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Bimatrix Games

• We are given two real m × n matrices A = (aij), B = (bij), where
1 ≤ i ≤ m and 1 ≤ j ≤ n

• There are two players, a row player and a column player

• The row player chooses a row i, and the column player chooses a
column j

– Each player’s choice is made without knowledge of the other player’s
choice

• The payoff to the row player is aij, and the payoff to the column player
is bij

• What is a good strategy for playing such a game?

– This is a classic problem in game theory
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Zero-Sum Games

• In this lecture we will focus primarily on the special case of a bimatrix
game in which B = −A, i.e., the total payoff to the row and column
players is always zero

– These are called zero-sum games

– Since B can be determined from A, we can consider the input to be
the single matrix A
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Example: Rock-Paper-Scissors

• Rock beats scissors, scissors beats paper, paper beats rock

• The winner gets a payoff of 1, and the loser gets a payoff of −1

• If both players play the same thing (e.g., rock), the payoff to each
player is 0

• What is an optimal strategy for playing this game?
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Mixed Strategy

• A mixed strategy for the column player is a probability distribution over
the columns

– Rather than deterministically picking a particular column, the column
player fixes a probability distribution over the columns and then
selects at random from this distribution

– If the distribution assigns probability 1 to a particular column, it is a
pure strategy

• Similarly, a mixed strategy for the row player is a probability distribution
over the rows

• What is a good mixed strategy for the rock-paper-scissors game?

– Is there a sense in which this strategy is optimal?
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Zero-Sum Games: Can Assume A ≥ 0

• Note that aij represents the payoff from the column player to the row
player in the case where the row player plays row i and the column
player plays column j

• We can assume without loss of generality that A ≥ 0, i.e., the column
player always pays a nonnegative amount

– To see this, note that the structure of the problem is unchanged if
we add some real value ∆ to every aij

– By choosing ∆ sufficiently large, we can ensure that all of the aij’s
are nonnegative

• We make this assumption throughout the remainder of the lecture
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Expected Payoff

• Let A be the m× n payoff matrix for a zero-sum game

• Let x = 〈x1, . . . , xn〉 denote the mixed strategy of the column player

– The column player plays column j with probability xj

– Note that
∑

1≤j≤n xj = 1 and all of the xj’s are nonnegative

• Similarly, let y = 〈y1, . . . , ym〉 denote the mixed strategy of the row
player

• The expected payoff from the column player to the row player is

P (x, y) =
∑

1≤i≤m

∑

1≤j≤n

xj · yi · aij
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A Notion of Optimality for the Column Player

• Let x be an arbitrary mixed strategy for the column player

• Let f(x) denote a mixed strategy for the row player that maximizes
P (x, f(x))

• We say that x is optimal if it minimizes P (x, f(x))

– Such an optimal mixed strategy is called a minimax strategy

• How can we efficiently compute a minimax strategy for the column
player?

• Symmetrically, how can we efficiently compute a maximin strategy for
the row player?
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Computation of a Minimax Strategy

• Observation: For every mixed strategy x of the column player, there is
a pure strategy y for the row player maximizing P (x, y)

– Suppose the strategy y maximizing P (x, y) is mixed and that yi > 0

– Then the pure strategy y′ that always plays row i satisfies P (x, y′) =
P (x, y)

• Accordingly, we can formulate the optimization problem for the column
player as follows

– Determine a mixed strategy x and a (minimax) payoff α such that
α is minimized and the inequality

∑

1≤j≤n

xj · aij ≤ α

holds for all rows i

– Is this a linear program?
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Feasibility of the Minimax LP

• Note that the minimax LP is feasible and has a finite optimal value for
the objective function α

– Any mixed strategy x, coupled with a sufficiently large choice for α,
yields a feasible solution

– The sum of the aij’s is a trivial upper bound on the optimal value
of the objective function
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The Maximin LP

• Similarly, we can formulate an LP to determine an optimal mixed
strategy for the row player

