String Matching: Boyer-Moore Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin
Notation

• We abbreviate \(\min\{p - r \mid r \in R\} \) as \(\min(p - R) \)

• In general, if \(S \) is a set of strings and \(e(S) \) an expression that includes \(S \) as a term, then \(\min(e(S)) = \min\{e(i) \mid i \in S\} \), where \(e(i) \) is obtained from \(e \) by replacing \(S \) by \(i \)

• We adopt the convention that the minimum of the empty set is \(\infty \)
Basic Definitions

• Let \(R \) denote \(R' \cup R'' \), where \(R' \) is

\[
\{ r \text{ is a proper prefix of } p \land r \text{ is a suffix of } s \}
\]

and \(R'' \) is

\[
\{ r \text{ is a proper prefix of } p \land s \text{ is a suffix of } r \}
\]

• Recall that

\[
b(s) = \min \{ \overline{p} - \overline{r} \mid r \in R \}
\]

• Thus

\[
b(s) = \min(\min(\overline{p} - R'), \min(\overline{p} - R''))
\]
Properties of $b(s)$

- **P1:** $c(p) \in R$
- **P2:** $\min(\overline{p} - R') \geq \overline{p} - \overline{c(p)}$
- **P3:** If
 \[V = \{ v \mid v \text{ is a suffix of } p \land c(v) = s \} \]
 then $\min(\overline{p} - R'') = \min(V - \overline{s})$
Proof of Property P1

• P1: \(c(p) \in R \)

• From the definition of core, \(c(p) \prec p \)

• Hence, \(c(p) \) is a proper prefix of \(p \)

• Also, \(c(p) \) is a suffix of \(p \), and, since \(s \) is a suffix of \(p \), they are totally ordered, i.e., either \(c(p) \) is a suffix of \(s \) or \(s \) is a suffix of \(c(p) \)

• Hence, \(c(p) \in R \)
Proof of Property P2

• P2: $\min(\bar{p} - R') \geq \bar{p} - c(p)$

• Consider any r in R'

• Since r is a suffix of s and s is a suffix of p, r is a suffix of p

• Also, r is a proper prefix of p, so $r \prec p$

• From the definition of core, $r \preceq c(p)$, and hence $\bar{p} - \bar{r} \geq \bar{p} - c(p)$ for every r in R'
Proof of Property P3

• P3: If
 \[V = \{ v \mid v \text{ is a suffix of } p \land c(v) = s \} \]
 then \(\min(\overline{p} - R'') = \min(V - \overline{s}) \)

• We split the proof into two parts:
 – First, we show that \(\min(\overline{p} - R'') \leq \min(V - \overline{s}) \)
 – Then, we show that \(\min(\overline{p} - R'') \geq \min(V - \overline{s}) \)
Proof that $\min(\overline{p} - R'') \leq \min(V - \overline{s})$

- If V is empty, the inequality holds since the RHS is ∞; in what follows, assume that V is nonempty and let v be an arbitrary element of V.

- It is sufficient to exhibit an r in R'' such that $\overline{p} - \overline{r} = \overline{v} - \overline{s}$.

- Let r be the length-$(\overline{p} - \overline{v} + \overline{s})$ prefix of p.
 - Note that r is a proper prefix of p since $c(v) = s$ implies $\overline{v} > \overline{s}$.
 - Furthermore, s is a suffix of r since $c(v) = s$ implies that s is a prefix of v.
 - So r belongs to R'', as required.
Proof that \(\min(\overline{p} - R'') \geq \min(V - \overline{s}) \)

- If \(R'' \) is empty, the inequality holds since the LHS is \(\infty \); in what follows, assume that \(R'' \) is nonempty and let \(r \) be the string in \(R'' \) minimizing the LHS.

- It is sufficient to exhibit a \(v \) in \(V \) such that \(\overline{p} - \overline{r} = \overline{v} - \overline{s} \).

