Parallel Recursion: Ladner-Fischer Parallel
Prefix Sum

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin

Prefix Sum

Fix an associative binary operator & defined over some domain

— Let O denote a left identity element of @, i.e., assume that 0dzx =z
for all x in the domain of @

Throughout our discussion of parallel prefix, we consider only powerlists
for which the elements are drawn from the domain of &

The parallel prefix problem is to compute the function that maps any
given powerlist p = (zg ...x,_1) to the powerlist

<$0 ($0@$1) (370@331@332) (xo@@xn_1)>

For the sake of brevity, we refer to this function as f in what follows

Theory in Programming Practice, Plaxton, Fall 2005

Ladner-Fischer Parallel Prefix Scheme

o If n > 1, apply @& to successive pairs of elements to obtain the
length-n /2 powerlist

p = (xo®x1) (22B 3) ... (Tp—2® Tp_1))

e Recursively compute the prefix sum of p’ to obtain the length-n/2
powerlist

p//:<($0@$1) (1‘0@231@332@333) (xo@@xn_l»

— The powerlist p” contains the odd-indexed elements of f(p)

— To get the even-indexed elements of f(p), take the @ of the powerlist
obtained by shifting p” to the right one position (and introducing a
0 in the first position) with

(xg T2 T4 ... Tp_2)

Theory in Programming Practice, Plaxton, Fall 2005

A Powerlist Formulation of the LF Scheme: Overview

Definition of the % operator

The LF scheme revisited

A powerlist specification of the prefix sum operation

Derivation of the LF scheme

Theory in Programming Practice, Plaxton, Fall 2005

Definition of the x Operator

e For any powerlist p = (x¢ ... z,_1), we define p* as the powerlist
<O o 1 ... xn_2>

e Here is an inductive definition of p*

Theory in Programming Practice, Plaxton, Fall 2005

Remark: Some Properties of the x Operator

e Property 1: (p®q)* =p* ®q*
— This property may be proven by induction

— The proof is left as an exercise

e Property 2: (p<q)** = p* = q*
— By the definition of *, (p > q)** = (¢* <1 p)*
— Applying the definition of % a second time yields the desired equation

e We will not need these particular properties in the proofs that follow

Theory in Programming Practice, Plaxton, Fall 2005

The LF Scheme Revisited

e Using the powerlist notation, we can write the LF scheme for computing
the parallel prefix function f as follows

flz)) = ()

floxiq) = (" Dp)xt wheret = f(pDq)

e In what follows, we show how to derive the above equation from a
powerlist-based specification of the prefix sum operation

Theory in Programming Practice, Plaxton, Fall 2005

Specification of Prefix Sum

e Consider the equation ¢ = ¢*@®p in the given powerlist p = (xg ... T, _1)
and the unknown powerlist ¢ = (yo ... Yn—1)

e This equation has a unique solution in ¢
— Note that Yo — 0 P ro = g

— Thusy1 =yoPx1 =20 D X1, SO Y2 = Y1 DTy = 2o D 1 D 9, €t
cetera

— Ingeneral, ¥y, =20P 21 ®... Bx;, 0 <1< n

— In other words, the unique solution (in ¢) to the equation ¢ = ¢* @®p

is f(p)

Theory in Programming Practice, Plaxton, Fall 2005

Derivation of the LF Scheme

We wish to derive an equation for f(p < ¢q), where p and ¢ are
equal-length powerlists

Since f(p < q) is a non-singleton powerlist, there is a unique way to
write it in the form r <t

Our plan is to solve for r and t in what follows
By the result of the previous slide, r <1t = (r<1t)* ® (p = q)
By the definition of %, the latter expression is equal to (¢* <1)P (p < q)

Since ¢ is a pointwise operator, ¢ and <t commute and the previous
expression can be rewritten as (t* @ p) > (r @ q)

Theory in Programming Practice, Plaxton, Fall 2005

Derivation of the LF Scheme (continued)

e Thus far we have established that r <t = (t* ® p) < (r @ q)
— By unique deconstruction, r =t*®pandt=r®q
— Hencet=(t"®p)@qg=t"@ (pdq)

— Earlier we saw that the unique solution to this equation ist = f(p®q)

e In summary, we have shown that f(p < q) is equal to (t* ® p) > ¢
where t = f(p @ q)

— In effect we have derived the powerlist-based formulation of the LF
scheme stated earlier

Theory in Programming Practice, Plaxton, Fall 2005

Sequential Complexity of the LF Scheme

e Let T'(n) denote the sequential running time of the LF scheme
e We obtain the recurrence T'(1) = O(1) and T'(n) = T (n/2) + O(n)

e This recurrence solves to give T'(n) = O(n)

Theory in Programming Practice, Plaxton, Fall 2005

Parallel Complexity of the LF Scheme

Let T'(n) denote the parallel running time of the LF scheme using n
Processors

We obtain the recurrence T'(1) = O(1) and T'(n) =T (n/2) + O(1)
This recurrence solves to give T'(n) = O(logn)
In fact, the LF scheme can be used to compute prefix sum in O(logn)

time using only n/logn processors

— The overhead at the top level of recursion is O(logn), but it drops
off by a factor of two at each successive level

— This parallel algorithm is considered to be “work-efficient” because
its processor-time product is equal (to within a constant factor) to
the sequential time complexity

Theory in Programming Practice, Plaxton, Fall 2005

