remember deleted nodesforeach (v; x) 2 Req do relax(v, x) {{ This may reinsert nodesodReq := f(w; tent(v) + c(v;w)) : v 2 S ^ (v;w) 2 heavy(v)gforeach (v; x) 2 Req do relax(v, x) {{ Relax previously deferred edgesi := i+ 1 {{ Next bucketProcedure relax(v, x) {{ Shorter path to v?if x < tent(v) then {{ Yes: decrease-key respectively insertB[btent(v)=�c] := B[btent(v)=�c] n fvg {{ Remove if presentB[bx =�c] := B[bx =�c] [fvg {{ Insert into new buckettent(v) := xFig. 1. High level �-stepping SSSP algorithm.In the �-stepping algorithm shown in Figure 1 we weaken the total orderingof the queue and only maintain an array B of buckets such that B[i] storesfv 2 V : v is queued and tent(v) 2 [i�; (i + 1)�)g. In each phase, i.e., eachiteration of the inner while-loop, we remove all nodes from the �rst nonemptybucket and relax all light edges (c(e) � �) which might lead to new nodes for thecurrent bucket. For the remaining heavy edges it is su�cient to relax them onceand for all when a bucket �nally remains empty. Deletion and edge relaxationfor an entire bucket can be done in parallel and in arbitrary order as long asan individual relaxation is atomic. If we do not want to sequentially execute therequests for a given node we can additionally exploit that requests which won'tchange the tent() array can be ignored.For integer weights and � = 1, �-stepping coincides with Dial's implementa-tion of Dijkstra's algorithm (e.g. [2, Sect. 4.6]). We can reuse the data structureused there. Buckets are implemented as doubly linked lists. Inserting or deletinga node, �nding a bucket for a given tentative distance and skipping an emptybucket can be done in constant time. By cyclically reusing empty buckets weonly need space for maxe2E c(e)=� buckets.

Our algorithm may remove nodes from the queue for which dist(v) < tent(v)and hence may have to reinsert those nodes until they are �nally settled (dist(v) =tent(v)). In fact, for � =1 we get the Bellman-Ford algorithm. It has high par-allelism since all edges can be relaxed in parallel but it may be quite ine�cientcompared to Dijkstra's algorithm. The idea behind �-stepping is to �nd an eas-ily computable � which yields a good compromise between these two extremes.There are graphs for which there is no good compromise. But at least for randomedge weights and in particular for random graphs with random edge weights weidentify such a compromise in Sect. 3. In Sect. 7 we give additional evidence thatsimilar algorithms can also yield useful parallelism for real world problems.3 AnalysisOur analysis of the �-stepping algorithms proceeds in three stages in order tomake the results adaptable to di�erent graph classes. In Sect. 3.1 we analyzethe number of phases needed and the number of reinsertions in terms of logicalproperties like the maximum path weight dc := maxfdist(v) : dist(v) <1gwhich make no assumptions on the class of graphs investigated. Sect. 3.2 analyzesthese conditions for the case of random edge weights. Finally, Sect. 3.3 completesthe analysis by additionally assuming random graphs from G(n; d=n).3.1 Reinsertions and ProgressLet P� denote the set of paths with weight at most �. P� plays a key rolein analyzing both the overhead and the progress of �-stepping. The overheadcompared to Dijkstra's algorithm is due to reinsertions and rerelaxations, i.e.,insertions of nodes which have previously been deleted and relaxation of theiroutgoing edges.Lemma 1. The total number of reinsertions is bounded by jP�j and the totalnumber of rerelaxations is bounded by jP2�j.Proof. We give an injective mapping from the set of reinsertions into P�. Con-sider a node v which is reinserted in phase t. There must be a most recent phaset0 � t when v was deleted. Consider a shortest path (s; : : : ; v0; : : : v) where v0 isthe �rst unsettled node on this path immediately before phase t0. In contrast tov, v0 is settled by phase t0, i.e., v0 6= v. Furthermore, (v0; : : : ; v) 2 P� since bothv and v0 are deleted by phase t0. Since v0 is settled, the reinsertion of v in phaset can be uniquely mapped to (v0; : : : ; v).Similarly, each rerelaxation can be uniquely identi�ed by a reinsertion plusa light edge e, i.e., the path in P2� de�ned by appending e to the path inP� identifying the reinsertion can be injectively mapped to the rerelaxation.The number of phases needed can be bounded based on the step width�, themaximum distance dc and a parameter lmax which must exceed the maximumnumber of edges in any path in P�.

