
Cache-oblivious 
Programming 



Story so far 

•  We have studied cache optimizations for array 
programs 
–  Main transformations: loop interchange, loop tiling 
–  Loop tiling converts matrix computations into block matrix 

computations 
–  Need to tile for multiple memory hierarchy levels 

•  At least registers and L1/L2 
–  Interactions between blocking at different levels is complex 

(main lesson from Goto BLAS) 
–  Code becomes very complex: hard to write and maintain 
–  Blocked code has parameters that depend on machine 

•  Code is not portable, although ATLAS shows how to get around this 
problem 



Cache-oblivious approach 
•  Very different approach to optimizing programs for caches 
•  Basic idea: 

–  Use recursive algorithms 
–  Divide-and-conquer process produces sub-problems of smaller sizes 

automatically 
–  Can be viewed as approximate blocking 

•  Many more levels of blocking than memory hierarchy levels 
•  Block sizes are not optimized for cache capacities 

•  Famous result of Hong and Kung 
–  Recursive algorithms for matrix-multiplication, transpose and FFT are I/

O optimal 
•  Memory traffic between cache levels is optimal to within constant factors 

with respect to any other order of performing same computations 



Organization of lecture 
•  CO and CC approaches to blocking 

–  control structures 
–  data structures 

•  Why CO might work 
–  non-standard view of blocking 

•  Experimental results 
–  UltraSPARC IIIi 
–  Itanium 
–  Xeon 
–  Power 5 

•  Lessons and ongoing work 

 



Blocking Implementations 
•  Control structure 

– What are the block computations? 
–  In what order are they performed? 
– How is this order generated? 

•  Data structure 
– Non-standard storage orders to match control 

structure 



Cache-Oblivious Algorithms 

C00 = A00*B00 + A01*B10 
C01 = A01*B11 + A00*B01 
C11 = A11*B01 + A10*B01 
C10 = A10*B00 + A11*B10 

•  Divide all dimensions (AD)  
•  8-way recursive tree down to 1x1 blocks 

–  Gray-code order promotes reuse 
•  Bilardi, et. al.  
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C0 = A0*B 
C1 = A1*B 

C11 = A11*B01 + A10*B01 
C10 = A10*B00 + A11*B10 

•  Divide largest dimension (LD)  
•  Two-way recursive tree down to 1x1 blocks 

•  Frigo, Leiserson, et. al.  



CO: recursive micro-kernel 
•  Internal nodes of recursion tree are 

recursive overhead; roughly 
–  100 cycles on Itanium-2 
–  360 cycles on UltraSPARC IIIi 

•  Large overhead: for LD, roughly one 
internal node per leaf node 

•  Solution: 
–  Micro-kernel: code obtained by 

unrolling recursive tree for some 
fixed size problem (RUxRUxRU) 

•  Schedule operations in micro-kernel 
to optimize for processor pipeline 

–  Cut off recursion when sub-problem 
size becomes equal to micro-kernel 
size, and invoke micro-kernel 

–  Overhead of internal node is 
amortized over micro-kernel, rather 
than a single multiply-add. 

recursive micro-kernel 



CO: Discussion 

•  Block sizes  
–  Generated dynamically at 

each level in the recursive call 
tree 

•  Our experience 
–  Performance of micro-kernel is 

critical 
–  For a given micro-kernel, 

performance of LD and AD is 
similar 

–  Use AD for the rest of the talk 



Data Structures 

•  Match data structure layout to access patterns 
•  Improve 

–  Spatial locality 
–  Streaming 

Row-major Row-Block-Row Morton-Z 



Data Structures: Discussion 
•  Morton-Z 

–  Matches recursive control 
structure better than RBR 

–  Suggests better performance 
for CO 

–  More complicated to 
implement 

•  Use ideas from David Wise to 
reduce overhead 

–  In our experience payoff is 
small or even negative 
sometimes 

•  Bilardi et al report similar 
results 

•  Use RBR for the rest of the 
talk 
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CC algorithms: discussion 
•  Iterative codes 

