
Introduction
to the Cell
multiprocessor

J. A. Kahle
M. N. Day

H. P. Hofstee
C. R. Johns

T. R. Maeurer
D. Shippy

This paper provides an introductory overview of the Cell
multiprocessor. Cell represents a revolutionary extension of
conventional microprocessor architecture and organization. The
paper discusses the history of the project, the program objectives
and challenges, the design concept, the architecture and
programming models, and the implementation.

Introduction: History of the project
Initial discussion on the collaborative effort to develop

Cell began with support from CEOs from the Sony

and IBM companies: Sony as a content provider and

IBM as a leading-edge technology and server company.

Collaboration was initiated among SCEI (Sony

Computer Entertainment Incorporated), IBM, for

microprocessor development, and Toshiba, as a

development and high-volume manufacturing technology

partner. This led to high-level architectural discussions

among the three companies during the summer of 2000.

During a critical meeting in Tokyo, it was determined

that traditional architectural organizations would not

deliver the computational power that SCEI sought

for their future interactive needs. SCEI brought to

the discussions a vision to achieve 1,000 times the

performance of PlayStation2** [1, 2]. The Cell objectives

were to achieve 100 times the PlayStation2 performance

and lead the way for the future. At this stage of the

interaction, the IBM Research Division became involved

for the purpose of exploring new organizational

approaches to the design. IBM process technology was

also involved, contributing state-of-the-art 90-nm process

with silicon-on-insulator (SOI), low-k dielectrics, and

copper interconnects [3]. The new organization would

make possible a digital entertainment center that would

bring together aspects from broadband interconnect,

entertainment systems, and supercomputer structures.

During this interaction, a wide variety of multi-core

proposals were discussed, ranging from conventional

chip multiprocessors (CMPs) to dataflow-oriented

multiprocessors.

By the end of 2000 an architectural concept had been

agreed on that combined the 64-bit Power Architecture*

[4] with memory flow control and ‘‘synergistic’’

processors in order to provide the required

computational density and power efficiency. After

several months of architectural discussion and contract

negotiations, the STI (SCEI–Toshiba–IBM) Design

Center was formally opened in Austin, Texas, on

March 9, 2001. The STI Design Center represented

a joint investment in design of about $400,000,000.

Separate joint collaborations were also set in place

for process technology development.

A number of key elements were employed to drive the

success of the Cell multiprocessor design. First, a holistic

design approach was used, encompassing processor

architecture, hardware implementation, system

structures, and software programming models. Second,

the design center staffed key leadership positions from

various IBM sites. Third, the design incorporated

many flexible elements ranging from reprogrammable

synergistic processors to reconfigurable I/O interfaces

in order to support many systems configurations with

one high-volume chip.

Although the STI design center for this ambitious,

large-scale project was based in Austin (with IBM, the

Sony Group, and Toshiba as partners), the following

IBM sites were also critical to the project: Rochester,

Minnesota; Yorktown Heights, New York; Boeblingen

(Germany); Raleigh, North Carolina; Haifa (Israel);

Almaden, California; Bangalore (India); Yasu (Japan);

Burlington, Vermont; Endicott, New York; and a joint

technology team located in East Fishkill, New York.

Program objectives and challenges
The objectives for the new processor were the following:

� Outstanding performance, especially on game/

multimedia applications.

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

589

0018-8646/05/$5.00 ª 2005 IBM

� Real-time responsiveness to the user and the network.
� Applicability to a wide range of platforms.
� Support for introduction in 2005.

Outstanding performance, especially on

game/multimedia applications

The first of these objectives, outstanding performance,

especially on game/multimedia applications, was expected

to be challenged by limits on performance imposed by

memory latency and bandwidth, power (even more than

chip size), and diminishing returns from increased

processor frequencies achieved by reducing the amount

of work per cycle while increasing pipeline depth.

The first major barrier to performance is increased

memory latency as measured in cycles, and latency-

induced limits on memory bandwidth. Also known as the

‘‘memory wall’’ [5], the problem is that higher processor

frequencies are not met by decreased dynamic random

access memory (DRAM) latencies; hence, the effective

DRAM latency increases with every generation. In a

multi-GHz processor it is common for DRAM latencies

to be measured in the hundreds of cycles; in symmetric

multiprocessors with shared memory, main memory

latency can tend toward a thousand processor cycles.

A conventional microprocessor with conventional

sequential programming semantics will sustain only a

limited number of concurrent memory transactions. In

a sequential model, every instruction is assumed to be

completed before execution of the next instruction begins.

If a data or instruction fetch misses in the caches,

resulting in an access to main memory, instruction

processing can only proceed in a speculative manner,

assuming that the access to main memory will succeed.

The processor must also record the non-speculative state

in order to safely be able to continue processing. When a

dependency on data from a previous access that missed in

the caches arises, even deeper speculation is required in

order to continue processing. Because of the amount

of administration required every time computation is

continued speculatively, and because the probability that

useful work is being speculatively completed decreases

rapidly with the number of times the processor must

speculate in order to continue, it is very rare to see more

than a few speculative memory accesses being performed

concurrently on conventional microprocessors. Thus, if a

microprocessor has, e.g., eight 128-byte cache-line fetches

in flight (a very optimistic number) and memory latency is

1,024 processor cycles, the maximum sustainable memory

bandwidth is still a paltry one byte per processor cycle. In

such a system, memory bandwidth limitations are

latency-induced, and increasing memory bandwidth at

the expense of memory latency can be counterproductive.

The challenge therefore is to find a processor organization

that allows for more memory bandwidth to be used

effectively by allowing more memory transactions to be in

flight simultaneously.

Power and power density in CMOS processors have

increased steadily to a point at which we find ourselves

once again in need of the sophisticated cooling techniques

we had left behind at the end of the bipolar era [6].

However, for consumer applications, the size of the box,

the maximum airspeed, and the maximum allowable

temperature for the air leaving the system impose

fundamental first-order limits on the amount of power

that can be tolerated, independent of engineering

ingenuity to improve the thermal resistance. With respect

to technology, the situation is worse this time for two

reasons. First, the dimensions of the transistors are

now so small that tunneling through the gate and sub-

threshold leakage currents prevent following constant-

field scaling laws and maintaining power density for

scaled designs [7]. Second, an alternative lower-power

technology is not available. The challenge is therefore

to find means to improve power efficiency along with

performance [8].

A third barrier to improving performance stems

from the observation that we have reached a point

of diminishing return for improving performance by

further increasing processor frequencies and pipeline

depth [9]. The problem here is that when pipeline depths

are increased, instruction latencies increase owing to the

overhead of an increased number of latches. Thus, the

performance gained by the increased frequency, and

hence the ability to issue more instructions in any given

amount of time, must exceed the time lost due to the

increased penalties associated with the increased

instruction execution latencies. Such penalties include

instruction issue slots1 that cannot be utilized because

of dependencies on results of previous instructions

and penalties associated with mispredicted branch

instructions. When the increase in frequency cannot be

fully realized because of power limitations, increased

pipeline depth and therefore execution latency can

degrade rather than improve performance. It is worth

noting that processors designed to issue one or two

instructions per cycle can effectively and efficiently sustain

higher frequencies than processors designed to issue

larger numbers of instructions per cycle. The challenge is

therefore to develop processor microarchitectures and

implementations that minimize pipeline depth and that

can efficiently use the issue slots available to them.

Real-time responsiveness to the user and the

network

From the beginning, it was envisioned that the Cell

processor should be designed to provide the best possible

1 An instruction issue slot is an opportunity to issue an instruction.

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

590

experience to the human user and the best possible

response to the network. This ‘‘outward’’ focus differs

from the ‘‘inward’’ focus of processor organizations that

stem from the era of batch processing, when the primary

concern was to keep the central processor unit busy. As

all game developers know, keeping the players satisfied

means providing continuously updated (real-time)

modeling of a virtual environment with consistent and

continuous visual and sound and other sensory feedback.

