9/3/2013

Graph Algorithms

Overview

Graphs are very general data structures

— data structures such as dense and sparse matrices, sets, multi-
sets, etc. can be viewed as representations of graphs

Algorithms on matrices/sets/etc. can usually be interpreted

as graph algorithms

— but it may or may not be useful to do this
— sparse matrix algorithms can be usefully viewed as graph

algorithms

Some graph algorithms can be interpreted as matrix

algorithms

— but it may or may not be useful to do this
— may be useful if graph structure is fixed as in graph analytics

applications:

* many of these applications can be formulated as sparse matrix-vector

product

Graph-matrix duality

Graph (V,E) as a matrix

— Choose an ordering of vertices

— Number them sequentially

— Fillin |V[x]V]| matrix

— Called “adjacency matrix” of graph
Observations:

— Diagonal entries: weights on self-

loops
— Symmetric matrix €-> undirected
graph 12345
— Lower triangular matrix €= no 1 loafoo]
edges from lower numbered nodes 2 ‘ 000coO
to higher numbered nodes 3 ' 000e0 ‘
— Dense matrix €-> clique (edge 4 ‘ 00o00d ‘
between every pair of nodes) 5 0b0O0g

Matrix-vector multiplication

¢ Matrix computation: y = Ax
¢ Graph interpretation:

— Each node i has two values
(labels) x(i) and y(i)

— Each node i updates its label y
using the x value from each of
its neighbors j, scaled by the
label on edge (i,j)

Observation:

— Graph perspective shows dense
MVM is just a special case of
sparse MVM

x4
x5

9/3/2013

Graph set/multiset duality

Set/multiset is isomorphic to a {a,c.fe,b}
raph

g— IZbeIed nodes set

— no edges

“Opposite” of clique 6

Algorithms on sets/multisets can ¢

be viewed as graph algorithms ‘o

Usually no particular advantage to
doing this but it shows generality)
of graph algorithms

Graph

@c

Graph algorithm examples

Problem: single-source
shortest-path (SSSP)
computation
Formulation:
— Given an undirected graph with
positive weights on edges, and
a node called the source
— Compute the shortest distance
from source to every other
node
Variations:
— Negative edge weights but no
negative weight cycles
— All-pairs shortest paths
Applications:
— GPS devices for driving
directions Node A is the source
— social network analyses:
centrality metrics

SSSP Problem

Many algorithms

— Dijkstra (1959)

— Bellman-Ford (1957)

— Chaotic relaxation (1969)

— Delta-stepping (1998)

Common structure:

— Each node has a label d containing
shortest known distance to that
node from source

* Initialized to O for source and infinity
for all other nodes

— Key operations:
relax-edge(u,v):
if d[v] > d[u]+w(u,v)
then d[v] € d[u]+w(u,v)

relax-node(u):
relax all edges connected to u

SSSP algorithms (1)

Dijkstra’s algorithm (1959):
— priority queue of nodes, ordered by
shortest distance known to node
— iterate over nodes in priority order
— node is relaxed just once
— work-efficient: O(|E|*Ig(|V]))
Active nodes:
— nodes in PQ: level has been lowered but
node has not yet been relaxed
Key data structures:
— Graph
— Work set/multiset: ordered
* Priority queue
Parallelism in algorithm

— Edges connected to node can be relaxed in
parallel

— Difficult to relax multiple nodes from
priority queue in parallel

— Little parallelism for sparse graphs
Ordered algorithm

@laslr]]

Priority queue

9/3/2013

SSSP algorithms (I1)

Chaotic relaxation (1969):
— use set to track active nodes
— iterate over nodes in any order

— nodes can be relaxed many times
* may do more work than Dijkstra

Key data structures:

— Graph

— Work set/multiset: unordered

Parallelization:

— process multiple work-set nodes

— need concurrent data structures

concurrent set/multiset: elements
are added/removed correctly
concurrent graph: simultaneous
updates to node happen correctly

Unordered algorithm

¢ Also need synchronization at node

SSSP algorithms (Il contd.)