–  Nested loops 
•  Implementation of blocking 

–  Cache blocking  
•  Mini-kernel: in ATLAS, multiply NBxNB blocks 
•  Choose NB so NB2 + NB + 1 <= CL1 
•  Compiler transformation: loop tiling 

–  Register blocking  
•  Micro-kernel: in ATLAS, multiply MUx1 block of A with 1xNU block 

of B into MUxNU block of C 
•  Choose MU,NU so that MU + NU +MU*NU <= NR 
•  Compiler transformation: loop tiling, unrolling and scalarization 

 



Why CO might work 



Blocking 
•  Microscopic view 

– Blocking reduces expected latency of memory 
access  

•  Macroscopic view 
– Memory hierarchy can be ignored if 

•  memory has enough bandwidth to feed processor 
•  data can be pre-fetched to hide memory latency 

– Blocking reduces bandwidth needed from memory  
•  Useful to consider macroscopic view in more 

detail 



Example: MMM on Itanium 2 
•  Processor features 

–  2 FMAs per cycle 
–  126 effective FP registers 

•  Basic MMM 
   for (int i = 0; i < N; i++) 
   for (int j = 0; j < N; j++) 
      for (int k = 0; k < N; k++) 
         C[i, j] += A[i, k] * B[k, j]; 

•  Execution requirements 
–  N3 multiply-adds 

•  Ideal execution time = N3 / 2 cycles 
–  3 N3 loads + N3 stores = 4 N3 memory operations 

•  Bandwidth requirements 
–  4 N3 / (N3 / 2) = 8 doubles / cycle 

•  Memory cannot sustain this bandwidth but register file can 



Reduce Bandwidth by Blocking 

•  Square blocks: NB x NB x NB 
–  working set must fit in cache 
–  size of working set depends on schedule 
–  at most 3NB2 

•  Data movement in block computation = 4 NB2 

•  Total data movement  = (N / NB)3 * 4 NB2 = 4 N3 / NB doubles 
•  Ideal execution time = N3 / 2 cycles 
•  Required bandwidth from memory =  

      (4 N3 / NB) / (N3 / 2) = 8 / NB doubles per cycle 
•  General picture for multi-level memory hierarchy 

–  Bandwidth required between level L+1 and level L = 8 / NBL  
•  Constraints on NBL 

–  Lower bound: 8 / NBL ≤ Bandwidth(L,L+1) 
–  Upper bound: Working set of block computation ≤ Capacity(L) 

CPU Cache Memory 



Example: MMM on Itanium 2 

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2 

•  Between Register File and L2 
–  Constraints 

•  8 / NBR ≤ 4 
•  3 * NBR

2 ≤ 126 
–  Therefore Bandwidth(R,L2) is enough for 2 ≤ NBR ≤ 6 

•  NBR = 2 required 8 / NBR = 4 doubles per cycle from L2 
•  NBR = 6 required 8 / NBR = 1.33 doubles per cycle from L2 
•  NBR > 6 possible with better scheduling 
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Example: MMM on Itanium 2 

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2 

•  Between L2 and L3 
–  Sufficient bandwidth without blocking at L2 
–  Therefore L2 has enough bandwidth for 2 ≤ NBR ≤ 6 
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1.33 ≤ B(R,L2) ≤ 4 

 

2 ≤ NBR ≤ 6 
1.33 ≤ B(R,L2) ≤ 4 

 



Example: MMM on Itanium 2 

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2 

•  Between L3 and Memory 
–  Constraints 

•  8 / NBL3 ≤ 0.5 
•  3 * NBL3

2 ≤ 524288 (4MB) 
–  Therefore Memory has enough bandwidth for 16 ≤ NBL3 ≤ 418 

•  NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory 
•  NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory 
•  NBL3 > 418 possible with better scheduling 
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2 ≤ NBR ≤ 6 
1.33 ≤ B(R,L2) ≤ 4 

2 ≤ NBL2 ≤ 6 
1.33 ≤ B(L2,L3) ≤ 4 

16 ≤ NBL3 ≤ 418 
0.02 ≤ B(L3,Memory) ≤ 0.5 



Lessons 
•  Blocking can be useful to reduce bandwidth 

requirements 
•  Block size does not have to be exact 

–  enough for block size to lie within an interval that depends 
on hardware parameters 

–  approximate blocking may be OK 

•  Latency 
–  use pre-fetching to reduce expected latency 

•  So CO approach might work well 
–  How well does it actually do in practice? 



