Memory Optimization

Some slides from Christer Ericson Sony Computer Entertainment, Santa Monica

Overview

- We have seen how to reorganize matrix computations to improve temporal and spatial locality
 - Improving spatial locality required knowing the layout of the matrix in memory
- Orthogonal approach
 - Change the representation of the data structure in memory to improve locality for a given pattern of data accesses from the computation
 - Less theory exists for this but some nice results are available for trees: van Emde Boas tree layout
- Similar ideas can be used for graph algorithms as well
 - However there is usually not as much locality in graph algorithms

Data cache optimization

- Compressing data
- Prefetching data into cache
- Cache-conscious data structure layout
 - Tree data structures
- Linearization caching

Prefetching

- Software prefetching
 - Not too early data may be evicted before use
 - Not too late data not fetched in time for use
 - Greedy
- Instructions
 - iA-64: Ifetch (line prefetch)
 - Options:
 - Intend to write: begins invalidations in other caches
 - Which level of cache to prefetch into
 - Compilers and programmers can access through intrinsics

Software prefetching

```
// Loop through and process all 4n elements
for (int i = 0; i < 4 * n; i++)
   Process(elem[i]);</pre>
```

```
const int kLookAhead = 4; // Some elements ahead
for (int i = 0; i < 4 * n; i += 4) {
    Prefetch(elem[i + kLookAhead]);
    Process(elem[i + 0]);
    Process(elem[i + 1]);
    Process(elem[i + 2]);
    Process(elem[i + 3]);
}</pre>
```

Greedy prefetching

```
void PreorderTraversal(Node *pNode) {
  // Greedily prefetch left traversal path
  Prefetch(pNode->left);
  // Process the current node
  Process(pNode);
  // Greedily prefetch right traversal path
  Prefetch(pNode->right);
  // Recursively visit left then right subtree
  PreorderTraversal(pNode->left);
  PreorderTraversal(pNode->right);
```

Data structure representation

- Cache-conscious layout
 - Node layout
 - Field reordering (usually grouped conceptually)
 - Hot/cold splitting
 - Overall data structure layout
- Little compiler support
 - Easier for non-pointer languages (Java)
 - C/C++: do it yourself

Field reordering

```
      struct S {
      struct S {

      void *key;
      void *key;

      int count[20];
      S *pNext;

      j;
      int count[20];

      };
```

```
void Foo(S *p, void *key, int k) {
    while (p) {
        if (p->key == key) {
            p->count[k]++;
            break;
        }
        p = p->pNext;
    }
}
```

together so store them together!

Hot/cold splitting

```
Hot fields:

struct S {
  void *key;
  S *pNext;
  $2 *pCold;
};
Cold fields:

struct $2 {
  int count[10];
  };
```

- Split cold fields into a separate structure
- Allocate all 'struct S' from a memory pool
 - Increases coherence

Tree data structures

Rearrange nodes

- Increase spatial locality
- Cache-aware vs. cache-oblivious layouts

Reduce size

- Pointer elimination (using implicit pointers)
- "Compression"
 - Quantize values
 - Store data relative to parent node

General idea & Working methods

- > Definitions:
- ➤ A tree T1 can be embedded in another tree T2, if T1 can be obtained from T2 by pruning subtrees.
- Implicit layout the navigation between a node and its children is done based on address arithmetic, and not on pointers.

Breadth-first order

- Pointer-less: Left(n)=2n, Right(n)=2n+1
- Requires storage for complete tree of height H

Depth-first order

- Left(n) = n + 1, Right(n) = stored index
- Only stores existing nodes

Cache Oblivious Binary Search Trees

Gerth Stolting Brodal Rolf Fagerberg Riko Jacob

Motivation

- Our goal:
 - To find an implementation for binary search tree that tries to minimize cache misses.
 - That algorithm will be cache oblivious.
- By optimizing an algorithm to one unknown memory level, it is optimized to each memory level automatically!

