
String Matching: Rabin-Karp Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005

Department of Computer Science
University of Texas at Austin



The (Exact) String Matching Problem

• The (exact) string matching problem: Given a text string t and a
pattern string p, find all occurrences of p in t

• A naive algorithm for this problem simply considers all possible starting
positions i of a matching string within t, and compares p to the
substring of t beginning at each such position i

– The worst-case complexity of this algorithm is Θ(mn), where m
denotes the length of p and n denotes the length of t

– Can we do better?

Theory in Programming Practice, Plaxton, Fall 2005



Three Efficient String Matching Algorithms

• Rabin-Karp (today)

– This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

– The worst case running time is as bad as that of the naive algorithm,
i.e., Θ(mn)

• Knuth-Morris-Pratt

– The worst case running time of this algorithm is linear, i.e., O(m+n)

• Boyer-Moore

– This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

– The worst case running time is as bad as that of the naive algorithm

Theory in Programming Practice, Plaxton, Fall 2005



The Rabin-Karp String Matching Algorithm

• Assume the text string t is of length m and the pattern string p is of
length n

• Let si denote the length-n contiguous substring of t beginning at offset
i ≥ 0

– So, for example, s0 is the length-n prefix of t

• The main idea is to use a hash function h to map each si to a good-
sized set such as the set of the first k nonnegative integers, for some
suitable k

– Initially, we compute h(p)

– Whenever we encounter an i for which h(si) = h(p), we check for a
match as in the naive algorithm

– If h(si) 6= h(p), we don’t need to check for a match

Theory in Programming Practice, Plaxton, Fall 2005



The Choice of Hash Function

• It should be easy to compare two hash values

– For example, if the range of the hash function is a set of sufficiently
small nonnegative integers, then two hash values can be compared
with a single machine instruction

• The number of false positives induced by the hash function should be
similar to that achieved by a “random” function

– If the range of the hash function is of size k, we’d like each hash
value to be achieved by approximately the same number of n-symbol
strings (where n is the length of the pattern)

• It should be easy (e.g., a constant number of machine instructions) to
compute h(si+1) given h(si)

Theory in Programming Practice, Plaxton, Fall 2005



A Possible Choice for the Hash Function

• Suppose we hash each string to the XOR of the ASCII values of its
characters

– Is this a good choice of hash function with respect to the criteria
mentioned on the previous slide?

• What if we hash each string to the sum of the ASCII values of its
characters?

• What if we view each string as a nonnegative number?

– For example, an ASCII string may be viewed as a base 256 number

– Alternatively, an n-symbol ASCII string may be viewed as an (8n)-bit
number

Theory in Programming Practice, Plaxton, Fall 2005



A Good Choice for the Hash Function

• View each string as a nonnegative number, but take the result modulo
k for some suitable modulus k

• For example, we might take k to be 232, to ensure that the hash values
can be stored in a 32-bit integer

• In practice the modulus k is generally taken to be a prime (e.g., a
32-bit prime) in order to better destroy any structure in the input data

– For example, note that the 8-bit ASCII codes for printable characters
all begin with a 0

– So if we use k = 232, bits 7, 15, 23, and 31 of the hash of a printable
string are guaranteed to be zero

• But can we still compute h(si+1) from h(si) efficiently?

Theory in Programming Practice, Plaxton, Fall 2005


