Memory Optimization

Some slides from Christer Ericson
Sony Computer Entertainment, Santa Monica

Overview

We have seen how to reorganize matrix computations to
improve temporal and spatial locality

= Improving spatial locality required knowing the layout of the
matrix in memory

Orthogonal approach

= Change the representation of the data structure in memory
to improve locality for a given pattern of data accesses from
the computation

= Less theory exists for this but some nice results are available
for trees: van Emde Boas tree layout

Similar ideas can be used for graph algorithms as well

= However there is usually not as much locality in graph
algorithms

Data cache optimization

Compressing data
Prefetching data into cache

Cache-conscious data structure layout
= Tree data structures

Linearization caching

Prefetching

Software prefetching

= Not too early — data may be evicted before use
= Not too late — data not fetched in time for use
= Greedy

Instructions

= iA-64: Ifetch (line prefetch)
Options:
= Intend to write: begins invalidations in other caches
= Which level of cache to prefetch into
= Compilers and programmers can access through
Intrinsics

Software prefetching

// Loop through and process all 4n elements
for(inti=0;i<4 * n; i++)
Process(elem[i]);

const int kLookAhead = 4; // Some elements ahead
for (inti=0;i<4*n;i+=4)({

Prefetch(elem][i + kLookAhead]);

Process(elem]i + 0]);

Process(elem][i + 1]);

Process(elem][i + 2]);

Process(elem]i + 3]);

Greedy prefetching

void PreorderTraversal(Node *pNode) {
// Greedily prefetch left traversal path
Prefetch(pNode->left);
// Process the current node
Process(pNode);
// Greedily prefetch right traversal path
Prefetch(pNode->right);
// Recursively visit left then right subtree
PreorderTraversal(pNode->left);
PreorderTraversal(pNode->right);

Data structure
representation

Cache-conscious layout

= Node layout
Field reordering (usually grouped conceptually)
Hot/cold splitting

= Overall data structure layout

Little compiler support
= Easier for non-pointer languages (Java)
= C/C++: do it yourself

Field reordering

struct S { struct S {

void *key; > void *key;

int count[20]; —> § *pNext;

S *pNext; S int count[20];
))
void Foo(S *p, void *key, int k) {

while (p) {

if (p->key == key) {
p->count[k]++;
break;

}
p = p->pNext;

}
}

Likely accessed
together so
store them
together!

Hot/cold splitting

Hot fields:

struct S {
void *key;
S *pNext;
S2 *pCold;
5

/

/

Cold fields:

struct S2 {
int count[10];

5

Split cold fields into a separate structure

Allocate all ‘struct S’ from a memory pool
= Increases coherence

Tree data structures

Rearrange nodes

= Increase spatial locality
= Cache-aware vs. cache-oblivious layouts

Reduce size

= Pointer elimination (using implicit pointers)
= “Compression”

Quantize values
Store data relative to parent node

General idea & Working
methods

> Definitions:

> A tree Tl can be embedded in another
tree T2, if T1 can be obtained from T2
by pruning subtrees.

> Implicit layout - the navigation
between a node and its children is
done based on address arithmetic, and
not on pointers.

11

Breadth-first order
()
(2) (3

1 3 5 7 9 11(12(13 (14|15

2

4

6

8

10

2

4

Pointer-less: Left(n)=2n, Right(n)=2n+1
Requires storage for complete tree of height H

Depth-first order

2 6 8 10 12 14 |1

QTJT —*T—*

Left(n) = n + 1, Right(n) = stored index
Only stores existing nodes

Cache Oblivious
Binary Search Trees

Gerth Stolting Brodal

Rolf Fagerberg
Riko Jacob

14

Vliotivation

> Our goal:

o IO find an implementation for binary
search tree that tries to minimize cache
misses.

« I'hat algorithm will be cache oblivious.

> By optimizing an algorithm to one
unknown memory level, it is optimized
to each memory level automatically !

18

General idea & Working
methods

> Assume we have a binary search tree.
> Embed this tree in a static complete tree.

> Save this (complete) tree in the memory.
in a cache oblivious fashion

« Complete tree permits storing the tree
without child pointers

o However there may be some empty subtrees

> On insertion, create a new. static tree of
double the size if needed.

16

General idea & Working
methods

> Advantages:
o Minimizing memory transfers.
« Cache obliviousness

« NOo pointers - better space utilization:

A larger fraction of the structure can reside in
lower levels of the memory.

More elements can fit in a cache line.

> Disadvantages:

o Implicit layout: higher instruction count
per navigation - slower.

17

vah Emde Boas memory layout

> Recursive definition:

> A tree with only one node is a single node
record.

