Parallel Recursion: Ladner-Fischer Parallel Prefix Sum

Greg Plaxton Theory in Programming Practice, Fall 2005 Department of Computer Science University of Texas at Austin

Prefix Sum

- Fix an associative binary operator \oplus defined over some domain
 - Let 0 denote a left identity element of \oplus , i.e., assume that $0 \oplus x = x$ for all x in the domain of \oplus
- Throughout our discussion of parallel prefix, we consider only powerlists for which the elements are drawn from the domain of \oplus
- The parallel prefix problem is to compute the function that maps any given powerlist $p = \langle x_0 \dots x_{n-1} \rangle$ to the powerlist

$$\langle x_0 \ (x_0 \oplus x_1) \ (x_0 \oplus x_1 \oplus x_2) \ \dots \ (x_0 \oplus \dots \oplus x_{n-1}) \rangle$$

• For the sake of brevity, we refer to this function as f in what follows

Ladner-Fischer Parallel Prefix Scheme

• If n > 1, apply \oplus to successive pairs of elements to obtain the length-n/2 powerlist

$$p' = \langle (x_0 \oplus x_1) (x_2 \oplus x_3) \dots (x_{n-2} \oplus x_{n-1}) \rangle$$

• Recursively compute the prefix sum of p^\prime to obtain the length-n/2 powerlist

$$p'' = \langle (x_0 \oplus x_1) (x_0 \oplus x_1 \oplus x_2 \oplus x_3) \dots (x_0 \oplus \dots \oplus x_{n-1}) \rangle$$

- The powerlist $p^{\prime\prime}$ contains the odd-indexed elements of f(p)
- To get the even-indexed elements of f(p), take the \oplus of the powerlist obtained by shifting p'' to the right one position (and introducing a 0 in the first position) with

$$\langle x_0 \ x_2 \ x_4 \ \dots x_{n-2} \rangle$$

A Powerlist Formulation of the LF Scheme: Overview

- Definition of the * operator
- The LF scheme revisited
- A powerlist specification of the prefix sum operation
- Derivation of the LF scheme

Definition of the * Operator

- For any powerlist $p = \langle x_0 \dots x_{n-1} \rangle$, we define p^* as the powerlist $\langle 0 \ x_0 \ x_1 \dots x_{n-2} \rangle$
- Here is an inductive definition of p^{\ast}

 $\langle x \rangle^* = \langle 0 \rangle$ $(p \bowtie q)^* = q^* \bowtie p$

Remark: Some Properties of the * Operator

- Property 1: $(p \oplus q)^* = p^* \oplus q^*$
 - This property may be proven by induction
 - The proof is left as an exercise
- Property 2: $(p \bowtie q)^{**} = p^* \bowtie q^*$
 - By the definition of *, $(p\bowtie q)^{**}=(q^*\bowtie p)^*$
 - Applying the definition of * a second time yields the desired equation
- We will not need these particular properties in the proofs that follow

The LF Scheme Revisited

• Using the powerlist notation, we can write the LF scheme for computing the parallel prefix function f as follows

$$\begin{array}{lll} f(\langle x \rangle) &=& \langle x \rangle \\ f(p \Join q) &=& (t^* \oplus p) \Join t \text{ where } t = f(p \oplus q) \end{array}$$

• In what follows, we show how to derive the above equation from a powerlist-based specification of the prefix sum operation

Specification of Prefix Sum

- Consider the equation $q = q^* \oplus p$ in the given powerlist $p = \langle x_0 \dots x_{n-1} \rangle$ and the unknown powerlist $q = \langle y_0 \dots y_{n-1} \rangle$
- This equation has a unique solution in q
 - Note that $y_0 = 0 \oplus x_0 = x_0$
 - Thus $y_1 = y_0 \oplus x_1 = x_0 \oplus x_1$, so $y_2 = y_1 \oplus x_2 = x_0 \oplus x_1 \oplus x_2$, et cetera
 - In general, $y_i = x_0 \oplus x_1 \oplus \ldots \oplus x_i$, $0 \le i < n$
 - In other words, the unique solution (in q) to the equation $q=q^{*}\oplus p$ is f(p)

Derivation of the LF Scheme

- \bullet We wish to derive an equation for $f(p\bowtie q),$ where p and q are equal-length powerlists
- Since $f(p \bowtie q)$ is a non-singleton powerlist, there is a unique way to write it in the form $r \bowtie t$
- Our plan is to solve for r and t in what follows
- By the result of the previous slide, $r \bowtie t = (r \bowtie t)^* \oplus (p \bowtie q)$
- By the definition of *, the latter expression is equal to $(t^* \bowtie r) \oplus (p \bowtie q)$
- Since \oplus is a pointwise operator, \oplus and \bowtie commute and the previous expression can be rewritten as $(t^* \oplus p) \bowtie (r \oplus q)$

Derivation of the LF Scheme (continued)

- Thus far we have established that $r \bowtie t = (t^* \oplus p) \bowtie (r \oplus q)$
 - By unique deconstruction, $r=t^{*}\oplus p$ and $t=r\oplus q$
 - Hence $t = (t^* \oplus p) \oplus q = t^* \oplus (p \oplus q)$
 - Earlier we saw that the unique solution to this equation is $t = f(p \oplus q)$
- In summary, we have shown that $f(p\bowtie q)$ is equal to $(t^*\oplus p)\bowtie t$ where $t=f(p\oplus q)$
 - In effect we have derived the powerlist-based formulation of the LF scheme stated earlier

Sequential Complexity of the LF Scheme

- Let ${\cal T}(n)$ denote the sequential running time of the LF scheme
- We obtain the recurrence T(1) = O(1) and T(n) = T(n/2) + O(n)
- This recurrence solves to give T(n) = O(n)

Parallel Complexity of the LF Scheme

- Let T(n) denote the parallel running time of the LF scheme using n processors
- We obtain the recurrence T(1) = O(1) and T(n) = T(n/2) + O(1)
- This recurrence solves to give $T(n) = O(\log n)$
- In fact, the LF scheme can be used to compute prefix sum in $O(\log n)$ time using only $n/\log n$ processors
 - The overhead at the top level of recursion is $O(\log n)$, but it drops off by a factor of two at each successive level
 - This parallel algorithm is considered to be "work-efficient" because its processor-time product is equal (to within a constant factor) to the sequential time complexity