¢ Need for synchronization at graph
nodes
— Suppose nodes B and C are relaxed
simultaneously
— Both relaxations may update value at D
Value at D is infinity
Relax-C operation reads this value and
wants to update it to 3.
At the same time, Relax-D operation reads
D’s value and wants to update it to 12
If the two updates are not sequenced
properly, final value at D after both
relaxations may be 12, which is incorrect
— One solution: ensure that the “read-
modify-write” in edge relaxation is
“atomic” — no other thread can read or
write that location while the read-
modify-write is happening

being relaxed to ensure its value is not
changed by some other core when the
node relaxation is going on

SSSP algorithms (111)

Delta-stepping (1998)
— variation of chaotic relaxation
— active nodes currently closer to source
are more likely to be chosen for
processing from set

Work-set/multiset:
— Parameter: A
— Sequence of sets

— Nodes whose current distance is between
nA and (n+1)A are put in the nth set

— Nodes in each set are processed in
parallel

— Nodes in set n are completed before
processing of nodes in set (n+1) are
started

A = 1: Dijkstra

A = ©9: Chaotic relaxation
Picking an optimal A :

— depends on graph and machine
— Do experimentally

SSSP algorithms (V)

¢ Bellman-Ford (1957):
— lIterate over all edges of graph in
any order, relaxing each edge
— Do this |V| times
= O(IE[*IV])
e Parallelization
— lIterate over set of edges
— Inspector-executor: use graph
matching to generate a conflict-
free schedule of edge relaxations
after input graph is given
— Edges in a matching do not have
nodes in common so they can be
relaxed without synchronization
— Barrier synchronization between
successive stages in schedule

Conflict-free schedule
1.{(A,B),(C,D),(E,H)},
2.{(A,C),(8,D),(E,G),(FH)},
3.{(D,E),(G,H)}

9/3/2013

Matching
e Givenagraph G=(V,E), a

matching is a subset of edges such A
that no edges in the subset have a
node in common

- (eg) {(AB),(C,D),(E,H)}

— Not a matching: {(A,B),(A,C)}

e Maximal matching: a matching to
which no new edge can be added
without destroying matching
property

- (eg) {(A,B),(C,D),(E,H)}

- (eg){(A,C),(B,D)(E,G),(FH)}

— Can be computed in O(|E|) time
using a simple greedy algorithm

e Maximum matching: matching

h ins the |
Lfa;dcgzr;tamst e largest number 1 {(AB)(COLEH),
2.{(A,C),(B,D),(E,G),(FH)},
~ (eg) {(AC)(B,D)E G (FH)) S e E
— Can be computed in time R
Ofsart(IVI)E])

Conflict-free schedule

Summary of SSSP Algorithms

e Ordered algorithms: use priority queues
— Dijkstra’s algorithm
* Work-efficient but difficult to extract parallelism
e Unordered algorithms: use sets/multisets
— Chaotic relaxation
* Parallelism but amount of work depends on schedule
* Fine-grain synchronization
* Ordered outer/unordered inner
— Delta-stepping
* Controlled chaotic relaxation: parameter A
* A permits trade-off between parallelism and extra work
* Both fine-grain and coarse-grain synchronization
— Bellman-Ford algorithm
. :nspector: use matching to find contention-free schedule for inner
oop
* Executor: perform relaxations using barriers
* Only coarse-grain synchronization

Delaunay Mesh Refinement

Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) {
if (wl.empty()) break;
Element e = wl.get(); Betore
if (e no longer in mesh) continue;
Cavity c = new Cavity(e);//determine new cavity
c.expand();
c.retriangulate();
m.update(c);//update mesh
wl.add(c.badTriangles());

} Ator
st

Stencil computation: Jacobi iteration

* Finite-difference method for solving pde’s
— discrete representation of domain: grid
* Values at interior points are updated using values at
neighbors
— values at boundary points are fixed
« Data structure:
— dense arrays
+ Parallelism:
— values at next time step can be computed simultaneously
— parallelism is not dependent on runtime values
* Compiler can find the parallelism
— spatial loops are DO-ALL loops

A Arr1
[1Jacobi iteration with 5-point stencil Jacobi iteration 5.Eoim stencill
Ifinitialize array A
for time = 1, nsteps

. 255(A(i-1,j)+A(iI+1,))+A(1j-1)+A(i,j+1))
for <i,j>in [2,n-1]x[2,n-1]:
A(i) = temp(i,j)

9/3/2013

Page Rank

Used to determine relative
importance of webpages by
examining links between pages
Abstraction:
— graph in which nodes are

webpages and edges are links
— nodes have weights [0,1]

« initialized to 1/N (N is number of

nodes) PRj (u)

. . L PR;,,(v) = i —
« when algorithm terminates, weight is () 2:“E""”g”””"(”)Degreew)

heuristic measure of importance
Core algorithm: iterative step
repeated a few times
— each node u contributes an equal
fraction of its own current weight to

its immediate neighbors in the
graph

Page Rank (contd.)