Lemma 2. For any step width �, the number of phases is bounded by dc� lmax.Proof. It su�ces to show that no bucket is expanded more than lmax times. Soassume the contrary, i.e., there is a bucket B[i] which is expanded at time stepst � lmax, : : : , t. Let v = minftent(w) : w 2 B[i](t)g. v is removed for the lasttime in phase t because otherwise it could not be the minimum queued element.Consider the path P = (s; : : : ; vlmax; : : : ; v1; v) in the shortest path tree leadingfrom s to v. v1 must be settled in phase t� 1. It cannot be settled later becausethen v would not have its �nal distance yet. v1 cannot be settled earlier becauseelse v would have received its �nal distance earlier and would also be settled bynow since it is already in B[i] for the last lmax phases.Similarly, we can show by induction that v1, : : : , vlmax, have been settledone by one in the last lmax phases. So, vlmax has been settled in phase t� lmaxand this is only possible if its �nal distance puts it in bucket B[i] and therefore(vlmax; : : : ; v) is in P� and has lmax edges. This is a contradiction.For a parallel algorithm the goal is to �nd a � which is small enough to keepjP�j in O(n) yet large enough to yield su�cient parallelism. For example, it iseasy to see that there are no reinsertions if we choose the step-width � to be theminimum edge weight and r = dc� phases su�ce in this case [12]. We can evenachieve the same result for larger � by adding a \shortcut" edge (v; w) for each(v; : : : ; w) 2 P�. However, our experimental results on random graphs indicatethat the basic algorithm also completes in O(dc�) phases in practice so that wecontinue with the analysis of the simpler algorithm.3.2 Random Edge WeightsThis section is devoted to proving that � = �(1=d) is a good compromisebetween work e�ciency and parallelism for random edge weights:Theorem 1. Given a graph with maximum degree d or a random graph fromG(n; d=n). For random edge weights, a �(1=d)-stepping scheme performs O(dn)expected sequential work divided between O(dc� � lognlog logn) phases whp3.Our main tool is the fact that long paths with small weight are unlikely.Lemma 3. Given a path of length l. The probability that its total weight isbounded by � � 1 is �l=l!.Proof. By induction over l.This is the only part in our analysis which would have to be adapted for otherthan uniform weight distribution. Now we can bound jP�j and the lmax fromLemma 2.Lemma 4. For � = �(1=d), E [jP�j] = O(n), E [jP2�j] = O(n) and lmax =O(logn= log logn) whp.3 Throughout this paper \whp" stands for \with high probability" in the sense thatthe probability for some event is at least 1� n�� for a constant � > 0.

Proof. There can be at most dl paths of length l leading into a given node vor ndl such paths overall.(For random graphs there are � nl possible paths pernode with a probability of (d=n)l each.) Using Lemma 3 we can conclude thatthe expected number of light paths is bounded byPl�1 ndl�l=l! = n(ed��1) =O(n) and analogously for P2�.Similarly, P [9P 2 P� : jP j = l] � n(d�)l=l!. ThereforeP [9P 2 P� : jP j � lmax] � Xl�lmax n(d�)l=l! � n(d�)lmax=lmax!Xl�0(d�)l=l!= n(d�)lmaxed�=lmax! = O(n) =lmax! for � � 1=d� (e=lmax)lmax � O(n) since k! � (k=e)k :Now it is easy to see that we can choose an lmax = O(logn= log logn) such thatthe above probability is polynomially small.Theorem 1 is now an immediate consequence of lemmata 1, 2 and 4.3.3 Random GraphsSo far, the analysis treated the maximumpath weight, dc, as a parameter and itis clear that there are graphs { even with random edge weights { where dc =
(n)so that it makes no sense to expand nodes in parallel. But this is quite untypical.In particular, for random graphs dc is rather small:Theorem 2. For random graphs from G(n; d=n), dc = O� lognd � whp.For large degree { d � a logn for some constant a { this is a well knownresult [17,14]. We now outline a proof for the remaining case d = O(logn) andrefer to [10] for more details.From random graph theory we know that if s is not in the giant componentit is in a very small component of size O(logn) and the SSSP is very simple.Otherwise dc can be bounded by the diameter of the giant component.4Lemma 5. For d > 1 the diameter of the giant component is O(logn) whp.Proof. (Outline) The node exploration procedure used in [3, Sect. 10] can beadapted to a breadth �rst traversal. Using this approach it can be shown thatall but O�n1=2+�� nodes in the giant component are reached after O(logn) phaseswhp. Later, the expected number of newly reached nodes in the breadth �rsttraversal decreases geometrically so that after O(logn) more steps no more nodesare reached whp.4 Note that this diameter is not the diameter of the graph (which may be in�nite inthis \sparse" case). So, the fact that the diameter of random graphs is well studiedin the literature is not directly helpful.

