
Cache-oblivious
Programming

Story so far

•  We have studied cache optimizations for array
programs
–  Main transformations: loop interchange, loop tiling
–  Loop tiling converts matrix computations into block matrix

computations
–  Need to tile for multiple memory hierarchy levels

•  At least registers and L1/L2
–  Interactions between blocking at different levels is complex

(main lesson from Goto BLAS)
–  Code becomes very complex: hard to write and maintain
–  Blocked code has parameters that depend on machine

•  Code is not portable, although ATLAS shows how to get around this
problem

Cache-oblivious approach
•  Very different approach to optimizing programs for caches
•  Basic idea:

–  Use recursive algorithms
–  Divide-and-conquer process produces sub-problems of smaller sizes

automatically
–  Can be viewed as approximate blocking

•  Many more levels of blocking than memory hierarchy levels
•  Block sizes are not optimized for cache capacities

•  Famous result of Hong and Kung
–  Recursive algorithms for matrix-multiplication, transpose and FFT are I/

O optimal
•  Memory traffic between cache levels is optimal to within constant factors

with respect to any other order of performing same computations

Organization of lecture
•  CO and CC approaches to blocking

–  control structures
–  data structures

•  Why CO might work
–  non-standard view of blocking

•  Experimental results
–  UltraSPARC IIIi
–  Itanium
–  Xeon
–  Power 5

•  Lessons and ongoing work

Blocking Implementations
•  Control structure

– What are the block computations?
–  In what order are they performed?
– How is this order generated?

•  Data structure
– Non-standard storage orders to match control

structure

Cache-Oblivious Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

•  Divide all dimensions (AD)
•  8-way recursive tree down to 1x1 blocks

–  Gray-code order promotes reuse
•  Bilardi, et. al.

A00 A01

A11 A10

C00 C01

C11 C10

B00 B01

B11 B10

A0

A1

C0

C1

B

C0 = A0*B
C1 = A1*B

C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

•  Divide largest dimension (LD)
•  Two-way recursive tree down to 1x1 blocks

•  Frigo, Leiserson, et. al.

CO: recursive micro-kernel
•  Internal nodes of recursion tree are

recursive overhead; roughly
–  100 cycles on Itanium-2
–  360 cycles on UltraSPARC IIIi

•  Large overhead: for LD, roughly one
internal node per leaf node

•  Solution:
–  Micro-kernel: code obtained by

unrolling recursive tree for some
fixed size problem (RUxRUxRU)

•  Schedule operations in micro-kernel
to optimize for processor pipeline

–  Cut off recursion when sub-problem
size becomes equal to micro-kernel
size, and invoke micro-kernel

–  Overhead of internal node is
amortized over micro-kernel, rather
than a single multiply-add.

recursive micro-kernel

CO: Discussion

•  Block sizes
–  Generated dynamically at

each level in the recursive call
tree

•  Our experience
–  Performance of micro-kernel is

critical
–  For a given micro-kernel,

performance of LD and AD is
similar

–  Use AD for the rest of the talk

Data Structures

•  Match data structure layout to access patterns
•  Improve

–  Spatial locality
–  Streaming

Row-major Row-Block-Row Morton-Z

Data Structures: Discussion
•  Morton-Z

–  Matches recursive control
structure better than RBR

–  Suggests better performance
for CO

–  More complicated to
implement

•  Use ideas from David Wise to
reduce overhead

–  In our experience payoff is
small or even negative
sometimes

•  Bilardi et al report similar
results

•  Use RBR for the rest of the
talk

Cache-conscious algorithms

B

NB

N
B

A C

K

M
U

NU

K

B

N

M

A C

N
B

NB

K

K

Cache blocking Register blocking

CC algorithms: discussion
•  Iterative codes

–  Nested loops
•  Implementation of blocking

–  Cache blocking
•  Mini-kernel: in ATLAS, multiply NBxNB blocks
•  Choose NB so NB2 + NB + 1 <= CL1
•  Compiler transformation: loop tiling

–  Register blocking
•  Micro-kernel: in ATLAS, multiply MUx1 block of A with 1xNU block

of B into MUxNU block of C
•  Choose MU,NU so that MU + NU +MU*NU <= NR
•  Compiler transformation: loop tiling, unrolling and scalarization

Why CO might work

Blocking
•  Microscopic view

– Blocking reduces expected latency of memory
access

•  Macroscopic view
– Memory hierarchy can be ignored if

•  memory has enough bandwidth to feed processor
•  data can be pre-fetched to hide memory latency