Organization of talk 
•  Non-standard view of blocking 

–  reduce bandwidth required from memory 
•  CO and CC approaches to blocking 

–  control structures 
–  data structures 

•  Experimental results 
–  UltraSPARC IIIi 
–  Itanium 
–  Xeon 
–  Power 5 

•  Lessons and ongoing work 

 



UltraSPARC IIIi 
•  Peak performance: 2 GFlops (1 GHZ, 2 FPUs) 
•  Memory hierarchy: 

– Registers: 32 
– L1 data cache: 64KB, 4-way 
– L2 data cache: 1MB, 4-way 

•  Compilers 
– C: SUN C 5.5  



Naïve algorithms 
Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement 

•  Recursive:  
–  down to 1 x 1 x 1 
–  360 cycles overhead for each MA 
      = 6 MFlops    

•  Iterative:  
–  triply nested loop 
–  little overhead 

•  Both give roughly the same 
performance 

•  Vendor BLAS and ATLAS:  
–  1750 MFlops 



Miss ratios 

•  Misses/FMA for iterative code is roughly 2 
•  Misses/FMA for recursive code is 0.002 
•  Practical manifestation of theoretical I/O  
   optimality results for recursive code  
•  However, two competing factors affect  
   performance: 

•  cache misses 
•  overhead 

•  6 MFlops is a long way from 1750 MFlops!  



Recursive micro-kernel(i) 
Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement Recursive 

Micro-Kernel 

None 
/ 

Compiler 

•  Recursion down to RU 
•  Micro-Kernel:  

–  Unfold completely below RU 
to get a basic block 

–  Compile using native 
compiler 

•  Best performance for RU =12 
•  Compiler unable to use 

registers 
•  Unfolding reduces recursive 

overhead 
–  limited by I-cache 



Recursive micro-kernel(ii) 
•  Recursion down to RU 
•  Micro-Kernel 

–  Scalarize all array 
references in the basic 
block 

–  Compile with native 
compiler 

–  In isolation, best 
performance for RU=4 
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Compiler 



Recursive micro-kernel(iv) 
•  Recursion down to RU(=8) 

–  Unfold completely below 
RU to get a basic block 

•  Micro-Kernel 
–  Scheduling and register 

allocation using heuristics 
for large basic blocks in 
BRILA compiler 

Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement Recursive 

Micro-Kernel 

None 
/ 

Compiler 

Scalarized 
/ 

Compiler 

Belady 
/ 

BRILA 

Coloring 
/ 

BRILA 



Recursive micro-kernels in isolation 

RU 

Percentage of peak 



Lessons 
•  Register allocation and scheduling in recursive micro-kernel: 

–  Integrated register allocation and scheduling performs better than 
Belady + scheduling 

•  Intuition: 
–  Belady tries to minimize the number of load operations  for a given 

schedule 
–  Minimizing load operations = minimizing stall cycles 

•  if loads can be overlapped with each other, or with computations, doing 
more loads may not hurt performance 

•  Bottom-line on UltraSPARC: 
–  Peak: 2 GFlops 
–  ATLAS: 1.75 GFlops 
–  Optimized CO strategy: 700 MFlops 

•  Similar results on other machines: 
–  Best CO performance on Itanium: roughly 2/3 of peak 



Recursion + Iterative micro-kernel 
Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement Recursive Iterative 