This yields a good upper bound for constant d. For larger degree, the basicidea is to �rst consider only those edges with weight at most 2=d (any a=nwith a > 1 will do). Those form a \backbone" of the giant component forwhich dc = O(lognd). Finally, the exploration procedure from [3, Sect. 10] can beadapted once more to show that every node in the giant component connects tothe backbone by a path of length O(d lognd e) whp.Substituting this result into Theorem 1 we see that r = O�log2 n= log logn�phases of a �(1=d)-stepping algorithm su�ce to solve the SSSP. If we haveintroduced shortcut edges this reduces to �(logn) phases.4 Adaptation to PRAMWe now explain how the abstract �(1=d)-stepping algorithm from Fig. 1 can bee�ciently implemented on an arbitrary-write CRCW PRAM for random graphsfrom G(n; dn) with random edge weights. The actual number of edges is m =�(dn) whp.We concentrate on the most interesting case d = O(logn). (Note thatwhp all but the c logn smallest edges per node can be ignored without changingthe shortest paths for some constant c [17, 14].) A direct way for handling largerm is discussed in [10].Preparations: The nodes are assigned to random PUs by generating an array\ind" of random PU indices. The adjacency lists are reorganized into arraysof heavy and light edges for each node. Each of the p PUs maintains its ownbucket structure and stores there the queued nodes it is responsible for. Theseoperations can be done in time O(dn=p+ log(dn)) and take O(dn) space.Loop Control: Detecting when one or all buckets are globally empty and advanc-ing i is easy to do in time O(logn) (or even O(1)) per iteration.Maintaining S: S can be represented as a simple list per PU. Inserting a nodeseveral times can be avoided by storing a
ag with each node which is set whenit is inserted for the �rst time.Generating Requests: Since the nodes have been randomly assigned, no PU has todelete more than O(jB[i]j=p+ logn) nodes from its local part of B[i] whp. Usingpre�x sums, the light edges to be scanned can be evenly distributed between thePUs in time O(logn). The request set generated is represented as a global arrayof target-distance pairs. Analogously, requests for heavy edges can be generatedin a load balanced way with a control overhead of O(logn) time steps whp.Assigning Heavy Requests to PUs: PU i maintains a request bu�er which mustbe a constant factor larger than needed to accommodate the requests (w; x) withind(w) = i. Since heavy edges are relaxed only once, for random graphs theirtargets are independently distributed and therefore by Cherno� bounds, a bu�erarea of size O(jSj =p+ logn) su�cies whp. The requests can be placed into theappropriate bu�ers using randomized dart throwing in time O(jB[i]j=p+ logn)whp [21]. (For the unlikely case that a bu�er is to small correctness can bepreserved by checking periodically whether the dart throwing has terminatedand increasing the bu�er sizes if necessary.)