« Intuition behind page rank:

— if you do a random walk on the graph, how likely is it

that you end up at various nodes in the graph in the
limit?

« Small twist needed to handle nodes with no
outgoing edges

e Damping factor: d
— Small constant: 0.85

— Assume that each node, you may also take a random
jump to any other node with probability (1-d)

PRa(v) =52 +dx 3 o

N u€Neighbors(v) Wee(u)
— N is the number of nodes in graph
— Neighbors(v): set of nodes u with edge (u,v)
— Degree(u): number of outgoing edges

uestions

» We have seen several algorithms from a
number of problem domains
— Networks: Dijkstra SSSP, chaotic-relaxation

SSSP, delta-stepping SSSP, Bellman-Ford

— Graphics: Delaunay mesh refinement
— Finite-differences: Stencil computations
— Big data: Page rank

» What are the right abstractions for seeing

commonalities and differences between
these algorithms?

9/3/2013

Abstraction of algorithms

Operator formulation
— Active elements: nodes or
edges where there is work to
be done
— Operator: computation at I
active element ;
« Activity: application of operator i
to active element
* Neighborhood: graph elements
read or written by activity
— Ordering: order in which active
elements must appear to have
been processed
¢ Unordered algorithms: any
order is fine (eg. chaotic
relaxation, Jacobi, PageRank)
¢ Ordered algorithms: algorithm-
specific order (eg. Dijkstra)

[} active node

neighborhood

TAO analysis: algorithm abstraction

Structured (grid,clique,set,..)
Topology Semi-structured (tree)
Unstructured (general graph)

Topology-driven ' “
Location <

i Data-driven
Algorithms :Elg;es
Unordered
Ordering <
Ordered
Morph
Operator Local computation
@ :active node
Reader

neighborhood

Dijkstra SSSP: general graph, data-driven, ordered, local computation

Chaotic relaxation SSSP: general graph, data-driven, unordered, local computation
Bellman-Ford SSSP: general graph, topology-driven, unordered, local computation
Delta-stepping SSSP: general graph, data-driven, ordered, local computation
Delaunay mesh refinement: general graph, data-driven, unordered, morph

Jacobi: grid, topology-driven, unordered, local computation 22

Infrastructure for graph algorithms

Concurrent data structures:
— Concurrent graph data structure
— Concurrent set/bag, priority queue
— Can be very complex to implement
One software architecture:
— Exploit Wirth’s equation:
¢ Program = Algorithm + Data Structure

 Parallel program = Parallel algorithm + Parallel data structure
= Operator + Schedule + Parallel data structure
— Provide a library of concurrent data structures
— Programmer specifies
* operator
« schedule for applying operator at different active elements

This is the approach we use in the Galois project

Two-level infrastructure: Galois

* Small number of expert
programmers must support a
large number of application
programmers

— cf.sQL

* Galois project:

— Program = Algorithm + Data
structure (Wirth)

— Library of concurrent data
structures and runtime system
written by expert programmers

— Application programmers code in
sequential C++

* All concurrency control is in data
structure library and runtime
system

Parallel program = Operator + Schedule + Parallel data structures

9/3/2013

Summary

Graph algorithms can be very complex
— Work may be created dynamically
— Different orders of doing work may result in different amounts of work
— Parallelism may not be known until runtime
— Underlying graph structure may change dynamically
SSSP algorithms illustrate most of this complexity so the SSSP
problem is a good model problem for the study of parallel graph
algorithms
Operator formulation and TAO analysis are useful abstractions for
understanding parallelism in algorithms
Galois project: software architecture is based on these ideas
— Library of concurrent data structures written by expert programmers
— Joe programmer writes C++ code to specify operator and schedule

