Cache Models
and
Program Transformations
Memory wall problem

- Conventional optimizations:
 - reducing the amount of computation
 - (eg) constant folding, common sub-expression elimination, ...
- On modern machines, most programs that access a lot of data are memory bound
 - latency of DRAM access is roughly 100-1000 cycles
- Caches can reduce effective latency of memory accesses
 - but programs may need to be rewritten to take full advantage of caches
- Cache optimizations are extremely important for performance
Do cache optimizations matter?

Vendor BLAS (multiple levels of blocking)

3 nested loops MMM (no blocking) 6 MFlops

MMM for square matrices of various sizes UltraSPARC III: peak 2 GFlops
Goal of lecture

• Develop abstractions of real caches for understanding program performance
• Study the cache performance of matrix-vector multiplication (MVM)
 – simple but important computational science kernel
• Understand MVM program transformations for improving performance
• Extend this to MMM
 – aka Level-3 Basic Linear Algebra Subroutines (BLAS)
 – most important kernel in dense linear algebra
Matrix-vector product

- **Code:**

  ```
  for i = 1,N
    for j = 1,N
      y(i) = y(i) + A(i,j)*x(j)
  ```

- **Total number of references = 4N^2**

 - This assumes that all elements of A, x, y are stored in memory
 - Smart compilers nowadays can register-allocate y(i) in the inner loop
 - You can get this effect manually

    ```
    for i = 1,N
      temp = y(i)
      for j = 1,N
        temp = temp + A(i,j)*x(j)
      y(i) = temp
    ```

 - To keep things simple, we will not do this but our approach applies to this optimized code as well

(assume row-major storage order for A)
Cache abstractions

- Real caches are very complex
- Science is all about tractable and useful abstractions (models) of complex phenomena
 - models are usually approximations
- Can we come up with cache abstractions that are both tractable and useful?
- Focus:
 - two-level memory model: cache + memory
Stack distance

- r_1, r_2: two memory references
 - r_1 occurs earlier than r_2
- $\text{stackDistance}(r_1, r_2)$: number of distinct cache lines referenced between r_1 and r_2
- Stack distance was defined by Mattson et al (IBM Systems Journal paper)
Modeling approach

• First approximation:
 – ignore conflict misses
 – only cold and capacity misses

• Most problems have some notion of “problem size”
 – (eg) in MVM, the size of the matrix (N) is a natural measure of problem size

• Question: how does the miss ratio change as we increase the problem size?

• Even this is hard, but we can often estimate miss ratios at two extremes
 – large cache model: problem size is small compared to cache capacity
 – small cache model: problem size is large compared to cache capacity
 – we will define these more precisely in the next slide.
Large and small cache models

- **Large cache model**
 - no capacity misses
 - only cold misses

- **Small cache model**
 - cold misses: first reference to a line
 - capacity misses: possible for succeeding references to a line
 - let r_1 and r_2 be two successive references to a line
 - assume r_2 will be a capacity miss if $\text{stackDistance}(r_1,r_2)$ is some function of problem size
 - argument: as we increase problem size, the second reference will become a miss sooner or later

- **For many problems, we can compute**
 - miss ratios for small and large cache models
 - problem size transition point from large cache model to small cache model
MVM study

• We will study five scenarios
 – Scenario I
 • i,j loop order, line size = 1 number
 – Scenario II
 • j,i loop order, line size = 1 number
 – Scenario III
 • i,j loop order, line size = b numbers
 – Scenario IV
 • j,i loop order, line size = b numbers
 – Scenario V
 • blocked code, line size = b numbers
Scenario I

• Code:

  ```
  for i = 1,N
    for j = 1,N
      y(i) = y(i) + A(i,j)*x(j)
  ```

• Inner loop is known as DDOT in NA literature if working on doubles:
 – Double-precision DOT product

• Cache line size
 – 1 number

• Large cache model:
 – Misses:
 • A: N^2 misses
 • x: N misses
 • y: N misses
 • Total = $N^2 + 2N$
 • Miss ratio = $(N^2 + 2N)/4N^2$
 ~ $0.25 + 0.5/N$
Scenario I (contd.)