> If a tree T has two or more nodes:

» Divide T to a top tree To with height [h(T)/2]
and a collection of bottom trees Ti,..., Tkwith
height [h(T)/2] , numbered from left to right.

o Ihe van Emde Boas layout of T consist of the
v.E.B. layout of To followed by the v.E.B. layout

OfT],...,Tk

18

vah Emde Boas memory layout

> Example :

19

vah Emde Boas memory layout

> Example :

20

vah Emde Boas memory layout

> Example :

21

vah Emde Boas memory layout

> Example :

22

van Emde Boas memory layout

> Example :

23

van Emde Boas memory layout

> Example :

24

van Emde Boas memory layout

> Example :

van Emde Boas memory layout

> Example :

van Emde Boas memory layout

> Example :

van Emde Boas memory layout

> Example :

van Emde Boas memory layout

> Example :

11

10

12

14

13

15

11

12

13

14

15

A

The algorithm

> Search:

« Standard search in a binary tree.

« Memory transfers: O(log:n) worst case
> Range query:

o Standard range query in a binary tree:

Search the smallest element in the range

Make an inorder traversals till you reach an
element greater then or equals to the greatest
element in the range.
« Memory transfers: O(log:n + k/B) worst
CdSe

30

lnsertions

> Intuitive idea:

o Locate the position in T of the new node
(regular search)

o If there is an empty slot there, just
insert the new value there

o If tree has some empty slots, rebalance
[and then insert the new value

« Otherwise, use recursive doubling

Allocate a new tree for double the depth of
the current tree

Copy over values from new tree to old tree

31

> Example :

Rebalancing

[RSENEY

0=0.71

32

Rebalancing

> Example : RAISEREY

0=0.71

Rebalancing

> Example : RAISEREY

0=0.71

Rebalancing

> Example : RASEREY

0=0.71

Rebalancing

> Example : RASEREY

0=0.71

Rebalancing

> Example : RASEREY

0=0.71

Rebalancing

> Example : RASEREY

0=0.85

> I he next insertion will cause a rebuilding

38

Linearization caching

Nothing better than linear data
= Best possible spatial locality
= Easily prefetchable

So linearize data at runtime!
= Fetch data, store linearized in a custom cache

= Use it to linearize...
hierarchy traversals
indexed data
other random-access stuff

Leaves: |fo [fi |fo|fo |Ffy|[f7|fs|fq[fq|fs5|F7

Faces: |[vg|Va|V3|Vg|Va|Vs|Vq[Va|Vyl]...

Vertices: |(X0,Y0,20)|(X1,Y1,Z1)((X2,¥2,22)|(X3,Y3,2Z3) ((X4,Y4,24)

Cached linearized leaf:

> ((X0,Y0,20)[(X2,¥2,2Z2)[(X3,¥3,23) (X0,Y0520) |((X45Y4:24)

Relating graphs and matrices

* Graphs can be viewed as
matrices and vice versa

* Order of edge visits in
algorithm = order of matrix
entry visits

— Row-wise traversal of matrix =

visit each node of graph and
walk over its outgoing edges

— Column-wise traversal of matrix 12345
= visit each node of graph and 1 '0afoo
walk over its incoming edges 2 l000coO

— Block traversal of matrix = ? 3 |000eO

4 '000O0dMd
5 £ b0O0Og

Locality in ADP model

* Temporal locality:

— Activities with overlapping
neighborhoods should be
scheduled close together in time on
same core

— Example: activities i, and i,
« Spatial locality:
— Abstract view of graph can be
misleading

— Depends on the concrete
representation of the data structure

 Inter-package locality:

— Partition graph between packages
and partition concrete data structure
correspondingly (see next time)

— Active node is processed by
package that owns that node

Abstract data structure

Src

dst 2 1 3 2
val 34 36 09 2.1

Concrete representation:
coordinate storage

Galois Graph

* Local computation graph:

— Compressed sparse row (CSR) storage permits exploitation of temporal and
spatial locality for algorithms that iterate over edges of a given node

— More compact versions that inline some of the arrays in CSR format are also

available
-
node data[N] | nd nd nd | len | ed ed
edge idx[N]

edge data[E] | ed ed | dst

edge dst[E] dst

Compressed sparse row (CSR) More compact representations

Summary
Friends: The 3 R’s

Rearrange (code, data)
= Change layout to increase spatial locality

Reduce (size, # cache lines read)
= Smaller/smarter formats, compression

Reuse (cache lines)
= Increase temporal (and spatial) locality

Compulsory | Capacity Conflict
Rearrange X (x) X
Reduce X X (x)
Reuse (x) X