- Let \(v \) denote the length-\((\overline{p} - \overline{r} + \overline{s})\) suffix of \(p \):
 - Note that \(\overline{v} > \overline{s} \) since \(r \) is a proper prefix of \(p \).
 - Furthermore, \(s \prec v \), so \(s \preceq c(v) \).
 - If \(s \prec c(v) \), then we obtain a contradiction to the definition of \(r \) since the length-\((\overline{r} + c(v) - \overline{s}) \) prefix \(r' \) of \(p \) also belongs to \(R'' \) and yields a smaller value for the LHS.
 - Thus \(s = c(v) \) and hence \(v \) belongs to \(V \), as required.
A Formula for $b(s)$

- We now derive a formula for $b(s)$, where

$$V = \{v \mid v \text{ is a suffix of } p \land c(v) = s\}$$

\[
\begin{align*}
b(s) & = \{\text{definition of } b(s)\} \\
& = \min(\bar{p} - R) \\
& = \{\text{from (P1): } c(p) \in R\} \\
& = \min(\bar{p} - c(p), \min(\bar{p} - R)) \\
& = \{R = R' \cup R''\} \\
& = \min(\bar{p} - c(p), \min(\bar{p} - R'), \min(\bar{p} - R'')) \\
& = \{\text{from (P2): } \min(\bar{p} - R') \geq \bar{p} - c(p)\} \\
& = \min(\bar{p} - c(p), \min(\bar{p} - R'')) \\
& = \{\text{from (P3): } \min(\bar{p} - R'') = \min(V - \bar{s})\} \\
& = \min(\bar{p} - c(p), \min(V - \bar{s}))
\end{align*}
\]
Computation of b: Towards An Abstract Program

- We now develop an abstract program to compute $b(s)$, for all suffixes s of p
- We employ an array b where $b[s]$ ultimately holds the value of $b(s)$, though it is assigned different values during the computation
- Initially, we set $b[s]$ to $\overline{p} - c(p)$
- Next, for each suffix v of p (in arbitrary order)
 - Let $s = c(v)$
 - Update $b[s]$ to $\min(b[s], \overline{v} - \overline{s})$
Computation of b: An Abstract Program

- Here is our abstract program for computing $b(s)$ for all suffixes s of p
 assign $\overline{p} - c(p)$ to all elements of b;
 for all suffixes v of p do
 $s := c(v)$;
 if $b[s] > \overline{v} - \overline{s}$ then $b[s] := \overline{v} - \overline{s}$ endif
 endfor
Computation of b: Towards a Concrete Program

- The goal of the concrete program is to compute an array e, where $e[j]$ is the amount by which the pattern is to be shifted when the matched suffix is $p[j..p]$, $0 \leq j \leq p$
 - $e[j] = b[s]$, where $j + s = p$, or
 - $e[p - s] = b[s]$, for any suffix s of p

- We have no need to keep explicit prefixes and suffixes; instead, we keep their lengths, s in i and v in j

- Let array f hold the lengths of the cores of all suffixes of p suffixes v of p, i.e., $f[\bar{v}] = c(v)$
Computation of b: A Concrete Program

• Here is our concrete program for computing $b(s)$ for all suffixes s of p

 assign $\overline{p} - c(p)$ to all elements of e;
 for j, $0 \leq j \leq \overline{p}$, do
 $i := f[j]$;
 if $e[\overline{p} - i] > j - i$ then $e[\overline{p} - i] := j - i$ endif
 endfor

• It remains to compute f
Computation of f

- Here we are asked to compute the (length of the) core of every suffix of p

- Recall that the preprocessing phase of the KMP algorithm computes the core of every prefix of p in $O(p)$ time

- A symmetric approach can be used to compute the core of every suffix of p in $O(p)$ time
Computation of b: Time Complexity

- The computation of $b(s)$, for all suffixes s of p, requires computing array f and executing the concrete program presented earlier
 - Note that $c(p) = f[\overline{p}]$

- As we have indicated on the previous slide, the array f can be computed in $O(p)$ time

- Given f, the concrete program runs in $O(\overline{p})$ time since the loop iterates $O(\overline{p})$ times, and each execution of the loop body takes constant time