Therefore, the Cell processor should provide extensive

real-time support. At the same time we anticipated that

most devices in which the Cell processor would be used

would be connected to the (broadband) Internet. At an

early stage we envisioned blends of the content (real or

virtual) as presented by the Internet and content from

traditional game play and entertainment. This requires

concurrent support for real-time operating systems

and the non-real-time operating systems used to run

applications to access the Internet. Being responsive to

the Internet means not only that the processor should

be optimized for handling communication-oriented

workloads; it also implies that the processor should be

responsive to the types of workloads presented by the

Internet. Because the Internet supports a wide variety of

standards, such as the various standards for streaming

video, any acceleration function must be programmable

and flexible. With the opportunities for sharing data and

computation power come the concerns of security, digital

rights management, and privacy.

Applicability to a wide range of platforms

The Cell project was driven by the need to develop a

processor for next-generation entertainment systems.

However, a next-generation architecture with strength

in the game/media arena that is designed to interface

optimally with a user and broadband network in real time

could, if architected and designed properly, be effective in

a wide range of applications in the digital home and

beyond. The Broadband Processor Architecture [10] is

intended to have a life well beyond its first incarnation

in the first-generation Cell processor. In order to extend

the reach of this architecture, and to foster a software

development community in which applications are

optimized to this architecture, an open (Linux**-based)

software development environment was developed along

with the first-generation processor.

Support for introduction in 2005

The objective of the partnership was to develop this new

processor with increased performance, responsiveness,

and security, and to be able to introduce it in 2005. Thus,

only four years were available to meet the challenges

outlined above. A concept was needed that would

allow us to deliver impressive processor performance,

responsiveness to the user and network, and the flexibility

to ensure a broad reach, and to do this without making

a complete break with the past. Indications were that a

completely new architecture can easily require ten years

to develop, especially if one includes the time required for

software development. Hence, the Power Architecture*

was used as the basis for Cell.

Design concept and architecture
The Broadband Processor Architecture extends the 64-bit

Power Architecture with cooperative offload processors

(‘‘synergistic processors’’), with the direct memory

access (DMA) and synchronization mechanisms to

communicate with them (‘‘memory flow control’’),

and with enhancements for real-time management.

The first-generation Cell processor (Figure 1) combines

a dual-threaded, dual-issue, 64-bit Power-Architecture-

compliant Power processor element (PPE) with eight

newly architected synergistic processor elements (SPEs)

[11], an on-chip memory controller, and a controller

for a configurable I/O interface. These units are

interconnected with a coherent on-chip element

interconnect bus (EIB). Extensive support for pervasive

functions such as power-on, test, on-chip hardware

debug, and performance-monitoring functions is also

included.

The key attributes of this concept are the following:

� A high design frequency (small number of gates per

cycle), allowing the processor to operate at a low

voltage and low power while maintaining high

frequency and high performance.
� Power Architecture compatibility to provide a

conventional entry point for programmers, for

virtualization, multi-operating-system support, and

the ability to utilize IBM experience in designing

and verifying symmetric multiprocessors.
� Single-instruction, multiple-data (SIMD)

architecture, supported by both the vector media

extensions on the PPE and the instruction set of the

SPEs, as one of the means to improve game/media

and scientific performance at improved power

efficiency.
� A power- and area-efficient PPE that supports the

high design frequency.
� SPEs for coherent offload. SPEs have local memory,

asynchronous coherent DMA, and a large unified

register file to improve memory bandwidth and to

provide a new level of combined power efficiency and

performance. The SPEs are dynamically configurable

to provide support for content protection and

privacy.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

591

� A high-bandwidth on-chip coherent bus and high

bandwidth memory to deliver performance on

memory-bandwidth-intensive applications and to

allow for high-bandwidth on-chip interactions

between the processor elements. The bus is coherent

to allow a single address space to be shared by the

PPEs and SPEs for efficient communication and ease

of programming.
� High-bandwidth flexible I/O configurable to support

a number of system organizations, including a single-

chip configuration with dual I/O interfaces and a

‘‘glueless’’ coherent dual-processor configuration that

does not require additional switch chips to connect

the two processors.
� Full-custom modular implementation to maximize

performance per watt and performance per square

millimeter of silicon and to facilitate the design of

derivative products.
� Extensive support for chip power and thermal

management, manufacturing test, hardware and

software debugging, and performance analysis.
� High-performance, low-cost packaging technology.
� High-performance, low-power 90-nm SOI

technology.

High design frequency and low supply voltage

To deliver the greatest possible performance, given a

silicon and power budget, one challenge is to co-optimize

the chip area, design frequency, and product operating

voltage. Since efficiency improves dramatically (faster

than quadratic) when the supply voltage is lowered,

performance at a power budget can be improved by using

more transistors (larger chip) while lowering the supply

voltage. In practice the operating voltage has a minimum,

often determined by on-chip static RAM, at which the

chip ceases to function correctly. This minimum

operating voltage, the size of the chip, the switching

factors that measure the percentage of transistors that

will dissipate switching power in a given cycle, and

technology parameters such as capacitance and leakage

currents determine the power the processor will dissipate

as a function of processor frequency. Conversely, a power

budget, a given technology, a minimum operating

voltage, and a switching factor allow one to estimate a

maximum operating frequency for a given chip size. As

long as this frequency can be achieved without making

the design so inefficient that one would be better off with

a smaller chip operating at a higher supply voltage, this is

the design frequency the project should aim to achieve. In

other words, an optimally balanced design will operate at

the minimum voltage supported by the circuits and at the

maximum frequency at that minimum voltage. The chip

should not exceed the maximum power tolerated by the

application. In the case of the Cell processor, having

eliminated most of the barriers that cause inefficiency in

high-frequency designs, the initial design objective was

a cycle time no more than that of ten fan-out-of-four

Figure 1

(a) Cell processor block diagram and (b) die photo. The first
generation Cell processor contains a power processor element
(PPE) with a Power core, first- and second-level caches (L1 and
L2), eight synergistic processor elements (SPEs) each containing
a direct memory access (DMA) unit, a local store memory (LS)
and execution units (SXUs), and memory and bus interface
controllers, all interconnected by a coherent on-chip bus. (Cell die
photo courtesy of Thomas Way, IBM Burlington.)

Power
core

On-chip coherent bus (up to 96 bytes per cycle)

SXU

LS

SXU

LSLS

SXU

LSLS

SXU

LS

Dual Rambus
XDR**

Rambus
FlexIO**

LS

SXU

LS

SXU SXU SXU

Bus interface
controller

Memory
controller

L2

L1

DMA DMADMADMA DMADMA DMA DMA

PPE

SPE

(a)

(b)

Rambus XDR DRAM interfaceRambus XDR DRAM interface

PowerPower
corecore

L2L2
0.5 MB0.5 MB

Memory controllerMemory controller

Test and debug logicTest and debug logic

C
oh

er
en

t
bu

s
C

oh
er

en
t

bu
s

Rambus XDR DRAM interface

Power
core

L2
0.5 MB

SPESPE SPESPESPE SPE

SPESPE SPESPESPE SPE

SPESPE SPESPESPE SPE

SPESPE SPESPESPE SPE

Memory controller

I/O controllerI/O controllerI/O controller

Rambus RRACRambus RRACRambus RRAC

Test and debug logic

C
oh

er
en

t
bu

s

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

592

inverters (10 FO4). This was later adjusted to 11 FO4

when it became clear that removing that last FO4 would

incur a substantial area and power penalty.

Power Architecture compatibility

The Broadband Processor Architecture maintains full

compatibility with 64-bit Power Architecture [4]. The

implementation on the Cell processor has aimed to

include all recent innovations of Power technology such

as virtualization support and support for large page sizes.