– Blocking reduces bandwidth needed from memory
•  Useful to consider macroscopic view in more

detail

Example: MMM on Itanium 2
•  Processor features

–  2 FMAs per cycle
–  126 effective FP registers

•  Basic MMM
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 C[i, j] += A[i, k] * B[k, j];

•  Execution requirements
–  N3 multiply-adds

•  Ideal execution time = N3 / 2 cycles
–  3 N3 loads + N3 stores = 4 N3 memory operations

•  Bandwidth requirements
–  4 N3 / (N3 / 2) = 8 doubles / cycle

•  Memory cannot sustain this bandwidth but register file can

Reduce Bandwidth by Blocking

•  Square blocks: NB x NB x NB
–  working set must fit in cache
–  size of working set depends on schedule
–  at most 3NB2

•  Data movement in block computation = 4 NB2

•  Total data movement = (N / NB)3 * 4 NB2 = 4 N3 / NB doubles
•  Ideal execution time = N3 / 2 cycles
•  Required bandwidth from memory =

 (4 N3 / NB) / (N3 / 2) = 8 / NB doubles per cycle
•  General picture for multi-level memory hierarchy

–  Bandwidth required between level L+1 and level L = 8 / NBL
•  Constraints on NBL

–  Lower bound: 8 / NBL ≤ Bandwidth(L,L+1)
–  Upper bound: Working set of block computation ≤ Capacity(L)

CPU Cache Memory

Example: MMM on Itanium 2

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

•  Between Register File and L2
–  Constraints

•  8 / NBR ≤ 4
•  3 * NBR

2 ≤ 126
–  Therefore Bandwidth(R,L2) is enough for 2 ≤ NBR ≤ 6

•  NBR = 2 required 8 / NBR = 4 doubles per cycle from L2
•  NBR = 6 required 8 / NBR = 1.33 doubles per cycle from L2
•  NBR > 6 possible with better scheduling

FPU Registers L2 L3 Memory L1

4*

≥2

2*

4
4

≥6
≈0.5

Example: MMM on Itanium 2

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

•  Between L2 and L3
–  Sufficient bandwidth without blocking at L2
–  Therefore L2 has enough bandwidth for 2 ≤ NBR ≤ 6

d

FPU Registers L2 L3 Memory L1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

Example: MMM on Itanium 2

 * Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

•  Between L3 and Memory
–  Constraints

•  8 / NBL3 ≤ 0.5
•  3 * NBL3

2 ≤ 524288 (4MB)
–  Therefore Memory has enough bandwidth for 16 ≤ NBL3 ≤ 418

•  NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory
•  NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory
•  NBL3 > 418 possible with better scheduling

FPU Registers L2 L3 Memory L1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(L2,L3) ≤ 4

16 ≤ NBL3 ≤ 418
0.02 ≤ B(L3,Memory) ≤ 0.5

Lessons
•  Blocking can be useful to reduce bandwidth

requirements
•  Block size does not have to be exact

–  enough for block size to lie within an interval that depends
on hardware parameters

–  approximate blocking may be OK

•  Latency
–  use pre-fetching to reduce expected latency

•  So CO approach might work well
–  How well does it actually do in practice?

Organization of talk
•  Non-standard view of blocking

–  reduce bandwidth required from memory
•  CO and CC approaches to blocking

–  control structures
–  data structures

•  Experimental results
–  UltraSPARC IIIi
–  Itanium
–  Xeon
–  Power 5

•  Lessons and ongoing work

UltraSPARC IIIi
•  Peak performance: 2 GFlops (1 GHZ, 2 FPUs)
•  Memory hierarchy:

– Registers: 32
– L1 data cache: 64KB, 4-way
– L2 data cache: 1MB, 4-way

•  Compilers
– C: SUN C 5.5

Naïve algorithms
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement

•  Recursive:
–  down to 1 x 1 x 1
–  360 cycles overhead for each MA
 = 6 MFlops

•  Iterative:
–  triply nested loop
–  little overhead

•  Both give roughly the same
performance

•  Vendor BLAS and ATLAS:
–  1750 MFlops

Miss ratios

•  Misses/FMA for iterative code is roughly 2
•  Misses/FMA for recursive code is 0.002
•  Practical manifestation of theoretical I/O
 optimality results for recursive code
•  However, two competing factors affect
 performance:

•  cache misses
•  overhead

•  6 MFlops is a long way from 1750 MFlops!

