
Parallel Recursion: Ladner-Fischer Parallel
Prefix Sum

Greg Plaxton
Theory in Programming Practice, Fall 2005

Department of Computer Science
University of Texas at Austin



Prefix Sum

• Fix an associative binary operator ⊕ defined over some domain

– Let 0 denote a left identity element of ⊕, i.e., assume that 0⊕x = x
for all x in the domain of ⊕

• Throughout our discussion of parallel prefix, we consider only powerlists
for which the elements are drawn from the domain of ⊕

• The parallel prefix problem is to compute the function that maps any
given powerlist p = 〈x0 . . . xn−1〉 to the powerlist

〈x0 (x0 ⊕ x1) (x0 ⊕ x1 ⊕ x2) . . . (x0 ⊕ . . .⊕ xn−1)〉

• For the sake of brevity, we refer to this function as f in what follows

Theory in Programming Practice, Plaxton, Fall 2005



Ladner-Fischer Parallel Prefix Scheme

• If n > 1, apply ⊕ to successive pairs of elements to obtain the
length-n/2 powerlist

p′ = 〈(x0 ⊕ x1) (x2 ⊕ x3) . . . (xn−2 ⊕ xn−1)〉

• Recursively compute the prefix sum of p′ to obtain the length-n/2
powerlist

p′′ = 〈(x0 ⊕ x1) (x0 ⊕ x1 ⊕ x2 ⊕ x3) . . . (x0 ⊕ . . .⊕ xn−1)〉

– The powerlist p′′ contains the odd-indexed elements of f(p)

– To get the even-indexed elements of f(p), take the ⊕ of the powerlist
obtained by shifting p′′ to the right one position (and introducing a
0 in the first position) with

〈x0 x2 x4 . . . xn−2〉

Theory in Programming Practice, Plaxton, Fall 2005



A Powerlist Formulation of the LF Scheme: Overview

• Definition of the ∗ operator

• The LF scheme revisited

• A powerlist specification of the prefix sum operation

• Derivation of the LF scheme

Theory in Programming Practice, Plaxton, Fall 2005



Definition of the ∗ Operator

• For any powerlist p = 〈x0 . . . xn−1〉, we define p∗ as the powerlist
〈0 x0 x1 . . . xn−2〉

• Here is an inductive definition of p∗

〈x〉∗ = 〈0〉
(p ./ q)∗ = q∗ ./ p

Theory in Programming Practice, Plaxton, Fall 2005



Remark: Some Properties of the ∗ Operator

• Property 1: (p⊕ q)∗ = p∗ ⊕ q∗

– This property may be proven by induction

– The proof is left as an exercise

• Property 2: (p ./ q)∗∗ = p∗ ./ q∗

– By the definition of ∗, (p ./ q)∗∗ = (q∗ ./ p)∗

– Applying the definition of ∗ a second time yields the desired equation

• We will not need these particular properties in the proofs that follow

Theory in Programming Practice, Plaxton, Fall 2005



The LF Scheme Revisited

• Using the powerlist notation, we can write the LF scheme for computing
the parallel prefix function f as follows

f(〈x〉) = 〈x〉
f(p ./ q) = (t∗ ⊕ p) ./ t where t = f(p⊕ q)

• In what follows, we show how to derive the above equation from a
powerlist-based specification of the prefix sum operation

Theory in Programming Practice, Plaxton, Fall 2005



Specification of Prefix Sum

• Consider the equation q = q∗⊕p in the given powerlist p = 〈x0 . . . xn−1〉
and the unknown powerlist q = 〈y0 . . . yn−1〉

• This equation has a unique solution in q

– Note that y0 = 0⊕ x0 = x0

– Thus y1 = y0 ⊕ x1 = x0 ⊕ x1, so y2 = y1 ⊕ x2 = x0 ⊕ x1 ⊕ x2, et
cetera

– In general, yi = x0 ⊕ x1 ⊕ . . .⊕ xi, 0 ≤ i < n

– In other words, the unique solution (in q) to the equation q = q∗⊕ p
is f(p)

Theory in Programming Practice, Plaxton, Fall 2005



Derivation of the LF Scheme

• We wish to derive an equation for f(p ./ q), where p and q are
equal-length powerlists

• Since f(p ./ q) is a non-singleton powerlist, there is a unique way to
write it in the form r ./ t

• Our plan is to solve for r and t in what follows

• By the result of the previous slide, r ./ t = (r ./ t)∗ ⊕ (p ./ q)

• By the definition of ∗, the latter expression is equal to (t∗ ./ r)⊕(p ./ q)

• Since ⊕ is a pointwise operator, ⊕ and ./ commute and the previous
expression can be rewritten as (t∗ ⊕ p) ./ (r ⊕ q)

Theory in Programming Practice, Plaxton, Fall 2005



Derivation of the LF Scheme (continued)

• Thus far we have established that r ./ t = (t∗ ⊕ p) ./ (r ⊕ q)

– By unique deconstruction, r = t∗ ⊕ p and t = r ⊕ q

– Hence t = (t∗ ⊕ p)⊕ q = t∗ ⊕ (p⊕ q)

– Earlier we saw that the unique solution to this equation is t = f(p⊕q)

• In summary, we have shown that f(p ./ q) is equal to (t∗ ⊕ p) ./ t
where t = f(p⊕ q)

– In effect we have derived the powerlist-based formulation of the LF
scheme stated earlier

Theory in Programming Practice, Plaxton, Fall 2005



Sequential Complexity of the LF Scheme

• Let T (n) denote the sequential running time of the LF scheme

• We obtain the recurrence T (1) = O(1) and T (n) = T (n/2) + O(n)

• This recurrence solves to give T (n) = O(n)

Theory in Programming Practice, Plaxton, Fall 2005



Parallel Complexity of the LF Scheme

• Let T (n) denote the parallel running time of the LF scheme using n
processors

• We obtain the recurrence T (1) = O(1) and T (n) = T (n/2) + O(1)

• This recurrence solves to give T (n) = O(log n)

• In fact, the LF scheme can be used to compute prefix sum in O(log n)
time using only n/ log n processors

– The overhead at the top level of recursion is O(log n), but it drops
off by a factor of two at each successive level

– This parallel algorithm is considered to be “work-efficient” because
its processor-time product is equal (to within a constant factor) to
the sequential time complexity

Theory in Programming Practice, Plaxton, Fall 2005