By building on Power and by focusing the innovation on

those aspects of the design that brought new advantages,

it became feasible to complete a complex new design on a

tight schedule. In addition, compatibility with the Power

Architecture provides a base for porting existing software

(including the operating system) to Cell. Although

additional work is required to unlock the performance

potential of the Cell processor, existing Power

applications can be run on the Cell processor without

modification.

Single-instruction, multiple-data architecture

The Cell processor uses a SIMD organization in the

vector unit on the PPE and in the SPEs. SIMD units

have been demonstrated to be effective in accelerating

multimedia applications and, because all mainstream PC

processors now include such units, software support,

including compilers that generate SIMD instructions for

code not explicitly written to use SIMD, is maturing. By

opting for the SIMD extensions in both the PPE and the

SPE, the task of developing or migrating software to Cell

has been greatly simplified. Typically, an application may

start out to be single-threaded and not to use SIMD. A

first step to improving performance may be to use SIMD

on the PPE, and a typical second step is to make use

of the SPEs. Although the SIMD architecture on the

SPEs differs from the one on the PPE, there is enough

overlap so that programmers can reasonably construct

programs that deliver consistent performance on both

the PPE and (after recompilation) on the SPEs. Because

the single-threaded PPE provides a debugging and

testing environment that is (still) most familiar, many

programmers prefer this type of approach to

programming Cell.

Power processor element

The PPE (Figure 2) is a 64-bit Power-Architecture-

compliant core optimized for design frequency and power

efficiency. While the processor matches the 11 FO4 design

frequency of the SPEs on a fully compliant Power

processor, its pipeline depth is only 23 stages, significantly

less than what one might expect for a design that

reduces the amount of time per stage by nearly a factor

of 2 compared with earlier designs [12, 13]. The

microarchitecture and floorplan of this processor avoid

long wires and limit the amount of communication delay

in every cycle and can therefore be characterized as

‘‘short-wire.’’ The design of the PPE is simplified in

comparison to more recent four-issue out-of-order

processors. The PPE is a dual-issue design that does not

dynamically reorder instructions at issue time (e.g., ‘‘in-

order issue’’). The core interleaves instructions from two

computational threads at the same time to optimize the

use of issue slots, maintain maximum efficiency, and

reduce pipeline depth. Simple arithmetic functions

execute and forward their results in two cycles. Owing

to the delayed-execution fixed-point pipeline, load

instructions also complete and forward their results

in two cycles. A double-precision floating-point

instruction executes in ten cycles.

The PPE supports a conventional cache hierarchy

with 32-KB first-level instruction and data caches and

a 512-KB second-level cache. The second-level cache

and the address-translation caches use replacement

management tables to allow the software to direct entries

with specific address ranges at a particular subset of the

cache. This mechanism allows for locking data in the

cache (when the size of the address range is equal to the

size of the set) and can also be used to prevent overwriting

data in the cache by directing data that is known to be

used only once at a particular set. Providing these

functions enables increased efficiency and increased

real-time control of the processor.

The processor provides two simultaneous threads of

execution within the processor and can be viewed as a

two-way multiprocessor with shared dataflow. This gives

software the effective appearance of two independent

processing units. All architected states are duplicated,

including all architected registers and special-purpose

registers, with the exception of registers that deal with

system-level resources, such as logical partitions,

memory, and thread control. Non-architected resources

such as caches and queues are generally shared for both

threads, except in cases where the resource is small or

offers a critical performance improvement to

multithreaded applications.

The processor is composed of three units [Figure 2(a)].

The instruction unit (IU) is responsible for instruction

fetch, decode, branch, issue, and completion. A fixed-

point execution unit (XU) is responsible for all fixed-

point instructions and all load/store-type instructions.

A vector scalar unit (VSU) is responsible for all vector

and floating-point instructions.

The IU fetches four instructions per cycle per thread

into an instruction buffer and dispatches the instructions

from this buffer. After decode and dependency checking,

instructions are dual-issued to an execution unit. A

4-KB by 2-bit branch history table with 6 bits of global

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

593

Figure 2

Power processor element (a) major units and (b) pipeline diagram. Instruction fetch and decode fetches and decodes four instructions in
parallel from the first-level instruction cache for two simultaneously executing threads in alternating cycles. When both threads are active,
two instructions from one of the threads are issued in program order in alternate cycles. The core contains one instance of each of the major
execution units (branch, fixed-point, load/store, floating-point (FPU), and vector-media (VMX). Processing latencies are indicated in part (b)
[color-coded to correspond to part (a)]. Simple fixed-point instructions execute in two cycles. Because execution of fixed-point instructions
is delayed, load to use penalty is limited to one cycle. Branch miss penalty is 23 cycles and is comparable to the penalty in designs with a much
lower operating frequency.

Pre-decode

L1 instruction cache

Microcode

SMT dispatch (queue)

Decode

Dependency

Issue

Branch scan

Fetch control
L2

interface

VMX/FPU issue (queue)

VMX
load/store/permute

VMX
arith./logic unit

FPU
load/store

FPU
arith./logic unit

Load/store
unit

Branch
execution unit

Fixed-point
unit

FPU completionVMX completion

Completion/flush

8

4

2
1

2

11 1 1

111

4
Thread A Thread B

Threads alternate
fetch and dispatch
cycles

L1 data cache

2

Fixed-point unit instruction

Branch instruction

Load/store instruction

Branch prediction

IC Instruction cache
IB Instruction buffer
BP Branch prediction
MC Microcode
ID Instruction decode
IS Instruction issue
DLY Delay stage
RF Register file access
EX Execution
WB Write back

ID2 IS1IC1 IC2 IC3 ID1 IS2IB2 IS3IB1 ID3IC4

BP1 BP2 BP3 BP4

RF2 EX1 EX2 EX3RF1DLY EX4 IBZ IC0DLY DLY

RF1 RF2 EX1 EX2 EX3 EX4 EX5 WBDLY DLY DLY

RF1 RF2 EX1 EX3 EX4EX2 EX5 EX7EX6 EX8 WB

PPE pipeline back end

(a)

(b)

Microcode

PPE pipeline front end

Thread A
Thread B

Thread A

Instruction decode and issue

Instruction cache and buffer

MC1 MC2 MC3 MC4 ... MC10 MC11MC9

IU

XU

VSU

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

594

history per thread is used to predict the outcome of

branches. The IU can issue up to two instructions per

cycle. All dual-issue combinations are possible except for

two instructions to the same unit and the following

exceptions. Simple vector, complex vector, vector

floating-point, and scalar floating-point arithmetic cannot

be dual-issued with the same type of instructions (for

example, a simple vector with a complex vector is not

allowed). However, these instructions can be dual-issued

with any other form of load/store, fixed-point branch, or

vector-permute instruction. A VSU issue queue decouples

the vector and floating-point pipelines from the remaining

pipelines. This allows vector and floating-point

instructions to be issued out of order with respect to

other instructions.

The XU consists of a 32- by 64-bit general-purpose

register file per thread, a fixed-point execution unit, and

a load/store unit. The load/store unit consists of the L1

D-cache, a translation cache, an eight-entry miss queue,

and a 16-entry store queue. The load/store unit supports a

non-blocking L1 D-cache which allows cache hits under

misses.

The VSU floating-point execution unit consists of a 32-

by 64-bit register file per thread, as well as a ten-stage

double-precision pipeline. The VSU vector execution

units are organized around a 128-bit dataflow. The vector

unit contains four subunits: simple, complex, permute,

and single-precision floating point. There is a 32-entry by

128-bit vector register file per thread, and all instructions

are 128-bit SIMD with varying element width (23 64-bit,

43 32-bit, 83 16-bit, 163 8-bit, and 1283 1-bit).

