Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras
Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)

- Particle filters are a way to efficiently represent non-Gaussian distribution

- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest
Sample-based Localization (sonar)
Mathematical Description

- Set of weighted samples

\[S = \left\{ \langle s^{[i]}, w^{[i]} \rangle \mid i = 1, \ldots, N \right\} \]

 - State hypothesis
 - Importance weight

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s^{[i]}}(x) \]
Function Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval

- How to draw samples from a function/distribution?
Rejection Sampling

- Let us assume that $f(x) < 1$ for all x
- Sample x from a uniform distribution
- Sample c from $[0,1]$
- if $f(x) > c$ keep the sample
 otherwise reject the sample
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f.
- By introducing an importance weight w, we can account for the “differences between g and f”.
- $w = \frac{f}{g}$
- f is often called the target.
- g is often called the proposal.
- Pre-condition: $f(x) > 0 \implies g(x) > 0$
Importance Sampling with Resampling: Landmark Detection Example
Distributions
Distributions

Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.
Importance Sampling

Target distribution $f: p(x \mid z_1, z_2, \ldots, z_n) = \frac{\prod_k p(z_k \mid x) \ p(x)}{p(z_1, z_2, \ldots, z_n)}$

Sampling distribution $g: p(x \mid z_l) = \frac{p(z_l \mid x)p(x)}{p(z_l)}$

Importance weights $w: \frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, \ldots, z_n)}$
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filters
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha p(z \mid x) Bel^-(x) \]

\[w \leftarrow \frac{\alpha p(z \mid x) Bel^-(x)}{Bel^-(x)} = \alpha p(z \mid x) \]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[
\begin{align*}
\text{Bel}(x) & \leftarrow \alpha p(z \mid x) \text{Bel}^{-}(x) \\
w & \leftarrow \frac{\alpha p(z \mid x) \text{Bel}^{-}(x)}{\text{Bel}^{-}(x)} = \alpha p(z \mid x)
\end{align*}
\]
$Bel^-(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx'$
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[
 \text{weight} = \frac{\text{target distribution}}{\text{proposal distribution}}
 \]

- Resampling: “Replace unlikely samples by more likely ones”

- [Derivation of the MCL equations on the blackboard]
Particle Filter Algorithm

1. Algorithm `particle_filter`\((S_{t-1}, u_{t-1}, z_t)\):
2. \(S_t = \emptyset, \ \eta = 0 \)
3. For \(i = 1 \ldots n \) \textbf{Generate new samples}
4. Sample index \(j(i) \) from the discrete distribution given by \(w_{t-1} \)
5. Sample from \(p(x_t | x_{t-1}, u_{t-1}) \) \textbf{Compute importance weight}
6. \(w^i_t = p(z_t | x^i_t) \)
7. \(\eta = \eta + w^i_t \) \textbf{Update normalization factor}
8. \(S_t = S_t \cup \{ < x^i_t, w^i_t > \} \) \textbf{Insert}
9. For \(i = 1 \ldots n \)
10. \(w^i_t = w^i_t / \eta \) \textbf{Normalize weights}
Particle Filter Algorithm

\[Bel(x_t) = \eta \, p(z_t | x_t) \int p(x_t | x_{t-1}, u_{t-1}) \, Bel(x_{t-1}) \, dx_{t-1} \]

- Draw \(x_{t-1}^i \) from \(Bel(x_{t-1}) \)
- Draw \(x_t^i \) from \(p(x_t | x_{t-1}^i, u_{t-1}) \)
- Importance factor for \(x_t^i \):

\[
\begin{align*}
w_t^i &= \frac{\text{target distribution}}{\text{proposal distribution}} \\
 &= \frac{\eta \, p(z_t | x_t) \, p(x_t | x_{t-1}, u_{t-1}) \, Bel(x_{t-1})}{p(x_t | x_{t-1}, u_{t-1}) \, Bel(x_{t-1})} \\
 &\propto p(z_t | x_t)
\end{align*}
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm **systematic_resampling**\((S,n)\):

2. \(S' = \emptyset, c_1 = w^1\)
3. **For** \(i = 2 \ldots n\) \hspace{2cm} **Generate cdf**
4. \(c_i = c_{i-1} + w^i\)
5. \(u_1 \sim U[0,n^{-1}], i = 1\) \hspace{2cm} **Initialize threshold**
6. **For** \(j = 1 \ldots n\) \hspace{2cm} **Draw samples** ...
7. **While** \(u_j > c_i\) \hspace{2cm} **Skip until next threshold reached**
8. \(i = i + 1\)
9. \(S' = S' \cup \{< x^i, n^{-1} > \}\) \hspace{2cm} **Insert**
10. \(u_{j+1} = u_j + n^{-1}\) \hspace{2cm} **Increment threshold**
11. **Return** \(S'\)

Also called **stochastic universal sampling**
Mobile Robot Localization

- Each particle is a potential pose of the robot.
- Proposal distribution is the motion model of the robot (prediction step).
- The observation model is used to compute the importance weight (correction step).

[For details, see PDF file on the lecture web page]
Motion Model Reminder
Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Sample-based Localization (sonar)
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Localization for AIBO robots
Using Ceiling Maps for Localization

[Dellaert et al. 99]
Vision-based Localization

\[P(z|x) \]

\[h(x) \]
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.

- How can we deal with localization errors (i.e., the kidnapped robot problem)?
Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter
Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.