Cache-oblivious
Programming




Story so far

* We have studied cache optimizations for array
programs

— Main transformations: loop interchange, loop tiling

— Loop tiling converts matrix computations into block matrix
computations

— Need to tile for multiple memory hierarchy levels
» Atleast registers and L1/L2

— Interactions between blocking at different levels is complex
(main lesson from Goto BLAS)

— Code becomes very complex: hard to write and maintain

— Blocked code has parameters that depend on machine

« Code is not portable, although ATLAS shows how to get around this
problem



Cache-oblivious approach

« Very different approach to optimizing programs for caches

 Basic idea:

— Use recursive algorithms
— Divide-and-conquer process produces sub-problems of smaller sizes
automatically
— Can be viewed as approximate blocking
« Many more levels of blocking than memory hierarchy levels
» Block sizes are not optimized for cache capacities

« Famous result of Hong and Kung
— Recursive algorithms for matrix-multiplication, transpose and FFT are I/
O optimal

« Memory traffic between cache levels is optimal to within constant factors
with respect to any other order of performing same computations




Organization of lecture

CO and CC approaches to blocking
— control structures
— data structures

Why CO might work

— non-standard view of blocking

Experimental results
— UltraSPARC lli

— ltanium

— Xeon

— Power 5

Lessons and ongoing work



Blocking Implementations

« Control structure
— What are the block computations?
— In what order are they performed?
— How is this order generated?

 Data structure

— Non-standard storage orders to match control
structure



Cache-Oblivious Algorithms

Boo | Bos

Bio | By

Ago | Ao Coo Co1

Ao | Ay C10 C11
Coo = Ay*By, + Ay *Bj
Cor = Ay *By; + Ay *By,
Ci1 = A *By; + A*B;
Cio = A *By, + A;;*B;,

Divide all dimensions (AD)

8-way recursive tree down to 1x1 blocks

— Gray-code order promotes reuse

Bilardi, et. al.

B

AO CO

A1 C1
C, = A,*B
C, = A,*B

Divide largest dimension (LD)
Two-way recursive tree down to 1x1 blocks

Frigo, Leiserson, et. al.



CO: recursive micro-kernel

Internal nodes of recursion tree are
recursive overhead; roughly

— 100 cycles on ltanium-2

— 360 cycles on UltraSPARC llli
Large overhead: for LD, roughly one
internal node per leaf node \

Solution:

— Micro-kernel: code obtained by
unrolling recursive tree for some

fixed size problem (RUXxRUxRU)
» Schedule operations in micro-kernel

to optimize for processor pipeline
— Cut off recursion when sub-problem
size becomes equal to micro-kernel

size, and invoke micro-kernel

— Overhead of internal node is
amortized over micro-kernel, rather
than a single multiply-add.

recursive micro-kernel



CO: Discussion

 Block sizes

— Generated dynamically at
each level in the recursive call
tree

* Our experience

— Performance of micro-kernel is
critical

— For a given micro-kernel,
performance of LD and AD is
similar

— Use AD for the rest of the talk
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Data Structures

Row-major Row-Block-Row Morton-Z

* Match data structure layout to access patterns

* |Improve
— Spatial locality
— Streaming



Data Structures: Discussion
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— Matches recursive control
structure better than RBR

— Suggests better performance 0
for CO a
— More complicated to
implement $ ool

 Use ideas from David Wise to
reduce overhead

— In our experience payoff is 50|
small or even negative
sometimes
 Bilardi et al report similar 500 , . .
resu |tS 1000 1500 2000 2500 3000

Matrix Size
» Use RBR for the rest of the
Recursive, Coloring, BRILA. 8

talk Recursive, Coloring, BRILA, MortonZ. 8



Cache-conscious algorithms

/_\ -
Yz

=M

e
I B
A 7
17aniE RN =l
A C

Cache blocking Register blocking



CC algorithms: discussion

e |terative codes
— Nested loops

* Implementation of blocking

— Cache blocking
« Mini-kernel: in ATLAS, multiply NBxNB blocks
« Choose NB so NB?+ NB + 1 <=C,
« Compiler transformation: loop tiling

— Register blocking

* Micro-kernel: in ATLAS, multiply MUx1 block of A with 1xNU block
of B into MUxNU block of C

e Choose MU,NU so that MU + NU +MU*NU <= NR
« Compiler transformation: loop tiling, unrolling and scalarization



Why CO might work




Blocking

* Microscopic view

— Blocking reduces expected latency of memory
access

* Macroscopic view

— Memory hierarchy can be ignored if
 memory has enough bandwidth to feed processor
 data can be pre-fetched to hide memory latency

— Blocking reduces bandwidth needed from memory

« Useful to consider macroscopic view in more
detalil



Example: MMM on ltanium 2

Processor features
— 2 FMAs per cycle
— 126 effective FP registers

Basic MMM
for (int 1i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)

C[i, Jj] += A1, k] * B[k, 3Jl;
Execution requirements
— N3 multiply-adds
« |deal execution time = N3/ 2 cycles
— 3 N3 loads + N3 stores = 4 N3 memory operations

Bandwidth requirements
— 4 N3/ (N3/2) =28 doubles / cycle

Memory cannot sustain this bandwidth but register file can



Reduce Bandwidth by Blocking

Square blocks: NB x NB x NB
— working set must fit in cache

— size of working set depends on schedule
— at most 3NB?