Synergistic processing element

The SPE [11] implements a new instruction-set

architecture optimized for power and performance on

computing-intensive and media applications. The SPE

(Figure 3) operates on a local store memory (256 KB)

that stores instructions and data. Data and instructions

are transferred between this local memory and system

memory by asynchronous coherent DMA commands,

executed by the memory flow control unit included in

each SPE. Each SPE supports up to 16 outstanding DMA

commands. Because these coherent DMA commands use

the same translation and protection governed by the page

and segment tables of the Power Architecture as the PPE,

addresses can be passed between the PPE and SPEs, and

the operating system can share memory and manage all of

the processing resources in the system in a consistent

manner. The DMA unit can be programmed in one of

three ways: 1) with instructions on the SPE that insert

DMA commands in the queues; 2) by preparing (scatter-

gather) lists of commands in the local store and issuing

a single ‘‘DMA list’’ of commands; or 3) by inserting

commands in the DMA queue from another processor

in the system (with the appropriate privilege) by using

store or DMA-write commands. For programming

convenience, and to allow local-store-to-local-store DMA

transactions, the local store is mapped into the memory

map of the processor, but this memory (if cached) is not

coherent in the system.

The local store organization introduces another level of

memory hierarchy beyond the registers that provide local

storage of data in most processor architectures. This is

to provide a mechanism to combat the ‘‘memory wall,’’

since it allows for a large number of memory transactions

to be in flight simultaneously without requiring the deep

speculation that drives high degrees of inefficiency

on other processors. With main memory latency

approaching a thousand cycles, the few cycles it takes to

set up a DMA command becomes acceptable overhead to

access main memory. Obviously, this organization of the

processor can provide good support for streaming, but

because the local store is large enough to store more than

a simple streaming kernel, a wide variety of programming

models can be supported, as discussed later.

The local store is the largest component in the SPE,

and it was important to implement it efficiently [14]. A

single-port SRAM cell is used to minimize area. In order

to provide good performance, in spite of the fact that the

local store must arbitrate among DMA reads, writes,

instruction fetches, loads, and stores, the local store was

designed with both narrow (128-bit) and wide (128-byte)

read and write ports. The wide access is used for DMA

reads and writes as well as instruction (pre)fetch. Because

a typical 128-byte DMA read or write requires 16

processor cycles to place the data on the on-chip coherent

bus, even when DMA reads and writes occur at full

bandwidth, seven of every eight cycles remain available

for loads, stores, and instruction fetch. Similarly,

instructions are fetched 128 bytes at a time, and pressure

on the local store is minimized. The highest priority is

given to DMA commands, the next highest priority to

loads and stores, and instruction (pre)fetch occurs

whenever there is a cycle available. A special no-

operation instruction exists to force the availability

of a slot to instruction fetch when necessary.

The execution units of the SPU are organized around

a 128-bit dataflow. A large register file with 128 entries

provides enough entries to allow a compiler to reorder

large groups of instructions in order to cover instruction

execution latencies. There is only one register file, and all

instructions are 128-bit SIMD with varying element width

(23 64-bit, 43 32-bit, 83 16-bit, 163 8-bit, and 1283

1-bit). Up to two instructions are issued per cycle; one issue

slot supports fixed- and floating-point operations and the

other provides loads/stores and a byte permutation

operation as well as branches. Simple fixed-point

operations take two cycles, and single-precision floating-

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

595

point and load instructions take six cycles. Two-way

SIMD double-precision floating point is also supported,

but the maximum issue rate is one SIMD instruction per

seven cycles. All other instructions are fully pipelined.

To limit hardware overhead for branch speculation,

branches can be ‘‘hinted’’ by the programmer or compiler.

The branch hint instruction notifies the hardware of an

upcoming branch address and branch target, and the

hardware responds (assuming that local store slots are

available) by pre-fetching at least seventeen instructions

at the branch target address. A three-source bitwise select

instruction can be used to further eliminate branches

from the code.

The control area makes up only 10–15% of the area

of the 10-mm2 SPE core, and yet several applications

achieve near-peak performance on this processor. The

entire SPE is only 14.5 mm2 and dissipates only a few

watts even when operating at multi-GHz frequencies.

High-bandwidth on-chip coherent fabric and

high-bandwidth memory

With the architectural improvements that remove the

latency-induced limitation on bandwidth, the next

challenge is to make significant improvements in

delivering bandwidth to main memory and bandwidth

between the processing elements and interfaces within the

Figure 3

Synergistic processor element (a) organization and (b) pipeline diagram. Central to the synergistic processor is the 256-KB local store SRAM.
The local store supports both 128-byte access from direct memory access (DMA) read and write, as well as instruction fetch, and a 16-byte
interface for load and store operations. The instruction issue unit buffers and pre-fetches instructions and issues up to two instructions per
cycle. A 6-read, 2-write port register file provides both execution pipes with 128-bit operands and stores the results. Instruction execution
latency is two cycles for simple fixed-point instructions and six cycles for both load and single-precision floating-point instructions. Instruc-
tions are staged in an operand-forwarding network for up to six additional cycles; all execution units write their results in the register file in
the same stage. The penalty for mispredicted branches is 18 cycles.

Fixed-point instruction

Floating-point instruction

Branch instruction

Load/store instruction

Permute instruction

IF Instruction fetch
IB Instruction buffer
ID Instruction decode
IS Instruction issue
RF Register file access
EX Execution
WB Write back

ID2 IS1IF1 IF2 IF3 ID1 IS2IB2IB1 ID3IF4

EX4EX1 EX2 EX3

EX4 EX5EX1 EX2 EX3

EX1 EX2

IF5

RF1 RF2

EX1 EX2 EX3 EX4 EX6EX4

SPE pipeline back end

(a)

(b)

SPE pipeline front end

WB

WB

WB

WBEX6

Permute unit

Load/store unit

Floating-point unit

Fixed-point unit
Branch unit

Channel unit

Result forwarding and staging

Register file

Local store
(256 KB)

Single-port SRAM

128B read 128B write

DMA unit

Instruction issue unit/instruction line buffer

8 bytes per cycle

16 bytes per cycle

64 bytes per cycle

128 bytes per cycle

On-chip coherent bus

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

596

Cell processor. Memory bandwidth at a low system cost

is improved on the first-generation Cell processor by

using next-generation Rambus XDR** DRAM memory

[15]. This memory delivers 12.8 GB/s per 32-bit memory

channel, and two of these channels are supported on the

Cell processor for a total bandwidth of 25.6 GB/s. Since

the internal fabric on the chip delivers nearly an order of

magnitude more bandwidth (96 bytes per cycle at peak),

there is almost no perceivable contention on DMA

transfers between units within the chip.

High-bandwidth flexible I/O

In order to build effective dual-processor systems and

systems with a high-bandwidth I/O-connected accelerator

as well as an I/O-connected system interface chip, Cell

is designed with a high-bandwidth configurable I/O

interface. At the physical layer, a total of seven transmit

and five receive Rambus RRAC FlexIO** bytes [16] can

be dedicated to up to two separate logical interfaces, one

of which can be configured to operate as a coherent

interface. Thus, the Cell processor supports multiple

high-bandwidth system configurations (Figure 4).

Full-custom implementation

The first-generation Cell processor is a highly optimized

full-custom high-frequency, low-power implementation

of the architecture [17]. Cell is a system on a chip;

however, unlike most SoCs, Cell has been designed with

a full-custom design methodology. Some aspects of the

physical design stand out in comparison with previous

full-custom efforts:

� Several latch families, ranging from a more

conventional static latch to a dynamic latch with

integrated function to a pulsed latch that minimizes

insertion delay. Most chip designs standardize on a

single latch type and do not achieve the degree of

optimization that is possible with this wide a choice.