Assigning Light Requests to PUs: Assigning light request works as for heavyrequests. The targets of rerelaxed edges are no longer independent. However,targets are still independent when edges are relaxed for the �rst time. Let Ki :=jf(v; w) 2 E : dist(v) 2 [i�; (i + 1)�) ^ c((v; w)) � �gj, i.e., the number oflight edges ever relaxed in bucket i not counting rerelaxations. Then, by Cher-no� bounds, no node receives more than O(dKi logn=ne) requests in any phasefor bucket i. Let K 0ij denote the number of requests sent in the j-th phasefor bucket i. Since nodes are placed independent of the computation, we canuse the weighted Cherno� bound from [23], to see that no PU receives morethan O�K0ij=p+ logn dKi logn=ne� requests in phase j for bucket i whp. ByLemma 4 we have E[PijK0ij] = O(n). Furthermore, no bucket is emptied morethan lmax = O(logn= log logn) times so that PijKi = O(nlmax) whp. There-fore, the expected request contention summed over all phases is bounded byO�n=p+ lmax log2 n�.Performing Relaxations: Each PUs scans its request bu�er and sequentiallyperforms the relaxations assigned to it. Since no other PUs work on its nodes therelaxations will be atomic. (This is the only place where signi�cant modi�cationsfor handling the case d� logn would be needed if one chooses not to �lter outtoo heavy edges in a preprocessing: p=n PUs work together on a single node and�rst �nd the minimum distance request and only perform a relaxation for thisrequest.)To summarize, control overhead accounts for at mostO(logn) time per phase;the expected load imbalance accounts for at most O(logn) time per phase plusO�n=p+ lmax log2 n� overall for light requests; work done in a load balanced waycannot take more than O(dn=p) expected time.5Theorem 3. The SSSP on random graphs from G(n; dn) with random edge weightscan be solved in expected time O(log3 n= log logn) and O(dn) work using dn log lognlog3 nprocessors on a CRCW PRAM.5 Adaptation to Distributed MemoryLet Trouting (k) denote the time required to route k constant size messages per PUto random destinations. Let Tcoll(k) bound the time to perform a (possibly seg-mented) reduction or broadcast involving a message of length k. The analysis canfocus on �nding the number of necessary basic operations. The execution timefor a particular network or abstract model is then easy to determine. For exam-ple, in the BSP model [20] we simply substitute Trouting (k) = O(l + (k + log p)g)and Tcoll(k) = O((l + gk) log p).Let r = O�log2 n= log logn� denote the number of phases required whp. OurPRAM algorithm is already almost a distributed memory algorithm if we restrictourselves to the practically most interesting case p � nr logn . Each PU stores the5 All results also hold with high probability if such a bound for the number of rere-laxations is available.

adjacency lists of the nodes assigned to it using a hash function ind(w) we assumeto be computable in constant time. (Essentially the same assumptions are madefor e�cient PRAM simulation algorithms [28, Section 4.3] and this is certainlywarranted for the simple hash functions used in practice.) Load balancing forgenerating requests is already achieved if each PU simply scans the adjacencylists of its local part of B[i] (for random graphs).The dart throwing process for assigning requests can be replaced by simplyrouting a request (w; x) to PU ind(w). An analysis similar to the PRAM caseyields an expected execution time in O�dn=p+ r(Tcoll(1) + Trouting (dn=(pr)))�.Many edges Using some additional measures we can employ more PUs (p =mr logn as in the PRAM case). Again we concentrate on the case d = O(logn).Now d PUs work together in p=d list groups. As before, nodes are hashed toindividual PUs. But the heavy parts of the adjacency lists are independentlyassigned to a random list group where they are stored in a global round robinfashion: looking at a particular list of length l, each PU in the corresponding listgroup will either store bl=dc or dl=de entries of that list. When heavy edges arerelaxed, a PU sends the distances of the nodes it has deleted to the �rst PU inthe list group responsible for this node. The �rst PU in a list group transmitsall the distance node pairs it has received to the other group members using apipelined broadcast operation. After a detailed analysis and similar measures asin the PRAM case for d� logn we