Data movement in block computation = 4 NB?
Total data movement = (N /NB)3 * 4 NB2 =4 N3/ NB doubles
|deal execution time = N3/ 2 cycles
Required bandwidth from memory =
(4 N3/ NB)/(N3/2) =8/ NB doubles per cycle

General picture for multi-level memory hierarchy

— Bandwidth required between level L+1 and level L = 8 / NB,
Constraints on NB,

— Lower bound: 8 / NB, < Bandwidth(L,L+1)

— Upper bound: Working set of block computation < Capacity(L)




Example: MMM on ltanium 2

4*
4
4 z0.5
2% f

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

 Between Regqister File and L2

— Constraints
- 8/ NBg<4
« 3*NBr?<126
— Therefore Bandwidth(R,L2) is enough for 2 < NB; < 6
* NBR = 2 required 8 / NBg = 4 doubles per cycle from L2
* NBg =6 required 8 / NBg = 1.33 doubles per cycle from L2
* NBg > 6 possible with better scheduling




Example: MMM on ltanium 2

I - B . BB

2<NBL<6 2<NB <6
1.33<B(RL,) <4 133<B(RL,) <4

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

 Between L2 and L3
— Sufficient bandwidth without blocking at L2
— Therefore L2 has enough bandwidth for 2 <= NBy < 6



Example: MMM on ltanium 2

4*
4
4 z0.5
2 f

2<NBg<6 2=sNB,=<6 16 < NB ;<418
1.33<B(R,L,) <4 1.33<B(L2,L3)<4 0.02 <B(L3,Memory)<0.5

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

 Between L3 and Memory

— Constraints
« 8/NB3<0.5
« 3*NB 32 <524288 (4MB)
— Therefore Memory has enough bandwidth for 16 < NB, ;< 418
* NB,; =16 required 8 / NB,; = 0.5 doubles per cycle from Memory
* NB ;=418 required 8 / NBg = 0.02 doubles per cycle from Memory
* NB, ;> 418 possible with better scheduling



Lessons

Blocking can be useful to reduce bandwidth
requirements

Block size does not have to be exact

— enough for block size to lie within an interval that depends
on hardware parameters

— approximate blocking may be OK

Latency
— use pre-fetching to reduce expected latency

So CO approach might work well
— How well does it actually do in practice?



Organization of talk

Non-standard view of blocking

— reduce bandwidth required from memory
CO and CC approaches to blocking

— control structures

— data structures

Experimental results

— UltraSPARC llli

— ltanium

— Xeon

— Power 5

Lessons and ongoing work



UltraSPARC llli

* Peak performance: 2 GFlops (1 GHZ, 2 FPUs)

 Memory hierarchy:
— Registers: 32
— L1 data cache: 64KB, 4-way
— L2 data cache: 1MB, 4-way
« Compilers
—C:SUNC 5.5




Nalve algorithms

Outer Control Structure

/\ .

Iterative Recursive

\/

Inner Control Structure

/

Statement

Recursive:
— downto1x1x1
— 360 cycles overhead for each MA

= 6 MFlops
lterative:
— triply nested loop
— little overhead

Both give roughly the same
performance

Vendor BLAS and ATLAS:
— 1750 MFlops

lterative, Statement, None, None, Compiler, 1

=
Recursive, Recursive, Micro, None, Compiler, 1 ---@---
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Misses per FMA

Miss ratios

[tanium 2
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lterative, Iterative, Multi, Vendor, BLAS, 1 +
terative, Iterative, Mini, Coloring, BRILA, 99
Recursive, lterative, Mini, Coloring, BRILA, 120 ---3%---
lterative, Iterative, Mini, Coloring, BRILA, 120
Recursive, tterative, Micro, Coloring, BRILA, 24
Recursive, Recursive, Micro, Coloring, BRILA, 9

Recursive, Recursive, Micro, Scalarized, Compiler, 8 ----®---

Recursive, Recursive, Micro, Belady, BRILA, 9 -

lterative, terative, Micro, Coloring, BRILA, 24 -
Recursive, Recursive, Micro, None, Compiler, 5
Recursive, Recursive, Micro, None, Compiler, 1

lterative, lterative, Statement, None, Compiler, 1 ---

4 4

©

» Misses/FMA for iterative code is roughly 2

» Misses/FMA for recursive code is 0.002

* Practical manifestation of theoretical 1/0
optimality results for recursive code

« However, two competing factors affect
performance:

» cache misses
 overhead
* 6 MFlops is a long way from 1750 MFlops!