To manage the design and timing complexities

associated with such a large number of latches, all

latches share a common block that generates the local

clocking signals that control the latch elements. The

latches support only limited use of cycle-stealing,

simplifying the design process.
� Extensive custom design on the wires. Several of the

larger buses are fully engineered, controlling wiring

levels and wire placement and using noise-reduction

techniques such as wire twisting, and can be regarded

as full-custom wire-only macros. A large fraction

of the remaining wires are manually controlled

to run preferentially on specific wiring layers. With

transistors improving more rapidly than wires from

one technology to the next, more of the engineering

resource must be spent on managing and controlling

wires than in the past.
� A design methodology which ensures that synthesized

(usually control logic) macros are modified, timed, and

analyzed at the transistor level consistently with custom

designs. This allows macros to be changed smoothly

from synthesized to custom. Among other

advantages, this requires all macros to have

corresponding transistor schematics.
� Extensive chip electrical and thermal engineering for

power distribution and heat dissipation. Whereas

previous projects would do the bulk of this analysis

on the basis of static models, this project required

pattern (program)-dependent analysis of the power

dissipation and used feedback from these analysis

tools to drive the design. Fine-grained clock gating

was utilized to activate sections of logic only when

they were needed. Multiple thermal sensors in the chip

Figure 4

Cell system configuration options: (a) Base configuration for
small systems. (b) “Glueless” two-way symmetric multiprocessor.
(c) Four-way symmetric multiprocessor. (IOIF: Input–output
interface; BIF: broadband interface.)

Cell
processor

Cell
processor

XDR XDR

XDR XDR XDR XDR

IOIF BIF IOIF

XDR XDR XDR XDR

BIF

BIF
Switch

Cell
processor

Cell
processor

XDR XDR XDR XDR

Cell
processor

Cell
processor

Cell
processor

(a)

(b)

(c)

IOIF

IOIF

IOIF

IOIF

IOIF0 IOIF1

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

597

allow much more detailed thermal management than

was common in previous state-of-the-art designs.

� A focus on modularity in the physical design and

interfaces such that derivative products with varying

numbers of PPEs and SPEs can be constructed with

significantly reduced effort. Standardized interfaces

include not only the on-chip coherent bus, but also

interfaces for test and hardware debug functions.

Clock distribution, power distribution, and C4

placement are modular, so that the SPE has to

be integrated only once.

� Multiple highly engineered clock grids. Whereas

multiple clocks are commonly used in ASIC SoCs, it is

not common to have multiple highly engineered clock

distributions with skews controlled to about 10 ps.

Extensive pervasive functionality

The Cell processor includes a significant amount of

circuitry to support power-on reset and self test, test

support in general, hardware debug, and thermal

and power management and monitoring.The design

allows cycle-by-cycle control of the various latch

states (‘‘holding,’’ ‘‘scanning,’’ or ‘‘functional’’) at the

full processor frequency. This allows management of

switching power during scan-based test, facilitates scan-

based at-speed test and debug, and enables functional

thermal and power management on a partition basis.

The design of the test interfaces is standardized and

distributed. Both scan and built-in self test are accessed

in this way. Generally each element contains a satellite-

pervasive unit that interfaces with the various scan chains

inside the unit and allows for communication with the

built-in test functions in that unit. This modular and

hierarchical organization facilitates the design of

processors with a varying number of processor elements

as well as creating other variations on the original design,

such as modifying the external interfaces. Beyond the

interfaces for test and scan-based hardware debug,

an interface is provided to allow the units to present

sequences of internal events to a central unit where these

events can be correlated, counted, compared, or stored.

This interface supports higher levels of hardware debug

and can be used to provide detailed hardware-based

performance measurements as well as other diagnostics.

Finally, the pervasive logic contains the thermal

management of the processor, including a network

of thermal sensors, and the clocking controls to

individually manage the levels of activity in various

parts of the Cell chip.

High-performance, low-cost packaging technology

A new high-performance, low-cost package was

developed for the Cell processor. The flip-chip plastic ball

grid array (FC PBGA) package (Figure 5) employs a

novel thin-core organic laminate design for efficient

power distribution to the chip. The package design

affords an extremely low core noise floor despite the large

switching current and extensive utilization of power-

management functions on the chip which trigger unusual

noise events. Careful layout of the high-speed signal

distribution in the package enables an aggregate I/O

bandwidth in excess of 85 GB/s.

High-performance, low-power CMOS SOI

technology

The Cell processor uses a 90-nm CMOS SOI technology

[3] that delivers both high performance and low power. It

delivers high-performance SOI transistors through the

use of strained silicon and high-performance interconnect

through the use of a level of dense local interconnect

wiring, eight additional levels of copper wiring, and low-k

dielectrics.

Figure 5

(a) Module cross section and (b) top-side bottom photo (top side
without lid). (Photo courtesy of Thomas Way, IBM Burlington.)

(b)

Lid

Chip

3–2–3 Laminate

Decoupling
capacitor

(a)

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

598

Programming models and programmability
Whereas innovation in architectures can unlock new

levels of performance and/or power efficiency, it must be

possible to achieve good performance with a reasonable

amount of programming effort if potential improvements

are to be realized. Programmability was a consideration

in the Cell processor at an early stage, and while this

concern has not prevented us from making radical change

where necessary to address fundamental performance

limitations, a concerted effort was made to make the

system as easily programmable and accessible as possible.

Quite clearly, the aspect of the Cell processor that

presents the greatest challenge to programmers, and often

the greatest opportunities for increased application

performance, is the existence of the local store memory

and the fact that software must manage this memory.

Over time this task may effectively be handled by a

compiler, but at present the task of managing memory

falls primarily to the programmer or library writer.

The second aspect of the design that affects the

programming model is the SIMD nature of the dataflows.

Programmers can ignore this aspect of the design, but in

doing so they may often leave a significant amount of

performance on the table. Still, it is important to note

that as with PC processors that implement SIMD units

and do not always use them, an SPE can be programmed

as a conventional scalar processor for applications that

are not easily SIMD-vectorized. The SIMD aspects of the

SPE are handled by programmers and supported by

compilers in much the same way as the SIMD units

on PC processors, with much the same benefits, and

we do not elaborate on this aspect of the design here.

The SPE differs from conventional microprocessors in

a number of other ways, most significantly in the size of

the register file (128 entries), the way branches are

handled (and avoided), and some instructions that allow

software to assist the arbitration on the local store and

instruction issue. These aspects of the SPE can be

effectively leveraged or handled by the compiler, and

while a programmer who wants to obtain maximal

performance can benefit from awareness of these

mechanisms, it is almost never needed to program

the SPE in assembly language.

A final aspect of the SPE that differentiates it from

conventional processors is the fact that only a single

program context is supported at any time. This context

can be a thread in an application (problem state) or a

thread in a privileged (supervisor) mode, extending

the operating system. The Cell processor supports

virtualization and allows multiple operating systems

to run concurrently on top of virtualization software

running in ‘‘hypervisor’’ state. The SPEs can even be used

to support hypervisor functionality. The fact that the SPE

supports only one context we believe will generally be

managed by the operating system; and just as most

programmers of uniprocessors are only occasionally

aware of the fact that the operating system will from time

to time take execution time (and cache content) away

from their application, most programmers may not

realize that the SPEs are managed by an operating system

running on a different processor.

Incorporating a Power-Architecture-compliant core as

the control processor enables Cell to run existing 32-bit

and 64-bit Power and PowerPC applications without

modification. However, in order to obtain the

performance and power efficiency advantages of Cell,

utilization of the SPE is required. The rich set of

processor–processor communication and data movement

facilities incorporated in the Cell processor make a wide

range of programming models feasible. For example, it is

possible for existing applications to use the SPEs rather

transparently by utilizing a function offload model,

with the SPE code providing acceleration to specific

performance-critical library functions. Supporting many

of these various programming models in a high-level

language (such as C) played an integral part in the

development of the Cell architecture. Many significant

changes to the architectural definition of Cell were made

in response to programmability concerns. Test programs,

function libraries, operating system extensions, and

applications were written, analyzed, and verified on a

functional simulator prior to finalizing the architecture

and implementation of Cell.