get:Theorem 4. If the number of delete-phases is bounded by r then the SSSP onrandom graphs with random edge weights can be solved on a distributed memorymachine with p � dnr logn processors in expected time O(dnp + r(Tcoll(dnpr) +Trouting (dnpr))) and O(dn) work.Note, that on powerful interconnection networks like multiported hypercubeswe can achieve a time O(log p+ k) whp for Trouting (k) and Tcoll(k) so that weget the same asymptotic performance as our CRCW-PRAM algorithm.6 Simulation and ImplementationSimulations of di�erent algorithm variants played a key role in designing thealgorithm and are still interesting as a means to estimate the constant factorsinvolved. � = 4=d proves to be a good choice for the bucket range: For alltested values for d � 2 the number of phases were bounded by 5 lnn and lessthan 0:25n reinsertions occured. Reachable nodes could be accessed by pathsof weight 2:15 lnnd or shorter. For sparse graphs, the number of phases can befurther reduced at a low price in terms of reinsertions by emptying all bucketsat once when they hold only few nodes.Actually implementing a linear work algorithm which requires a linear num-ber of tiny messages with irregular communication pattern is not easy. However,for small p and large n, a machine with high bandwidth interconnection networkand an e�cient library routine for personalized all-to-all communication can do

the job. We implemented a simple version of the algorithm for distributed mem-ory machines and random d-regular graphs using the library MPI [24]. Testswere run on an INTEL Paragon with 16 processors. For n = 219 nodes andd = 3 speedup 9:2 was obtained against the sequential �-stepping approach.The latter in turn is 3:1 times faster than an optimized sequential implemen-tation of Dijkstra's algorithm. Due to the increased communication costs, ourresults on dense graphs are slightly worse: for n = 216 and d = 32 the speedup ofparallel �-stepping compared to its sequential counterpart was 7:5 6, sequential�-stepping was 1:8 times faster than Dijkstra's algorithm.7 Conclusions and Future WorkA �(1=d)-stepping scheme solves the SSSP for random graphs from G(n; d=n)with random edge weights in O�log3 n= log logn� time and O(dn) expected workon PRAMs and many distributed memorymachines. If one views random graphswith random edge weights as a model for \average" graphs this implies a strikingdi�erence between the average case and the worst case for which no sublineartime work e�cient solution is known.The number of phases can be reduced by a factor �(logn= log logn) if short-cut edges for paths in P�(1=d) are inserted. Following our simulations we conjec-ture that even without shortcuts O(logn) phases su�ce. It might be possible tofurther speed up the CRCW-PRAM algorithm by replacing our O(logn) loadbalancing and dart throwing routines by \almost constant time algorithms" [15].For d =
(log� n) this might even be possible in a work e�cient way.Our SSSP solution immediately yields an improved algorithm for the all-pairsshortest path problem on random graphs with random edge weights.For random graphs with random edge weights the random assignment ofnodes to PEs should be dispensable. Since this is the only source of randomnessneeded in the distributed memory algorithm, we get a deterministic algorithm.From a practical point of view it is more interesting however to lift the random-ness assumptions on the graph and the edge weights.For arbitrary directed graphs with random edge weights and maximumdegreed sequential �(1=d)-stepping works in expected time O(dcd +m + n) where dcis the maximum shortest path weight. This is linear for all but quite degeneratecases. If dcd � m there is also considerable parallelism which can be exploitedwithout a�ecting work e�ciency. However, there is some work to be done re-garding an e�cient parallel implementation for graphs where load balancing ismore di�cult than for random graphs without shortcuts.Interesting research can be done on parallel shortest path for non-randomedge weights. One approach could be to start with � = mine2E c(e) and thendouble � until jP�j � n. jP�j can for example be determined using parallel6 Our current implementation does not distinguish between heavy and light edgeswhich increases the communication overhead. Therefore, we expect somewhat higherspeedups for the full version of the paper.