Recursive micro-kernel(i)

Ultrasparc Illi
Outer Control Structure . Recursion down to RU 2000 ’ , . ’
/\ * Micro-Kernel:
terative Recursive — Unfold completely below RU
\/ to get a basic block 1500 - |
Inner Control Structure - Compile USing native
compiler
,/l * Best performance for RU =12,
Statement Recursive o Compiler unable to use g? 1000 | -
reqgisters
« Unfolding reduces recursive
overhead 500 |- -
| — limited by I-cache
Micro-Kernel Recursive, Recursive, Micro, None, Compiler, 12 —&— o—o—6—o—°
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Recursive micro-kernel(ii)

Outer Control Structure

T

Iterative

Recursive

\/

Inner Control Structure

Statement

—

Recursive

A

y

Micro-Kernel

—

None
/
Compiler

Scalarized
/
Compiler

Recursion down to RU

Micro-Kernel

Scalarize all array
references in the basic

block

Compile with native

compiler

In isolation, best
performance for RU=4

Recursive, Recursive, Micro, Scalarized, Compiler, 4

Recursive, Recursive, Micro, None, Compiler, 12

lterative, Statement, None, None, Compiler, 1
Recursive, Recursive, Micro, None, Compiler, 1 ---
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Recursive micro-kernel(iv)

Outer Control Structure

T

Iterative

\/

Inner Control Structure

—

Recursive

Recursion down to RU(=8)
— Unfold completely below
RU to get a basic block
Micro-Kernel

— Scheduling and register
allocation using heuristics
for large basic blocks in

MFlops

Statement Recursive BRILA Compller
i Recursive, Recursive, Micro, Coloring, BRILA, 8 ---© -
A Recursive, Recursive, Micro, Belady, BRILA, 8 o
. Recursive, Recursive, Micro, Scalarized, Compiler, 4 ©
Micro-Kernel Recursive, Recursive, Micro, None, Compiler, 12 —e—
lterative, Statement, None, None, Compiler, 1
Recursive, Recursive, Micro, None, Compiler, 1 ---@---
None Scalarized Belady Coloring
/ / / /
Compiler Compiler BRILA BRILA

2000

1500

1000

500

Ultrasparc Illi
1 T T
000000He0000000 P04,0
wooooegoeoeco(yocﬁ' 3Ca0d
i 0-'0(3 |
) X
OO 8
©
& 0—-06—9°
f M, EEN, R 1 |

0 1000 2000 3000 4000 5000

Matrix Size



Recursive micro-kernels in isolation

Percentage of peak

0.7
0.6 -
0.5 —- —
Wﬁ: Scheduling
0.4 Inlining
=o—Belady - AD
=i Belady - LD
0.3 2 Coloring - AD
Coloring - LD
0.2
0.1
0




Lessons

Register allocation and scheduling in recursive micro-kernel:

— Integrated register allocation and scheduling performs better than
Belady + scheduling

Intuition:

— Belady tries to minimize the number of load operations for a given
schedule

— Minimizing load operations %— minimizing stall cycles

« if loads can be overlapped with each other, or with computations, doing
more loads may not hurt performance

Bottom-line on UltraSPARC:

— Peak: 2 GFlops

— ATLAS: 1.75 GFlops

— Optimized CO strategy: 700 MFlops

Similar results on other machines:

— Best CO performance on Itanium: roughly 2/3 of peak



Recursion + lterative micro-kernel

Outer Control Structure

T

Iterative

\/

Inner Control Structure

Recursive °

 Recursion down to MU x
NU x KU (4x4x120)
Micro-Kernel

— Completely unroll MU x
NU nested loop as in

Statement Recursive Iterative
Recursive, Iterative, Micro, Coloring, BRILA, 120
Recursive, Recursive, Micro, Coloring, BRILA, 8 -
Recursive, Recursive, Micro, Belady, BRILA, 8
. Recursive, Recursive, Micro, Scalarized, Compiler, 4
Micro-Kernel Recursive, Recursive, Micro, None, Compiler, 12 —&—
lterative, Statement, None, None, Compiler, 1 o
Recursive, Recursive, Micro, None, Compiler, 1 ---@---
None Scalarized Belady Coloring
/ / / /
Compiler Compiler BRILA BRILA
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Iterative micro-kernel

N

<NB> /_\
|
o ZK
7
B
N NB
A 7
=
V% m
A - =
\\A/LO
Register blocking

Cache blocking




Lessons

« Two hardware constraints on size of micro-kernels:
— |-cache limits amount of unrolling
— Number of registers

