# String Matching: Rabin-Karp Algorithm 

Greg Plaxton

Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin

## The (Exact) String Matching Problem

- The (exact) string matching problem: Given a text string $t$ and a pattern string $p$, find all occurrences of $p$ in $t$
- A naive algorithm for this problem simply considers all possible starting positions $i$ of a matching string within $t$, and compares $p$ to the substring of $t$ beginning at each such position $i$
- The worst-case complexity of this algorithm is $\Theta(m n)$, where $m$ denotes the length of $p$ and $n$ denotes the length of $t$
- Can we do better?


## Three Efficient String Matching Algorithms

- Rabin-Karp (today)
- This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
- The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(m n)$
- Knuth-Morris-Pratt
- The worst case running time of this algorithm is linear, i.e., $O(m+n)$
- Boyer-Moore
- This algorithm tends to have the best performance in practice, as it often runs in sublinear time
- The worst case running time is as bad as that of the naive algorithm


## The Rabin-Karp String Matching Algorithm

- Assume the text string $t$ is of length $m$ and the pattern string $p$ is of length $n$
- Let $s_{i}$ denote the length- $n$ contiguous substring of $t$ beginning at offset $i \geq 0$
- So, for example, $s_{0}$ is the length- $n$ prefix of $t$
- The main idea is to use a hash function $h$ to map each $s_{i}$ to a goodsized set such as the set of the first $k$ nonnegative integers, for some suitable $k$
- Initially, we compute $h(p)$
- Whenever we encounter an $i$ for which $h\left(s_{i}\right)=h(p)$, we check for a match as in the naive algorithm
- If $h\left(s_{i}\right) \neq h(p)$, we don't need to check for a match


## The Choice of Hash Function

- It should be easy to compare two hash values
- For example, if the range of the hash function is a set of sufficiently small nonnegative integers, then two hash values can be compared with a single machine instruction
- The number of false positives induced by the hash function should be similar to that achieved by a "random" function
- If the range of the hash function is of size $k$, we'd like each hash value to be achieved by approximately the same number of $n$-symbol strings (where $n$ is the length of the pattern)
- It should be easy (e.g., a constant number of machine instructions) to compute $h\left(s_{i+1}\right)$ given $h\left(s_{i}\right)$


## A Possible Choice for the Hash Function

- Suppose we hash each string to the XOR of the ASCII values of its characters
- Is this a good choice of hash function with respect to the criteria mentioned on the previous slide?
- What if we hash each string to the sum of the ASCII values of its characters?
- What if we view each string as a nonnegative number?
- For example, an ASCII string may be viewed as a base 256 number
- Alternatively, an $n$-symbol ASCII string may be viewed as an ( $8 n$ )-bit number


## A Good Choice for the Hash Function

- View each string as a nonnegative number, but take the result modulo $k$ for some suitable modulus $k$
- For example, we might take $k$ to be $2^{32}$, to ensure that the hash values can be stored in a 32-bit integer
- In practice the modulus $k$ is generally taken to be a prime (e.g., a 32-bit prime) in order to better destroy any structure in the input data
- For example, note that the 8-bit ASCII codes for printable characters all begin with a 0
- So if we use $k=2^{32}$, bits $7,15,23$, and 31 of the hash of a printable string are guaranteed to be zero
- But can we still compute $h\left(s_{i+1}\right)$ from $h\left(s_{i}\right)$ efficiently?