depth �rst traversal of light paths starting from each node. However, this is notwork e�cient for small d.One can also look for other ways of determining the set R of nodes tobe deleted in a phase. We have made experiments where jRj is some fractionof the total priority queue size jQj. In our simulations this works as well as�(1=d)-stepping for random graphs with jRj = �(jQj = log jQj), for random pla-nar graphs we could even use jRj = jQj =2. We also tested this approach on realworld graphs and edge weights: starting with a road-map of a town (n = 10; 000)the tested graphs successively grew up to a large road-map of Southern Germany(n = 157; 457). Good performance was found for jRj = �(jQj3=4). While repeat-edly doubling the number of nodes, the average number of phases (for di�erentstarting points) only increased by a factor of about 1:5; for n = 157; 457 thesimulation needed 1; 178 phases, the number of reinserts was bounded by 0:2n.In [10, 9] we develop an algorithm which needs no reexpansions for arbitraryedge weights. However, even for random edge weights it needs ��n1=3� phaseseven for random edge weights.AcknowledgementsWe would like to thank in particular Kurt Mehlhorn and Volker Priebe for manyfruitful discussions and suggestions.References1. P. Adamson and E. Tick. Greedy partitioned algorithms for the shortest pathproblem. International Journal of Parallel Programming, 20(4):271{298, 1991.2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory, Algorithmsand Applications. Prentice Hall, 1993.3. N. Alon, J. H. Spencer, and P. Erd}os. The Probabilistic Method. Wiley, 1992.4. G. S. Brodal, J. L. Tr�a�, and C. D. Zaroliagis. A parallel priority queue with con-stant time operation. In Proceedings of the 11th International Parallel ProcessingSymposium, pages 689{693. IEEE, 1997.5. K. M. Chandy and J. Misra. Distributed computation on graphs: Shortest pathalgorithms. Communications of the ACM, 25(11):833{837, 1982.6. A. Clementi, J. Rolim, and E. Urland. Randomized parallel algorithms. In A. Fer-reira and P. Pardalos, editors, Solving Combinatorial Optimization Problem inParallel, volume 1054 of LNCS, pages 25{50. Springer, 1996.7. E. Cohen. Polylog-time and near-linear work approximation scheme for undirectedshortest paths. In Proceedings of the Twenty-Sixth Annual ACM Symposium onTheory of Computing, pages 16{26, 1994.8. E. Cohen. E�cient parallel shortest-paths in digraphs with a separator decompo-sition. Journal of Algorithms, 21(2):331{357, 1996.9. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra'sshortest path algorithm. In 23rd Symposium on Mathematical Foundations ofComputer Science, LNCS, Brno, Czech Republic, 1998. Springer.10. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. Parallelizing Dijkstra's short-est path algorithm. Technical report, MPI-Informatik, 1998. in preparation.

11. E. Dijkstra. A note on two problems in connexion with graphs. Num. Math.,1:269{271, 1959.12. E. A. Dinic. Economical algorithms for �nding shortest paths in a network. InTransportation Modeling Systems, pages 36{44, 1978.13. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: Analternative to Fibonacci heaps with applications to parallel computation. Commu-nications of the ACM, 31(11):1343{1354, 1988.14. A. Frieze and G. Grimmett. The shortest-path problem for graphs with randomarc-lengths. Discrete Appl. Math., 10:57{77, 1985.15. T. Hagerup. The log-star revolution. In A. Finkel and M. Jantzen, editors, Pro-ceedings of Symposion on Theoretical Aspects of Computer Science (STACS '92),volume 577 of LNCS, pages 259{280. Springer, Feb. 1992.16. Y. Han, V. Pan, and J. Reif. E�cient parallel algorithms for computing all pairsshortest paths in directed graphs. In Proceedings of the 4th Annual Symposium onParallel Algorithms and Architectures, pages 353{362. ACM Press, 1992.17. R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math.Oper. Res., 10(4):557{564, 1985.18. J. J�aj�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.19. P. N. Klein and S. Sairam. A parallel randomized approximation scheme for short-est paths. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages 750{758,Victoria, B.C., Canada, 1992.20. W. F. McColl. Universal computing. In L. Bouge, P. Fraigniaud, A. Mignotte, andY. Robert, editors, Proc. Euro-Par '96 Parallel Processing, volume 1123 of LNCS,pages 25{36. Springer, 1996.21. G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In 26thSymposium on Foundations of Computer Science, pages 478{489. IEEE, 1985.22. R. C. Paige and C. P. Kruskal. Parallel algorithms for shortest path problems. InInternational Conference on Parallel Processing, pages 14{20. IEEE, 1985.23. P. Raghavan. Probabilistic construction of deterministic algorithms: Approximat-ing packing integer programs. Journal of Computer and System Sciences, 37:130{143, 1988.24. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI {the Complete Reference. MIT Press, 1996.25. M. Thorup. Undirected single source shortest paths in linear time. In 38th AnnualSymposium on Foundations of Computer Science, pages 12{21. IEEE, 1997.26. J. L. Tr�a�. An experimental comparison of two distributed single-source shortestpath algorithms. Parallel Computing, 21:1505{1532, 1995.27. J. L. Tr�a� and C. D. Zaroliagis. A simple parallel algorithm for the single-sourceshortest path problem on planar digraphs. In Irregular' 96, volume 1117 of LNCS,pages 183{194. Springer, 1996.28. L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity,pages 943{971. Elsevier, 1990.