Address stream: \[y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) \ldots y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2) \]

- **Small cache model:**
 - A: \(N^2 \) misses
 - x: \(N + N(N-1) \) misses (reuse distance=\(O(N) \))
 - y: \(N \) misses (reuse distance=\(O(1) \))
 - Total = \(2N^2+N \)
 - Miss ratio = \((2N^2+N)/4N^2 \)
 - \(\sim 0.5 + 0.25/N \)

- **Transition from large cache model to small cache model**
 - As problem size increases, when do capacity misses begin to occur?
 - Subtle issue: depends on replacement policy (see next slide)
Scenario I (contd.)

Address stream:

\[
\begin{array}{cccccccc}
 y(1) & A(1,1) & x(1) & y(1) & y(1) & A(1,2) & x(2) & y(1) & \ldots & y(1) & A(1,N) & x(N) & y(1) & y(2) & A(2,1) & x(1) & y(2)
\end{array}
\]

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
 - Optimal replacement:
 - do the best job you can, knowing everything about the computation
 - only x needs to be cache-resident
 - elements of A can be “streamed in” and tossed out of cache after use
 - So we need room for \((N+2)\) numbers
 - Transition: \(N+2 > C\) \(\Rightarrow\) \(N \sim C\)
 - LRU replacement
 - by the time we get to end of a row of A, first few elements of x are “cold” but we do not want them to be replaced
 - Transition: \((2N+2) > C\) \(\Rightarrow\) \(N \sim C/2\)
- Note:
 - optimal replacement requires perfect knowledge about future
 - most real caches use LRU or something close to it
 - some architectures support “streaming”
 - in hardware
 - in software: hints to tell processor not to cache certain references
• Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario II

- **Code:**

  ```
  for j = 1,N  
    for i = 1,N  
      y(i) = y(i) + A(i,j)*x(j)
  ```

- **Inner loop is known as AXPY in NA literature**

- **Miss ratio picture exactly the same as Scenario I**
 - roles of x and y are interchanged
Scenario III

• **Code:**

  ```c
  for i = 1,N
    for j = 1,N
      y(i) = y(i) + A(i,j)*x(j)
  ```

• **Cache line size**
 - `b` numbers

• **Large cache model:**
 - **Misses:**
 - `A`: N^2/b misses
 - `x`: N/b misses
 - `y`: N/b misses
 - Total = $(N^2+2N)/b$
 - Miss ratio = $(N^2+2N)/4bN^2$
 - $\sim 0.25/b + 0.5/bN$

(assume row-major storage order for A)
Scenario III (contd.)

Address stream:

\[
\begin{array}{ccccccc}
 \text{y(1)} & A(1,1) & x(1) & y(1) & A(1,2) & x(2) & y(1) \\
 \text{y(1)} & A(1,N) & x(N) & y(1) & \text{y(2)} & A(2,1) & x(1) & y(2)
\end{array}
\]

- **Small cache model:**
 - A: \(\frac{N^2}{b}\) misses
 - x: \(\frac{N}{b} + \frac{N(N-1)}{b}\) misses (reuse distance=\(O(N)\))
 - y: \(\frac{N}{b}\) misses (reuse distance=\(O(1)\))
 - Total = \(\frac{2N^2+N}{b}\)
 - Miss ratio = \(\frac{2N^2+N}{4bN^2}\) \\
 \(\approx 0.5/b + 0.25/bN\)

- **Transition from large cache model to small cache model**
 - As problem size increases, when do capacity misses begin to occur?
 - LRU: roughly when \((2N+2b) = C\)
 - \(N \approx \frac{C}{2}\)
 - Optimal: roughly when \((N+2b) \approx C \Rightarrow N \approx C\)

- So miss ratio picture for Scenario III is similar to that of Scenario I but the y-axis is scaled down by \(b\)

- Typical value of \(b = 4\) (SGI Octane)
• Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario IV

- **Code:**

  ```
  for j = 1,N
    for i = 1,N
      y(i) = y(i) + A(i,j)*x(j)
  ```