In the following sections, we briefly describe a number

of proposed programming models.

Function offload model

The function offload model may be the quickest model

to deploy while effectively using features of the Cell

processor. In this programming model, the SPEs are used

as accelerators for certain types of performance-critical

functions. The main application may be a new or existing

application that executes on the PPE. This model replaces

complex or performance-critical library functions

(possibly supplied by a third party) invoked by the main

application with functions offloaded into one or more

SPEs. The main application logic is not changed at all.

The original library function is optimized and recompiled

for the SPE environment, and the SPE-executable

program is bound into a PPE object module in a

read-only section along with a small remote function

invocation stub. This library is then loaded in the

standard manner as an application dependency. When an

application program running on a PPE makes the library

function call, the remote procedure call stub in the library

executes on the PPE and invokes the procedure in the

SPE subsystem. Currently, the programmer statically

identifies which functions should execute on the PPE

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

599

and which should be offloaded to SPEs by utilizing

separate source and compilation for the PPE and SPE

components. An integrated single-source tool-chain

approach using compiler directives as programmer

offload hints has been prototyped by IBM Research

and seems quite feasible. A more significant challenge

is to have the compiler automatically determine which

functions to execute on the PPE and which to offload

to the SPEs. This approach allows the development of

applications that remain fully compatible with the Power

Architecture by generating both PPE and SPE binaries

for the offloaded functions such that the Cell systems will

load the SPE-accelerated version of the libraries and non-

Cell systems will load the PPE versions of the library.

Device extension model

The device extension model is a special type of function

offload model. In this model, SPEs provide the function

previously provided by a device, or, more typically, act as

an intelligent front end to an external device. This model

uses the on-chip mailboxes, or memory-mapped SPE-

accessible registers, between the PPE and SPEs as a

command/response FIFO. The SPEs have the capability

of interacting with devices, since device memory can be

mapped by the DMA memory-management unit and the

DMA engine supports transfer size granularity down to

a single byte. Devices can utilize the signal notification

feature of Cell to quickly and efficiently inform the SPE

code of the completion of commands. More often than

not, SPEs utilized in this model will run in privileged

mode.

A special case of the function offload and device

extension model is the isolated mode for the SPE. In this

mode, only a small fraction of the local store is available

for communication with the SPE and the SPU, and the

remainder of the local store cannot otherwise be accessed

by the system. This secure operating environment for

the SPE is used to create a ‘‘trusted’’ vault, supporting

functions such as digital rights management and other

privacy- and security-related functions.

Computational acceleration model

This model is an SPE-centric model that provides a

much more granular and integrated use of SPEs by

the application and/or programmer’s tools than does

the function offload model. This is accomplished by

performing most computationally intensive sections of

code on the SPEs. The PPE software acts primarily as a

control and system service facility for the SPE software.

Parallelization techniques can be used to partition the

work among multiple SPEs executing in parallel. This

work can be partitioned manually by the programmer or

parallelized automatically by compilers. This partitioning

and parallelization must include the efficient scheduling

of DMA operations for code and data movement to and

from the SPEs. This model can take advantage of the

shared-memory programming model or can utilize a

message-passing model. In many cases the computational

acceleration model may be used to provide acceleration of

computationally intense math library functions without

requiring a significant rewrite of existing applications.

Streaming models

As noted earlier, since the SPEs can support message

passing to and from the PPE and other SPEs, it is very

feasible to set up serial or parallel pipelines, with each

SPE in the pipeline applying a particular computational

kernel to the data that streams through it. The PPE can

act as a stream controller and the SPEs act as the stream

data processors. When each SPE has to do an equivalent

amount of work, this can be an efficient way to use the

Cell processor, since data remains inside the processor as

long as possible (remember that the on-chip memory

bandwidth exceeds the off-chip bandwidth by an order

of magnitude). In some cases it may be more efficient to

move code to data within the SPEs instead of the more

conventional movement of data to code.

Shared-memory multiprocessor model

The Cell processor can be programmed as a shared-

memory multiprocessor having processing units with two

different instruction sets catering to applications in which

a single instruction set is inefficient for the variety of

required tasks. The SPE and PPE units can interoperate

fully in a cache-coherent shared-memory programming

model. With respect to the SPE units, all DMA

operations are cache-coherent. Conventional shared-

memory load instructions are replaced by the

combination of a DMA operation from shared memory

to local store, using an effective address in common with

all PPE or SPE units assigned to this address space, and a

load from local store to the register file. Conventional

shared-memory store instructions are replaced by the

combination of a store from the register file to the local

store and a DMA operation from local store to shared

memory, using an effective address in common with

all PPE or SPE units assigned to this address space.

Equivalents of the Power Architecture atomic update

primitives (load with reservation and store conditional)

are also provided on the SPE units by utilizing the DMA

lock line commands.

It is also not difficult to contemplate a compiler or

interpreter that would manage part of the local store as

a local cache for instructions and data obtained from

shared memory.

Asymmetric thread runtime model

In this extension to a familiar runtime model, threads can

be scheduled to run on either the PPE or the SPEs, and

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

600

threads interact with one another as they do in a

conventional SMP. This model provides an excellent

foundation for many Cell programming models by

extending the thread or lightweight task models of a

modern operating system to include processing units

having different instruction sets such as the PPE and SPE.

Various scheduling policies can then be applied to both

the PPE and SPE threads to optimize performance and

utilization. While full preemptive task switching on SPEs

is supported for debugging, it is costly in terms of

performance and resources during runtime, and FIFO

run-to-completion models or lightweight cooperative

yielding models can be employed for efficient task

scheduling.

The fact that the SPEs do not support multiple threads

running simultaneously is hidden from the programmer.

This runtime model is extremely flexible and can support

all of the previously mentioned Cell programming

models.

How the concept addresses the design
objectives
The first objective of Cell was to achieve a substantial

improvement over the state of the art in performance per

watt while still maintaining programmability. Sony and

Toshiba had experience with the Emotion Engine** [1]

processor with an accelerator processor whose memory

could be accessed only via DMA. Since a large fraction of

the power and chip area on conventional processors is

associated with caches, it appeared that this model could

provide for a more efficient computational element. The

size of the private store of such an accelerator processor,

which must hold its code and data, is a critical factor in

the programmability of that processor. If the store is very

small, the only programming models that seem to work

are the deeply vectorized and streaming programming

models popular on some of the more recent graphics

processors. We increased the size of the local store twice:

first, in the initial concept phases from 64 KB to 128 KB,

and later, when it was doubled again to 256 KB. In both

of these cases, programmability was the driving factor. A

second crucial design decision is the organization of the

dataflow. A number of options were discussed, including

deep vector and other indirect forms of register

addressing. The SIMD model was chosen because it had

become the dominant model in media units in both x86

and PowerPC* processors as well as the Emotion Engine

(MIPS) [2]. This allowed the reuse and adaptation of

existing compiler technology.

The bandwidth requirements introduced by the

increased computational power have been met by

building considerable bandwidth and interconnect

flexibility inside the chip and by pursuing aggressive

packaging and I/O (Rambus) technology to provide a

large amount of off-chip bandwidth (nearly 100 GB/s) at

a reasonable chip, module, and system cost. The rationale

here is to absorb as much of the complexity as possible

into the processor itself, since its manufacturing cost is

expected to decrease much more rapidly than the cost

of boards and packages.

