1. What do you do when you don't have RNDF data? Can you use other map data (Google maps) or drive using real-time sensor data?

2. What do you about pedestrians? Can we detect them now?

3. What happens when the "cars will stay in their lane" assumption is violated? What about drunk drivers? Would the car be able to detect the imminent collision?

4. I'm somewhat surprised that the entire system uses nothing but good old fashioned AI. Although alternative methods are young and may be somewhat risky for this kind of competition, I would liked to have seen something more innovative. GOFAI is great for simple systems like the ones that control the temperature of the room, but for a system that drives cars like a human, I believe we need to break into the realm of machine learning.

5. I did notice that the robot middleware (ROS) is not mentioned anywhere. Was a different middleware being used at the time the paper was written or why is it not mentioned?

6. What were the difficulties of relying on relatively inexperienced undergrad programmers during the design phase?

7. What about traffic signals and recognizing stop signs for video?

8. What changes have been made to our car in the past 4 years. What about other Urban Challenge contenders. What about companies like Google now?

9. Why do you split the route navigation task in 2 modules commander and navigator?

10. What would happen if only autonomous vehicles navigated the roads? How do you think the problem would change because of infrastructural changes?

11. This one was interesting. There were 2 contrasting comments about the observers always being active and sending signals even when they were not needed. 1 person thought it was wasteful. Someone else thought that it was a good idea as the observers can work faster and can be written easily and it is easy for navigator to make choices about which data it uses.

12. What happens if the GPS loses signal, simulating what would happen under a bridge or tunnel?

13. How are the three machines configured and connected?

14. In December 2011 Google was awarded a US patent for “Driverless car technology”, will this have any consequences for autonomous vehicle research at universities / companies (other than google)?

15. The vehicle is responsible for traveling only on legal lanes so how is it possible for it to pass a car that is parked on a two way street with only one lane on each side?

16. How can the sensor differentiate between a speed bump on the road and a human lying in the middle of the road? Would it be considered enough of a threat in order to stop?