- **Large cache model:**
 - Same as Scenario III

- **Small cache model:**
 - Misses:
 - A: N^2
 - x: N/b
 - y: $N/b + N(N-1)/b = N^2/b$
 - Total: $N^2(1+1/b) + N/b$
 - Miss ratio = $0.25(1+1/b) + 0.25/bN$

- **Transition from large cache to small cache model**
 - LRU: $Nb + N + b = C \Rightarrow N \sim C/(b+1)$
 - optimal: $N + 2b \sim C \Rightarrow N \sim C$

- **Transition happens much sooner than in Scenario III (with LRU replacement)**
Miss ratios

- Miss ratio: $0.25(1+1/b)$
- Miss ratio: $0.75/b$
- Miss ratio: $0.50/b$
- Miss ratio: $0.25/b$

Graph showing miss ratios for different values of b with label $C/(b+1)$ and $C/2$ on the x-axis.
Scenario V

• Intuition: perform blocked MVM so that data for each blocked MVM fits in cache
 – One estimate for B: all data for block MVM must fit in cache
 \[B^2 + 2B \sim C \]
 \[B \sim \sqrt{C} \]
 – Actually we can do better than this

• Code: blocked code
 for bj = 1, N, B
 for bi = 1, N, B
 for j = bi, min(bi+B-1, N)
 for i = bj, min(bj+B-1, N)
 y(i) = y(i) + A(i,j) * x(j)

• Choose block size B so
 – you have large cache model while executing block
 – B is as large as possible (to reduce loop overhead)
 – for our example, this means B \sim c/2 for row-major order of storage and LRU replacement

• Since entire MVM computation is a sequence of block MVMs, this means miss ratio will be $0.25/b$ independent of N!
Scenario V (contd.)

- **Blocked code**

  ```plaintext```
  for bj = 1,N,B  
    for bi = 1,N,B  
      for j = bj,min(bj+B-1,N)  
        for i = bi,min(bi+B-1,N)  
          y(i)=y(i)+A(i,j)*x(j)
  ```plaintext```

- **Better code: interchange the two outermost loops and fuse bi and i loops**

  ```plaintext```
  for bi = 1,N,B  
    for j = 1,N  
      for i = bi,min(bi+B-1,N)  
        y(i)=y(i)+A(l,j)*x(j)
  ```plaintext```

This has the same memory behavior as doubly-blocked loop but less loop overhead.
Miss ratios

0.25(1+1/b)

0.75/b

0.50/b

0.25/b

N

C/(b+1)

C/2

DAXPY

DDOT

Blocked
Key transformations

• **Loop permutation**

 for \(i = 1, N \)

 for \(j = 1, N \) \(\rightarrow\) for \(i = 1, N \)

 S

• **Strip-mining**

 for \(i = 1, N \) \(\rightarrow\) for \(bi = 1, N, B \)

 S

 for \(i = bi, \min(bi+B-1, N) \)

 S

• **Loop tiling = strip-mine and interchange**

 for \(i = 1, N \)

 for \(j = 1, N \) \(\rightarrow\) for \(i = 1, N \)

 S

 for \(j = 1, N \)

 for \(i = bj, \min(bj+B-1, N) \)

 S
Notes

• Strip-mining does not change the order in which loop body instances are executed
 – so it is always legal

• Loop permutation and tiling do change the order in which loop body instances are executed
 – so they are not always legal

• For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
 – different versions have different memory behavior as we have seen
Matrix multiplication

• We have studied MVM in detail.
• In dense linear algebra, matrix-matrix multiplication is more important.
• Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.
DO I = 1, N//row-major storage
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version of matrix multiplication

• Three loops: I,J,K
• You can show that all six permutations of these three loops compute the same values.
• As in MVM, the cache behavior of the six versions is different
DO I = 1, N // row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version of matrix multiplication

- K loop innermost
 - A: good spatial locality
 - C: good temporal locality
- I loop innermost
 - B: good temporal locality
- J loop innermost
 - B,C: good spatial locality
 - A: good temporal locality
- So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI
 MMM miss ratios (simulated)