General idea & Working methods

- > Assume we have a binary search tree.
- > Embed this tree in a static complete tree.
- Save this (complete) tree in the memory in a cache oblivious fashion
 - Complete tree permits storing the tree without child pointers
 - However there may be some empty subtrees
- On insertion, create a new static tree of double the size if needed.

General idea & Working methods

- > Advantages:
 - Minimizing memory transfers.
 - Cache obliviousness
 - No pointers better space utilization:
 - A larger fraction of the structure can reside in lower levels of the memory.
 - More elements can fit in a cache line.
- Disadvantages:
 - Implicit layout: higher instruction count per navigation – slower.

- > Recursive definition:
- A tree with only one node is a single node record.
- > If a tree T has two or more nodes:
 - Divide T to a top tree T₀ with height [h(T)/2] and a collection of bottom trees T₁,...,Tkwith height [h(T)/2], numbered from left to right.
 - The van Emde Boas layout of T consist of the v.E.B. layout of T₀ followed by the v.E.B. layout of T₁,...,Tk

> Example :

Example :

> Example:

> Example:

Example :

> Example :

Example :

> Example :

> Example:

> Example:

Example :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The algorithm

- > Search:
 - Standard search in a binary tree.
 - Memory transfers: O(log₈n) worst case
- Range query:
 - Standard range query in a binary tree:
 - Search the smallest element in the range
 - Make an inorder traversals till you reach an element greater then or equals to the greatest element in the range.
 - Memory transfers: O(log_Bn + k/B) worst case

Insertions

- > Intuitive idea:
 - Locate the position in T of the new node (regular search)
 - If there is an empty slot there, just insert the new value there
 - If tree has some empty slots, rebalance
 T and then insert the new value
 - Otherwise, use recursive doubling
 - Allocate a new tree for double the depth of the current tree
 - Copy over values from new tree to old tree

> Example : insert 7

> The next insertion will cause a rebuilding

Linearization caching

- Nothing better than linear data
 - Best possible spatial locality
 - Easily prefetchable
- So linearize data at runtime!
 - Fetch data, store linearized in a custom cache
 - Use it to linearize...
 - hierarchy traversals
 - indexed data
 - other random-access stuff

Relating graphs and matrices

- Graphs can be viewed as matrices and vice versa
- Order of edge visits in algorithm = order of matrix entry visits
 - Row-wise traversal of matrix =
 visit each node of graph and
 walk over its outgoing edges
 - Column-wise traversal of matrix
 visit each node of graph and
 walk over its incoming edges
 - Block traversal of matrix = ?

	1 2 3 4 5
1	0 a f 0 0
2	0 0 0 c 0
3	0 0 0 e 0
4	0 0 0 0 d
5	0 b 0 0 g

Locality in ADP model

Temporal locality:

- Activities with overlapping neighborhoods should be scheduled close together in time on same core
- Example: activities i₁ and i₂

Spatial locality:

- Abstract view of graph can be misleading
- Depends on the concrete representation of the data structure

Inter-package locality:

- Partition graph between packages and partition concrete data structure correspondingly (see next time)
- Active node is processed by package that owns that node

Abstract data structure

src	1		2	3
dst	2	1	3	2
val	3.4	3.6	0.9	2.1

Concrete representation: coordinate storage

Galois Graph

- Local computation graph:
 - Compressed sparse row (CSR) storage permits exploitation of temporal and spatial locality for algorithms that iterate over edges of a given node
 - More compact versions that inline some of the arrays in CSR format are also available

Compressed sparse row (CSR)

More compact representations

Summary Friends: The 3 R's

- Rearrange (code, data)
 - Change layout to increase spatial locality
- Reduce (size, # cache lines read)
 - Smaller/smarter formats, compression
- Reuse (cache lines)
 - Increase temporal (and spatial) locality

	Compulsory	Capacity	Conflict
Rearrange	X	(x)	X
Reduce	X	X	(x)
Reuse	(x)	X	