The second objective (good responsiveness to the

user and the network) is met as follows. By providing

each of the synergistic processors with the capability to

individually and autonomously schedule and receive

DMAs as well as interrupts, the Cell processor can

provide a very good response to external network events.

Real-time responsiveness is also enabled through the

control and determinism of the memory structures. The

local store provides a fixed memory that is fed by fixed-

latency DMAs. The cache and translation resources

are controlled by resource-management tables, and

bandwidth can be controlled by resource allocation

on the entry points to the internal fabric.

The synergistic processors in Cell provide a highly

deterministic operating environment. Since they do

not use caches, cache misses do not factor into the

performance. Also, since the pipeline scheduling rules

are quite simple, it is easy to statically determine the

performance of code. Third, even though the local store

is shared among DMA read and write operations, load

and store operations, and instruction pre-fetch, DMA

operations are accumulated and can access the local store

for at most only one of every eight cycles, and instruction

pre-fetch typically delivers 16 cycles worth of instructions.

Thus, their impact on load and stores and program

execution times is limited. Also, the Cell processor

provides mechanisms that manage replacement in the

various caches in the Cell processor: the L2 on the

Power processor and various translation caches. These

mechanisms allow the programmer to keep certain pieces

of data or code (and the associated translations) on the

chip to guarantee real-time behavior. In addition,

resource-allocation mechanisms allow for bandwidth

management, so that time-critical processes can be

provided with bandwidth and access guarantees.

The third objective (flexibility and wide applicability)

requires careful management of the architecture. The

Broadband Processor Architecture is formally managed

by an architecture review board with representation from

Sony Computer Entertainment/Sony Group, Toshiba,

and IBM, which provides the chair. While many systems

based on the Broadband Processor Architecture may well

be proprietary, the architecture itself is intended to be

published and provide support for open systems such

as those based on the Linux operating system.

The fourth objective (schedule) was met jointly by

constructing the Cell processor by using the Power

Architecture as its core. Thus, IBM experience in

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

601

designing and verifying symmetric multiprocessors could

be leveraged. Even though the SPEs operate on local

memory, the DMA operations are coherent in the system,

and Cell is a ten-way SMP from a coherence perspective.

Also, by building on Power technology, existing

operating systems and applications can run without

modification, and the extra effort the programmer makes

is needed only to unleash the power of the SPEs. Ease

of programming was also the primary motivation for

including the Power Architecture SIMD extensions on

the PPE. This allows for a staged approach, where code

is developed and then SIMD-vectorized in a familiar

environment, before performance is enhanced by using

the synergistic processors.

Conclusions and outlook
While we realize that a single paper cannot do justice

to all aspects of the Cell processor, we hope that this

overview has given the reader a feeling for the holistic

design methodology that was practiced and has provided

the rationale for the major design decisions. While it is

too early to measure the success of the Cell processor

by comparing application performance across a broad

spectrum, anecdotal evidence on applications ranging

from image processing and ray-casting to multimedia

codecs and streaming cryptographic applications that

have been implemented have shown that, at least on

these applications, it is possible to achieve near-peak

performance.

Acknowledgments
The Cell processor is the result of a deep collaboration by

engineers from IBM, the Sony Group, and Toshiba

Corporation. Each brought to the table unique

requirements that helped shape this microprocessor. Ken

Kutaragi presented the challenge and insisted that we

explore nonconventional architectural structures. John

Kelly, Lisa Su, and Bijan Davari from IBM and senior

management in the three companies created the right

business conditions for this project. Chekib Akrout

provided management oversight and encouragement,

while Mike Paczan and Kathy Papermaster managed the

design center. Together with Jim Kahle, Masakazu

Suzuoki, Haruyuki Tago, and Yoshio Masubuchi

directed the technical aspects of the project. In the end,

however, it is the hard work of more than four hundred

engineers and their managers that turned this concept

into a reality. The authors also wish to thank the referees

for their suggestions for improving the paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sony, Linus Torvalds,
Rambus, or Toshiba.

References
1. K. Kutaragi, M. Suzuoki, T. Hiroi, H. Magoshi, S. Okamoto,

M. Oka, A. Ohba, Y. Yamamoto, M. Furuhashi, M. Tanaka,
T. Yutaka, T. Okada, M. Nagamatsu, Y. Urakawa, M.
Funyu, A. Kunimatsu, H. Goto, K. Hashimoto, N. Ide, H.
Murakami, Y. Ohtaguro, and A. Aono, ‘‘A Micro Processor
with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point
Dividers, and an MPEG2 Decoder,’’ ISSCC Digest of
Technical Papers, February 1999, pp. 256–257.

2. A. Kunimatsu, N. Ide, T. Sato, Y. Endo, H. Murakami, T.
Kamei, M. Hirano, F. Ishihara, H. Tago, M. Oka, A. Ohba,
T. Yutaka, T. Okada, and M. Suzuoki, ‘‘Vector Unit
Architecture for Emotion Synthesis,’’ IEEE Micro 20, No. 2,
40–47 (March–April 2000).

3. H. S. Yang, R. Malik, S. Narasimha, Y. Li, R. Divakaruni, P.
Agnello, S. Allen, A. Antreasyan, J. C. Arnold, K. Bandy, M.
Belyansky, A. Bonnoit, G. Bronner, V. Chan, X. Chen, Z.
Chen, D. Chidambarrao, A. Chou, W. Clark, S. W. Crowder,
B. Engel, H. Harifuchi, S. F. Huang, R. Jagannathan, F. F.
Jamin, Y. Kohyama, H. Kuroda, C. W. Lai, H. K. Lee, W.-H.
Lee, E. H. Lim, W. Lai, A. Mallikarjunan, K. Matsumoto, A.
McKnight, J. Nayak, H. Y. Ng, S. Panda, R. Rengarajan, M.
Steigerwalt, S. Subbanna, K. Subramanian, J. Sudijono, G.
Sudo, S.-P. Sun, B. Tessier, Y. Toyoshima, P. Tran, R. Wise,
R. Wong, I. Y. Yang, C. H. Wann, L. T. Su, M. Horstmann,
Th. Feudel, A. Wei, K. Frohberg, G. Burbach, M. Gerhardt,
M. Lenski, R. Stephan, K. Wieczorek, M. Schaller, H. Salz, J.
Hohage, H. Ruelke, J. Klais, P. Huebler, S. Luning, R. van
Bentum, G. Grasshoff, C. Schwan, E. Ehrichs, S. Goad, J.
Buller, S. Krishnan, D. Greenlaw, M. Raab, and N. Kepler,
‘‘Dual Stress Liner for High Performance Sub-45-nm Gate
Length SOI CMOS Manufacturing,’’ Proceedings of the 2004
IEEE International Electron Devices Meeting, December 2004,
pp. 1075–1078.

4. Power Architecture Version 2.02; see http://www-106.ibm.com/
developerworks/eserver/library/es-archguide-v2.html.

5. W. Wulf and S. McKee, ‘‘Hitting the Memory Wall:
Implications of the Obvious,’’ ACM Computer Architecture
News 23, No. 1, 20–24 (March 1995).

6. U. Ghoshal and R. Schmidt, ‘‘Refrigeration Technologies
for Sub-Ambient Temperature Operation of Computing
Systems,’’ ISSCC Digest of Technical Papers, February 2000,
pp. 216–217.

7. R. D. Isaac, ‘‘The Future of CMOS Technology,’’ IBM J. Res.
& Dev. 44, No. 3, 369–378 (May 2000).

8. H. Peter Hofstee, ‘‘Power Efficient Processor Architecture and
the Cell Processor,’’ Proceedings of the 11th Conference on
High Performance Computing Architectures, February 2005,
pp. 258–262.

9. V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban,
P. N. Strenski, and P. G. Emma, ‘‘Optimizing Pipelines for
Power and Performance,’’ Conference Proceedings of the
35th Annual IEEE/ACM International Symposium on
Microarchitecture, 2002, pp. 333–344.

