Probabilistic and Bayesian Analytics

Andrew W. Moore
School of Computer Science
Carnegie Mellon University
Discrete Random Variables

• A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.

• Examples

• A = The US president in 2023 will be male
• A = You wake up tomorrow with a headache
• A = You have Ebola
Probabilities

• We write P(A) as “the fraction of possible worlds in which A is true”
• We could at this point spend 2 hours on the philosophy of this.
• But we won’t.
Visualizing A

Event space of all possible worlds

Its area is 1

Worlds in which A is true

Worlds in which A is False

$P(A) = \text{Area of reddish oval}$
The Axioms of Probability

• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)
Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P(\text{True}) = 1$
- $P(\text{False}) = 0$
- $P(\text{A or B}) = P(A) + P(B) - P(A \text{ and } B)$

Simple addition and subtraction
These Axioms are Not to be Trifled With

- There have been attempts to do different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - Non-monotonic reasoning

- But the axioms of probability are the only system with this property:
 If you gamble using them you can’t be unfairly exploited by an opponent using some other system [di Finetti 1931]
Theorems from the Axioms

• $0 \leq P(A) \leq 1$, $P(\text{True}) = 1$, $P(\text{False}) = 0$

• $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

From these we can prove:

$$P(\neg A) = P(\sim A) = 1 - P(A)$$

• How?
Side Note

• I am inflicting these proofs on you for two reasons:
 1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics in depth
 2. Suffering is good for you
Another important theorem

- $0 \leq P(A) \leq 1$, $P(True) = 1$, $P(False) = 0$
- $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

From these we can prove:

$$P(A) = P(A \text{ and } B) + P(A \text{ and } not \ B)$$
Conditional Probability

• \(P(A|B) = \) Fraction of worlds in which \(B \) is true that also have \(A \) true

\[
\begin{align*}
H &= \text{“Have a headache”} \\
F &= \text{“Coming down with Flu”}
\end{align*}
\]

\[
\begin{align*}
P(H) &= 1/10 \\
P(F) &= 1/40 \\
P(H|F) &= 1/2
\end{align*}
\]

“Headaches are rare and flu is rarer, but if you’re coming down with ‘flu there’s a 50-50 chance you’ll have a headache.”
Conditional Probability

P(H|F) = Fraction of flu-inflicted worlds in which you have a headache

= \#worlds with flu and headache

 \#worlds with flu

= Area of “H and F” region

 Area of “F” region

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2
Definition of Conditional Probability

\[P(A \wedge B) \]

\[P(A|B) = \frac{P(A \wedge B)}{P(B)} \]

Corollary: The Chain Rule

\[P(A \wedge B) = P(A|B) \cdot P(B) \]
Probabilistic Inference

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu”

Is this reasoning good?
Another way to understand the intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:

Let's say we have $P(F)$, $P(H)$, and $P(H|F)$, like in the example in class.

Areawise, $P(F) = A + B$, $P(H) = B + C$,

Also, $P(H|F) = \frac{B}{A + B}$

Thus, to get the opposite conditional probability, i.e., $P(F|H)$, we need to figure out $\frac{B}{B + C}$

Since we know $B / (A+B)$, we can get $B / (B+C)$ by multiplying by $(A+B)$ and dividing by $(B+C)$. But since we already calculated, $A+B = P(F)$, and $B+C = P(H)$, so we are actually multiplying by $P(F)$ and dividing by $P(H)$. Which is Bayes Rule:

$$P(F|H) = \frac{P(H|F) \cdot P(F)}{P(H)}$$
Probabilistic Inference

H = “Have a headache”
F = “Coming down with Flu”

\[
P(H) = \frac{1}{10}
\]
\[
P(F) = \frac{1}{40}
\]
\[
P(H|F) = \frac{1}{2}
\]

\[
P(F \text{ and } H) = P(H \mid F) \times P(F) = \frac{1}{2} \times \frac{1}{40} = \frac{1}{80}
\]

\[
P(F \mid H) = \frac{P(F \text{ and } H)}{P(H)} = \frac{\frac{1}{80}}{\frac{1}{10}} = \frac{1}{8}
\]
What we just did...

\[
P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B) \cdot P(B)}{P(A)}
\]

This is Bayes Rule

• You are a health official, deciding whether to investigate a restaurant
• You lose a dollar if you get it wrong.
• You win a dollar if you get it right
 • Half of all restaurants have bad hygiene
 • In a bad restaurant, $\frac{3}{4}$ of the menus are smudged
 • In a good restaurant, $\frac{1}{3}$ of the menus are smudged
• You are allowed to see a randomly chosen menu
\[P(B \mid S) = \frac{P(B \text{ and } S)}{P(S)} \quad = \frac{P(S \text{ and } B)}{P(S)} \]

\[= \frac{P(S \text{ and } B)}{P(S \text{ and } B) + P(S \text{ and not } B)} \]

\[= \frac{P(S \mid B)P(B)}{P(S \mid B)P(B) + P(S \mid \text{not } B)P(\text{not } B)} \]

\[= \frac{\frac{3}{4} \times \frac{1}{2}}{\frac{3}{4} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2}} = \frac{9}{13} \]