L1 Cache Miss Ratio for Intel Pentium III

- MMM with N = 1…1300
- 16KB 32B/Block 4-way 8-byte elements
Observations

• Miss ratios depend on which loop is in innermost position
 – so there are three distinct miss ratio graphs
• Large cache behavior can be seen very clearly and all six version perform similarly in that region
• Big spikes are due to conflict misses for particular matrix sizes
 – notice that versions with J loop innermost have few conflict misses (why?)
IJK version

DO I = 1, N // row-major storage
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
 – Matrices are small enough to fit into cache
 – Only cold misses, no capacity misses
 – Miss ratio:
 • Data size = 3 N^2
 • Each miss brings in b floating-point numbers
 • Miss ratio = \(3 N^2 / b \times 4N^3 = 0.75/bN\) (eg) 0.019 (b = 4, N=10)
IJK version (large cache)

DO I = 1, N // row-major storage
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
 – Matrices are small enough to fit into cache
 – Only cold misses, no capacity misses
 – Miss ratio:
 • Data size = 3 N^2
 • Each miss brings in b floating-point numbers
 • Miss ratio = 3 N^2 / b * 4N^3 = 0.75 / bN = 0.019 (b = 4, N=10)
IJK version (small cache)

DO I = 1, N
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Small cache scenario:
 - Cold and capacity misses
 - Miss ratio:
 - C: \(N^2/b \) misses (good temporal locality)
 - A: \(N^3/b \) misses (good spatial locality)
 - B: \(N^3 \) misses (poor temporal and spatial locality)
 - Miss ratio \(\rightarrow 0.25 \) \((b+1)/b \) = 0.3125 (for \(b = 4 \))
 - Simple calculation:
 - ignore everything but innermost loop
 - reference has
 - temporal locality: no misses
 - spatial locality: 1/b references is a miss
 - neither: all references are misses
 - In this example, there are 4N references in innermost loop and N + N/b are misses
Miss ratios for other versions

DO I = 1, N\(\text{//row-major storage}\)
DO J = 1, N
DO K = 1, N
\(C(I,J) = C(I,J) + A(I,K)\ast B(K,J)\)

IJK version of matrix multiplication

- IJK,JIK (K loop innermost)
 - A: good spatial locality
 - C: good temporal locality \(0.25(b+1)/b\)
- JKI,KJI (I loop innermost)
 - B: good temporal locality \((N^2/b + N^3 + N^3)/4N^3 \rightarrow 0.5\)
- IKJ,KIJ (J loop innermost)
 - B,C: good spatial locality \((N^3/b + N^3/b + N^2/b)/4N^3 \rightarrow 0.5/b\)
 - A: good temporal locality

So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI
MMM experiments

L1 Cache Miss Ratio for Intel Pentium III

- MMM with N = 1…1300
- 16KB 32B/Block 4-way 8-byte elements

Can we predict this?
Transition out of large cache

DO I = 1, N//row-major storage
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Find the data element(s) that are reused with the largest stack distance
• Determine the condition on N for that to be less than C
• For our problem:
 – \(N^2 + N + b < C \) (with optimal replacement)
 – \(N^2 + 2N < C \) (with LRU replacement)
 – In either case, we get \(N \sim \sqrt{C} \)
 – For our cache, we get \(N \sim 45 \) which agrees quite well with data
for $bi = 1, N, B$
for $bj = 1, N, B$
for $bk = 1, N, B$
for $i = bi, \text{min}(bi + B - 1, N)$
for $j = bj, \text{min}(bj + B - 1, N)$
for $k = bk, \text{min}(bk + B - 1, N)$
y(i) = $y(i) + A(i, j) * x(j)$

As in blocked MVM, we actually need to stripmine only two loops
Notes

• So far, we have considered a two-level memory hierarchy
• Real machines have multiple level memory hierarchies
• In principle, we need to block for all levels of the memory hierarchy
• In practice, matrix multiplication with really large matrices is very rare
 – MMM shows up mainly in blocked matrix factorizations
 – therefore, it is enough to block for registers, and L1/L2 cache levels
• We have also ignored hardware prefetching