Recursive micro-kernel(i)
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

•  Recursion down to RU
•  Micro-Kernel:

–  Unfold completely below RU
to get a basic block

–  Compile using native
compiler

•  Best performance for RU =12
•  Compiler unable to use

registers
•  Unfolding reduces recursive

overhead
–  limited by I-cache

Recursive micro-kernel(ii)
•  Recursion down to RU
•  Micro-Kernel

–  Scalarize all array
references in the basic
block

–  Compile with native
compiler

–  In isolation, best
performance for RU=4

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Recursive micro-kernel(iv)
•  Recursion down to RU(=8)

–  Unfold completely below
RU to get a basic block

•  Micro-Kernel
–  Scheduling and register

allocation using heuristics
for large basic blocks in
BRILA compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

Recursive micro-kernels in isolation

RU

Percentage of peak

Lessons
•  Register allocation and scheduling in recursive micro-kernel:

–  Integrated register allocation and scheduling performs better than
Belady + scheduling

•  Intuition:
–  Belady tries to minimize the number of load operations for a given

schedule
–  Minimizing load operations = minimizing stall cycles

•  if loads can be overlapped with each other, or with computations, doing
more loads may not hurt performance

•  Bottom-line on UltraSPARC:
–  Peak: 2 GFlops
–  ATLAS: 1.75 GFlops
–  Optimized CO strategy: 700 MFlops

•  Similar results on other machines:
–  Best CO performance on Itanium: roughly 2/3 of peak

Recursion + Iterative micro-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

•  Recursion down to MU x
NU x KU (4x4x120)

•  Micro-Kernel
–  Completely unroll MU x

NU nested loop as in
ATLAS

Iterative micro-kernel

B

NB

N
B

A C

K

M
U

NU

K

B

N

M

A C

N
B

NB

K

K

Cache blocking Register blocking

Lessons
•  Two hardware constraints on size of micro-kernels:

–  I-cache limits amount of unrolling
–  Number of registers

•  Iterative micro-kernel: three degrees of freedom
(MU,NU,KU)
–  Choose MU and NU to optimize register usage
–  Choose KU unrolling to fit into I-cache

•  Recursive micro-kernel: one degree of freedom (RU)
–  But even if you choose rectangular tiles, all three degrees

of freedom are tied to both hardware constraints

Loop + iterative micro-kernel

•  Wrapping a loop around highly optimized
 iterative micro-kernel does not give good
 performance
•  This version does not block for any cache
 level, so micro-kernel is starved for data.
•  Recursive outer structure version is able to
 block approximately for L1 cache and higher,
 so micro-kernel is not starved.
•  What happens if we block explicitly for L1 cache
 (iterative mini-kernel)?

Recursion + mini-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

•  Recursion down to NB
•  Mini-Kernel

–  NB x NB x NB triply nested
loop (NB=120)

–  Tiling for L1 cache
–  Body of mini-kernel is

iterative micro-kernel

Loop + iterative mini-kernel

•  Mini-kernel tiles for L1 cache.
•  On this machine, L1 tiling is adequate, so
 further levels of tiling in recursive code do
 not contribute to performance.

Recursion + ATLAS mini-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

•  Using mini-kernel from
 ATLAS Unleashed gives
 big performance boost over
 BRILA mini-kernel.
•  Reason: pre-fetching
•  Mini-kernel from ATLAS
 CGw/S gives same
 performance as
 BRILA mini-kernel.

Lessons
•  Vendor BLAS and ATLAS Unleashed get

highest performance
•  Pre-fetching boosts performance by roughly

40%
•  Iterative code: pre-fetching is well-understood
•  Recursive code: not well-understood

UltraSPARC IIIi Complete

Power 5

Itanium 2

Xeon

Out-of-place Transpose

•  No data reuse, only spatial locality
•  Data stored in RBR format
•  Micro-kernels permit scheduling of
 dependent loads and stores, so do
 better than naïve code
•  Iterative micro-kernels do slightly
 better than recursive micro-kernels

Summary
•  Iterative approach has been proven to work well in practice

–  Vendor BLAS, ATLAS, etc.
–  But requires a lot of work to produce code and tune parameters

•  Implementing a high-performance CO code is not easy
–  Careful attention to micro-kernel and mini-kernel is needed

•  Using fully recursive approach with highly optimized micro-
kernel, we never got more than 2/3 of peak.

•  Issues with CO approach
–  Scheduling and code generation for micro-kernels: integrated register

allocation and scheduling performs better than using Belady followed
by scheduling

–  Recursive Micro-Kernels yield less performance than iterative ones
using same scheduling techniques

–  Pre-fetching is needed to compete with best code: not well-understood
in the context of CO codes