10. See http://www-306.ibm.com/chips/techlib/techlib.nsf/products/
Cell.

11. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,
R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty, B. Michael, H.-J.
Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama, Y.
Watanabe, and N. Yano, ‘‘The Microarchitecture of the
Streaming Processor for a CELL Processor,’’ Proceedings
of the IEEE International Solid-State Circuits Symposium,
February 2005, pp. 184–185.

12. C. J. Anderson, J. Petrovick, J. M. Keaty, J. Warnock,
G. Nussbaum, J. M. Tendler, C. Carter, S. Chu, J. Clabes,
J. DiLullo, P. Dudley, P. Harvey, B. Krauter, J. LeBlanc,
P.-F. Lu, B. McCredie, G. Plum, P. J. Restle, S. Runyon, M.
Scheuermann, S. Schmidt, J. Wagoner, R. Weiss, S. Weitzel,
and B. Zoric, ‘‘Physical Design of a Fourth-Generation
POWER GHz Microprocessor,’’ ISSCC Digest of Technical
Papers, February 2001, pp. 232–233.

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

602

13. J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass,
J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M.
Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Runyon, G.
Gorman, P. Restle, R. Kalla, J. McGill, and S. Dodson,
‘‘Design and Implementation of the POWER5
Microprocessor,’’ Proceedings of the 41st Design Automation
Conference, 2004, pp. 670–672.

14. T. Asano, T. Nakazato, S. Dhong, A. Kawasumi, J.
Silberman, O. Takahashi, M. White, and H. Yoshihara, ‘‘A
4.8GHz Fully Pipelined Embedded SRAM in the Streaming
Processor of a CELL Processor,’’ Proceedings of the IEEE
International Solid-State Circuits Symposium, February 2005,
pp. 486–487.

15. See http://www.rambus.com/products/xdr/.
16. K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T.

Chin, J. Shen, G. Yip, C. Madden, R. Schmitt, C. Yuan, F.
Assaderaghi, and M. Horowitz, ‘‘Clocking and Circuit Design
for a Parallel I/O on a First Generation CELL Processor,’’
Proceedings of the IEEE International Solid-State Circuits
Symposium, February 2005, pp. 526–527.

17. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,
M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa, ‘‘The Design and Implementation of a First-
Generation CELL Processor,’’ Proceedings of the Custom
Integrated Circuits Conference, September 2005; to appear.

Received February 19, 2005; accepted for publication
June 1,

James A. Kahle IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(jakahle@us.ibm.com). Mr. Kahle is an IBM Fellow; his current
title is Director of Technology for the Austin-based STI Design
Center for Cell technology. This is a partnership with IBM, Sony,
and Toshiba. Mr. Kahle received his B.S. degree from Rice
University in 1983. He has been working for IBM since the early
1980s on RISC-based microprocessors. His work started in
physical design tools and is currently concentrated on RISC
architecture. Mr. Kahle was a key designer for the RIOS I
processor, which launched IBM into the RS/6000* line of
workstations and servers. He was also one of the founding
members of the Somerset Design Center, where he was the project
manager for the PowerPC 603* and follow-on processors which led
to the PowerPC G3. He was key to the definition of the PowerPC
architecture and of the superscalar techniques used at IBM, and
has been at the forefront of superscalar design and multiscalar and
SMT microarchitectures. Mr. Kahle was the Chief Architect for
the POWER4* core, and assists in PowerPC roadmap planning.

Michael N. Day IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(mnday@us.ibm.com). Mr. Day received a B.S. degree in electrical
engineering–computer science from the University of Texas at
Austin in 1977. He joined IBM that same year as an engineer
designing and implementing hardware and software for a large
multi-user timesharing office product system that included
workstation controllers, full page displays, speech digitization, and
filing systems. He then became the lead firmware and software
architect for the first IBM battery-powered laptop computer with
advanced power-management features. In 1987 he became a kernel
subsystem architect on the premier IBM UNIX OS project called
AIX*. Mr. Day was elected to the IBM Academy of Technology
in 1992, and he went on to become chief architect of AIXv4,
delivering SMP support and kernel-based threads. In 1997 he
became an IBM Distinguished Engineer. The following year he led
a real-time broadband video streaming project introducing the
MediaStreamer* product based on AIX. He subsequently worked
on the design and implementation of AIX on IA64, then moved
to the STI project in 2001 as Chief System Software Architect,
defining the programming features of the Cell processor, enabling
Linux and software tool chains to support various programming
models for the Cell processor. He also leads a team of
programmers developing application libraries, test suites,
workloads, and demonstration programs for the Cell processor.

H. Peter Hofstee IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(hofstee@us.ibm.com). Dr. Hofstee received his doctorandus
degree in theoretical physics from the Rijks Universiteit
Groningen, The Netherlands, in 1988, and his M.S. and Ph.D.
degrees in computer science from the California Institute of
Technology in 1991 and 1994, respectively. After two years on the
faculty at Caltech, in 1996 he joined the IBM Austin Research
Laboratory, where he participated in the design of two 1-GHz
PowerPC prototypes, focusing on microarchitecture, logic design,
and chip integration. In 2000 he helped start the Sony–Toshiba–
IBM Design Center to design a next generation of processors for
the broadband era, code-named ‘‘Cell.’’ Dr. Hofstee is a member of
the Cell architecture team and the chief architect of the synergistic
processor in Cell. He was elected to the IBM Academy of
Technology in 2004.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 J. A. KAHLE ET AL.

603

2005; Internet publication September 7, 2005

Charles R. Johns IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(crjohns@us.ibm.com). Mr. Johns is a Senior Technical Staff
Member in the Sony/Toshiba/IBM Design Center. He received his
B.S. degree in electrical engineering from the University of Texas at
Austin in 1984. After joining IBM at Austin that same year, he
worked on various disk, memory, voice communication, and
graphics adapters for the IBM Personal Computer. From 1988
until he moved to the STI project in 2000, he was part of the
Graphics Organization and was responsible for the architecture
and development of entry-level and mid-range 3D graphics
adapters and rater engines. Mr. Johns is now responsible for
Broadband Processor Architecture (BPA) and participates in the
development of the Broadband Engine (the first implementation of
the BPA).

Theodore R. (Ted) Maeurer IBM Systems and Technology
Group, STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(maeurer@us.ibm.com). Mr. Maeurer is manager of the software
organization for the Austin-based STI Design Center. He received
his B.S. and M.S. degrees in computer science from Rensselaer
Polytechnic Institute in 1988 and 1989, respectively, and his M.S.
degree in engineering and management from the Massachusetts
Institute of Technology in 1999. Mr. Maeurer began his career at
IBM in 1990 working on operating systems for IBM high-end
servers during the transition from bipolar to highly clustered
CMOS-based systems. He later worked on object-based
middleware technologies as part of the first activities at IBM
to commercialize this technology for high-end systems. In 2001
Mr. Maeurer joined the STI Design Center, where he has been
a member of the management team. In this role he has been
responsible for the development of software technologies for
the Cell processor.

David Shippy IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(shippy@us.ibm.com). Mr. Shippy received a B.S. degree in
electrical engineering from the University of Kentucky in 1983 and
an M.S. degree in computer engineering from Syracuse University
in 1987. He has been involved with the design of high-performance
processors for more than 20 years, working on processors from
notebooks to game machines to mainframes. He was one of the
lead architects for the POWER2*, G3 PowerPC, and POWER4*

processor designs. He is currently the chief architect for the
power processing unit for the Cell processor. Mr. Shippy holds
numerous patents, has received an IBM Tenth Plateau Invention
Achievement Award, and has been recognized as an IBM Master
Inventor. He is an expert in the area of high-performance processor
architecture and design.

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

604