Micro-Kernel 

None 
/ 

Compiler 

Scalarized 
/ 

Compiler 

Belady 
/ 

BRILA 

Coloring 
/ 

BRILA 

•  Recursion down to MU x 
NU x KU (4x4x120) 

•  Micro-Kernel 
–  Completely unroll MU x 

NU nested loop as in 
ATLAS 



Iterative micro-kernel 
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Lessons 
•  Two hardware constraints on size of micro-kernels: 

–  I-cache limits amount of unrolling 
–  Number of registers 

•  Iterative micro-kernel: three degrees of freedom 
(MU,NU,KU) 
–  Choose MU and NU to optimize register usage 
–  Choose KU unrolling to fit into I-cache 

•  Recursive micro-kernel: one degree of freedom (RU) 
–  But even if you choose rectangular tiles, all three degrees 

of freedom are tied to both hardware constraints 



Loop + iterative micro-kernel 

•  Wrapping a loop around highly optimized 
   iterative micro-kernel does not give good  
   performance  
•  This version does not block for any cache 
   level, so micro-kernel is starved for data. 
•  Recursive outer structure version is able to  
   block approximately for L1 cache and higher, 
   so micro-kernel is not starved.  
•  What happens if we block explicitly for L1 cache 
  (iterative mini-kernel)? 



Recursion + mini-kernel 
Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement Recursive Iterative 

Mini-Kernel 

Micro-Kernel 

None 
/ 

Compiler 

Scalarized 
/ 

Compiler 

Belady 
/ 

BRILA 

Coloring 
/ 

BRILA 

•  Recursion down to NB 
•  Mini-Kernel 

–  NB x NB x NB triply nested 
loop (NB=120) 

–  Tiling for L1 cache 
–  Body of mini-kernel is 

iterative micro-kernel 



Loop + iterative mini-kernel 

•  Mini-kernel tiles for L1 cache. 
•  On this machine, L1 tiling is adequate, so  
  further levels of tiling in recursive code do  
  not contribute to performance. 



Recursion + ATLAS mini-kernel 
Outer Control Structure 

Iterative Recursive 

Inner Control Structure 

Statement Recursive Iterative 

Mini-Kernel 

Micro-Kernel ATLAS CGw/S 
ATLAS Unleashed 

None 
/ 

Compiler 

Scalarized 
/ 

Compiler 

Belady 
/ 

BRILA 

Coloring 
/ 

BRILA 

•  Using mini-kernel from  
  ATLAS Unleashed gives  
  big performance boost over 
  BRILA mini-kernel. 
•  Reason: pre-fetching 
•  Mini-kernel from ATLAS  
  CGw/S gives same  
  performance as  
  BRILA mini-kernel. 



Lessons 
•  Vendor BLAS and ATLAS Unleashed get 

highest performance 
•  Pre-fetching boosts performance by roughly 

40%  
•  Iterative code: pre-fetching is well-understood 
•  Recursive code: not well-understood 



UltraSPARC IIIi Complete 



Power 5 



Itanium 2  



Xeon 



Out-of-place Transpose 

•  No data reuse, only spatial locality 
•  Data stored in RBR format 
•  Micro-kernels permit scheduling of 
   dependent loads and stores, so do 
   better than naïve code 
•  Iterative micro-kernels do slightly  
   better than recursive micro-kernels 



Summary 
•  Iterative approach has been proven to work well in practice 

–  Vendor BLAS, ATLAS, etc. 
–  But requires a lot of work to produce code and tune parameters 

•  Implementing a high-performance CO code is not easy 
–  Careful attention to micro-kernel and mini-kernel is needed 

•  Using fully recursive approach with highly optimized micro-
kernel, we never got more than 2/3 of peak. 

•  Issues with CO approach 
–  Scheduling and code generation for micro-kernels: integrated register 

allocation and scheduling performs better than using Belady followed 
by scheduling 

–  Recursive Micro-Kernels yield less performance than iterative ones 
using same scheduling techniques 

–  Pre-fetching is needed to compete with best code: not well-understood 
in the context of CO codes 