• Determine a mixed strategy y and a (maximin) payoff β such that β is

maximized and the inequality
(∑

1≤i≤m yi · aij

)
− β ≥ 0 holds for all

columns j

– The variables are the yi’s and β

– The requirement that y is a mixed strategy is enforced by the linear
constraints

∑
1≤i≤m yi = 1 and y ≥ 0

– It makes no difference whether we constrain β to be nonnegative,
since the nonnegativity of the aij’s implies that β is nonnegative in
any optimal solution

• Like the minimax LP, the maximin LP is feasible and has a finite
optimal value for the objective function

Theory in Programming Practice, Plaxton, Spring 2004



The Dual of the Minimax LP

• Recall that an LP of the form “maximize cTx subject to Ax ≤ b and
x ≥ 0” has as its dual the LP “minimize yT b subject to ATy ≥ c and
y ≥ 0”

• By putting the column player LP into this standard form, we can
mechanically write out the dual of the column player LP
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The Dual of the Minimax LP

• We obtain the following dual LP with nonnegative variables
y1, . . . , ym, β′, β′′: Minimize β′ − β′′ subject to


 ∑

1≤i≤m

yi · aij


 + β′ − β′′ ≥ 0

for each column j and ∑

1≤i≤m

yi ≤ 1

• Note that this LP is extremely similar to the row player’s maximin LP

• We can make it more similar by eliminating the nonnegative variables
β′ and β′′ in favor of a single unrestricted variable β

– Replace each occurrence of β′′ − β′ with β
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The Dual of the Minimax LP

• The objective of the dual of the minimax LP is “minimize −β”

– Note that this is equivalent to “maximize β”, the objective of the
row player LP

• The only remaining difference between the dual of the column player
LP and the row player LP is that the former includes the constraint∑

1≤i≤m yi ≤ 1, but not the stronger constraint
∑

1≤i≤m yi = 1

• But since the aij’s are all nonnegative, it is clear that there is an optimal
solution to the dual of the column player LP for which

∑
1≤i≤m yi = 1

• In other words, we can add the constraint
∑

1≤i≤m yi ≥ 1 to the dual
of the column player LP without changing the value of an optimal
solution
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Von Neumann’s Minimax Theorem

• Let I, I ′, and I ′′ denote the minimax LP (i.e., the column player LP),
the maximin LP (i.e., the row player LP), and the dual of the minimax
LP, respectively

• Let v, v′, and v′′ denote the optimal value of the objective function of
I, I ′, and I ′′, respectively

• From the foregoing discussion, v′ = v′′

• By the strong duality theorem, v = v′′

• Thus v = v′
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Discussion of the Minimax Theorem

• In other words, if the colum and row players employ optimal mixed
strategies, the payoff to the row player is equal to both

– The minimax payoff α, as determined by solving the column player’s
LP to determine an optimal mixed strategy x∗

– The maximin payoff β, as determined in the row player’s LP to
determine an optimal mixed strategy y∗

• An interesting consequence is that even if the column player publicly
commits to the strategy x∗, the row player is still not incented to
deviate from y∗

• Symmetrically, if the row player is known to be using strategy y∗, the
column player cannot do better than to play x∗

• In this sense the optimal row and column player solutions together form
a stable optimal solution to the given zero-sum game
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Remarks on General Bimatrix Games

• Nash showed that every bimatrix game admits mixed strategies x and
y for the column and row players, respectively, so that neither player is
incented to play a different strategy when the other player’s strategy is
revealed

• Such a pair of strategies (x, y) is referred to as a Nash equilibrium

• In fact Nash, proved the existence of such equilibria even when there
are k > 2 players

– Note that there is a natural way to generalize the notion of a bimatrix
game to k > 2 players

• Even though Nash’s result guarantees the existence of such equilibria, no
polynomial-time algorithm is known for computing a Nash equilibrium,
even for the special case of two players

– This is a major open problem in complexity theory
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