* |terative micro-kernel: three degrees of freedom
(MU,NU,KU)
— Choose MU and NU to optimize register usage
— Choose KU unrolling to fit into I-cache

* Recursive micro-kernel: one degree of freedom (RU)

— But even if you choose rectangular tiles, all three degrees
of freedom are tied to both hardware constraints



Loop + iterative micro-kernel
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lterative, Iterative, Micro, Coloring, BRILA, 120
Recursive, lterative, Micro, Coloring, BRILA, 120
Recursive, Recursive, Micro, Coloring, BRILA, 8 ---

Recursive, Recursive, Micro, Belady, BRILA, 8

GO+

* Wrapping a loop around highly optimized
iterative micro-kernel does not give good
performance

* This version does not block for any cache
level, so micro-kernel is starved for data.

» Recursive outer structure version is able to
block approximately for L1 cache and higher,
so micro-kernel is not starved.

» What happens if we block explicitly for L1 cache
(iterative mini-kernel)?



Recursion + mini-kernel

Outer Control Structure

Recursion down to NB

Mini-Kernel

NB x NB x NB triply n
loop (NB=120)

Tiling for L1 cache

Body of mini-kernel is
iterative micro-kernel

Recursive, Iterative, Mini, Coloring, BRILA, 120 ---%---
Recursive, Iterative, Micro, Coloring, BRILA, 120
Recursive, Recursive, Micro, Coloring, BRILA, 8 ---

Recursive, Recursive, Micro, Belady, BRILA, 8
Recursive, Recursive, Micro, Scalarized, Compiler, 4
Recursive, Recursive, Micro, None, Compiler, 12
lterative, Statement, None, None, Compiler, 1

Recursive, Recursive, Micro, None, Compiler, 1 ---@---
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MFlops

Loop + iterative mini-kernel

2000

1500

1000

500

Ultrasparc Illi
1 I I I
o
o s * tot
TP e e T e
14
—— -
¢
.':.
®  00000050000000 29509
‘9‘5000000030000000. PCac
b oloe . =
3 "
. O -0 0 8
©
- A A A
o0 6060
;Klie"'ﬁ . -0 1 1

Matrix Size

lterative, Iterative, Mini, Coloring, BRILA, 120

lterative, Iterative, Micro, Coloring, BRILA, 120 -«
Recursive, Iterative, Mini, Coloring, BRILA, 120 ---%--
Recursive, Iterative, Micro, Coloring, BRILA, 120 .
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 Mini-kernel tiles for L1 cache.

* On this machine, L1 tiling is adequate, so
further levels of tiling in recursive code do
not contribute to performance.
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Recursion + ATLAS mini-kernel

Outer Control Structure

T

Iterative

Recursive

\/

Inner Control Structure

T

 Using mini-kernel from
ATLAS Unleashed gives \
big performance boost over

BRILA mini-kernel.

« Reason: pre-fetching [ puanstccssonsopuenencagassan
» Mini-kernel from ATLAS (S aer

CGw/S gives same

Statement Recursive Iterative
performance as
BRILA mini-kernel.
Mini-Kernel
Micro-Kernel ATLAS CGw/S
ATLAS Unleashed
None Scalarized Belady Coloring
/ / / /
Compiler Compiler BRILA BRILA
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Lessons

Vendor BLAS and ATLAS Unleashed get
highest performance

Pre-fetching boosts performance by roughly
40%

Iterative code: pre-fetching is well-understood
Recursive code: not well-understood
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MFlops
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MFlops
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Out-of-place Transpose

MB/s
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Recursive, lterative, Micro, Store, BRILA —
Recursive, Recursive, Micro, Store, BRILA
lterative, lterative, Micro, Store, BRILA ---%---
terative, Recursive, Micro, Store, BRILA
lterative, Statement, Micro, None, Compiler
Recursive, Statement, Micro, None, Compiler

* No data reuse, only spatial locality

 Data stored in RBR format

» Micro-kernels permit scheduling of
dependent loads and stores, so do
better than naive code

* lterative micro-kernels do slightly
better than recursive micro-kernels



Summary

Iterative approach has been proven to work well in practice
— Vendor BLAS, ATLAS, etc.
— But requires a lot of work to produce code and tune parameters

Implementing a high-performance CO code is not easy
— Careful attention to micro-kernel and mini-kernel is needed

Using fully recursive approach with highly optimized micro-
kernel, we never got more than 2/3 of peak.

Issues with CO approach

— Scheduling and code generation for micro-kernels: integrated register
allocation and scheduling performs better than using Belady followed
by scheduling

— Recursive Micro-Kernels yield less performance than iterative ones
using same scheduling techniques

— Pre-fetching is needed to compete with best code: not well-understood
in the context of CO codes



