Compression: Other Lossless Compression
Algorithms

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin

LZ78 (Lempel-Ziv)

e The encoder and decoder each maintain a “dictionary” containing
certain words seen previously

— Initially the dictionary contains only the empty string (in practice it
is often initialized to the set of single-symbol words)

— The algorithm maintains the invariant that the encoder and decoder

dictionaries are the same (except the decoder dictionary can lag
behind by a word)

— The encoder communicates a dictionary entry to the decoder by
sending an integer index into the dictionary

— If the dictionary becomes full, a common strategy is to evict the
LRU entry

Theory in Programming Practice, Plaxton, Spring 2005

LZ78: Outline of a Single Iteration

Suppose the encoder has consumed some prefix of the input sequence

The encoder now considers successively longer prefixes of the remaining
input until it finds the first prefix ax such that o is a word in the
dictionary and ax is not a word in the dictionary

The word ax is added to the dictionary of the encoder

The word ax is communicated to the decoder by transmitting the index
1 of a and the symbol x

The decoder uses its dictionary to map ¢ to «, and then adds the word
ax to its dictionary

Theory in Programming Practice, Plaxton, Spring 2005

LZ78: Dictionary Data Structure

e |t is common to implement the dictionary as a trie

— If the set of symbols is, e.g., the 256 possible bytes, then each node
of the trie might have an array of length 256 to store its children

— While fast (linear time), this implementation is somewhat inefficient
in terms of space

— A trick that can achieve a good space-time tradeoff is to store the
children of a trie node in a linked list until the number of children is
sufficiently large (say 10 or so), and then switch to an array

— Alternatively, the children of a trie node could be stored in a hash
table

e The integers used to represent dictionary entries are indices into an
array of pointers into the trie

Theory in Programming Practice, Plaxton, Spring 2005

LZ Algorithms

e Quite a few variations of LZ77 and LZ78 have been proposed

e The LZ algorithms are popular because they run in a single pass,
provide good compression, are easy to code, and run quickly

e Used in popular compression utilities such as compress, gzip, and
WinZip

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding

e Assume an i.i.d. source with alphabet A and where the ith symbol in
A has associated probability p;, 1 <i <n = |A|

e Map each input string to a subinterval of the real interval [0, 1]

— Chop up the unit interval based on the first symbol of the string,
with the 7th symbol assigned to the subinterval

[> v D D)l

1<5<i 1<j<i

— Recursively construct the mapping within each subinterval to handle
strings of length 2, then 3, et cetera

e The encoder specifies the real interval corresponding to the next fixed-
size block of symbols to be sent

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding: Specifying a Particular Interval

e To specify an interval, the encoder sends a (variable length) bit string
that is itself interpreted as a subinterval of |0, 1]

— For example, 010 is interpreted as the interval containing all reals
with binary expansion of the form .010x%xx. .. where the x's represent
don't cares (0 or 1)

— Thus 010 corresponds to [1/4,3/8), 0 corresponds to [0,1/2), 11
corresponds to [3/4,1), et cetera

e Once the decoder has received a bit string that is entirely contained
within an interal corresponding to a particular block, it outputs that
block and proceeds to the next iteration

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding: An Example

e Consider A = {a,b} where the probability associated with a is close to
1, e.g., 0.99

— The entropy per symbol is close to zero, so a direct application of
Huffman coding performs poorly

— Even with a block size of 50, arithmetic coding communicates the
all-a's block using only a single bit since 0.99°° > 1/2

Theory in Programming Practice, Plaxton, Spring 2005

Run-Length Coding

Another technique that is useful for dealing with certain low-entropy
sources

The basic idea is to encode a run of length k& the same symbol a as the
pair (a, k)

The resulting sequence of pairs are then typically coded using some
other technique, e.g., Huffman coding
Example: FAX protocols

— Run-length coding converts document to alternating runs of white
and black pixels

— Run lengths are encoded using a fixed Huffman code that works well
on typical documents

— A long run such as 500 might be coded by passing Huffman codes
for 1284-, 128+, 1284, 64+, 52

Theory in Programming Practice, Plaxton, Spring 2005

Move-To-Front Coding

A good technique for dealing with sources where the output favors
certain symbols for a while, then favors another set of symbols, et
cetera

Keep the symbols in a list
When a symbol is transmitted, move it to the head of the list
Transmit a symbol by indicating its current position (index) in the list

The hope is that we will mostly be sending small indices

Theory in Programming Practice, Plaxton, Spring 2005

Move-To-Front Coding: Compressing the Index
Sequence

e The sequence of indices can be compressed using another method such
as Huffman coding

e An easy alternative (though perhaps unlikely to give the best
performance) is to encode each k-bit index using 2k — 1 bits as
follows

— Assume the lowest index is 1; thus k& > 0
— Send (k — 1) 0's followed by the k-bit index

— The decoder counts the leading zeros to determine k, then decodes
the k-bit index

Theory in Programming Practice, Plaxton, Spring 2005

Prediction by Partial Matching

This is essentially the approach that Shannon used in his experiments
with English text discussed in an earlier lecture

The idea is to maintain, for each string o of some fixed length £k,
the conditional probability distribution for the symbol that follows the
string «

The encoder specifies the next symbol using some appropriate code,
e.g., a Huffman code for the given probability distribution

Shannon showed that for a wide class of discrete Markov sources, the
performance of this technique approaches the entropy lower bound for
k sufficiently large

— But in practice we cannot afford to use a value of k£ that is very large

since the number of separate probability distributions to maintain is
Al

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform

e A relatively recent (1994) technique

e A number of compression algorithms have been proposed that make use
of the Burrows-Wheeler transform in combination with other techniques
such as arithmetic coding, run-length coding, and move-to-front coding

e The bzip utility is such an algorithm
— Qutperforms gzip and other LZ-based algorithms

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform: Abstract View

Take the next block of symbols to be encoded

Construct n strings corresponding to all rotations of the block,
numbering then from 0 (say)

Sort the resulting n strings

Given this sorted list of strings, transmit the index of the first string
and the sequence of last symbols

Symbols with a similar context in the original string are now grouped
together, so this sequence can be compressed using other methods

A nontrivial insight is that the information transmitted is sufficient for
decoding

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform: Implementation

The preceding high-level description seems to imply that quadratic
space is needed

In fact, each of the n rotations of the original string can be represented
by a pointer into the original string

A standard sorting utility can be used, but each comparison could be
costly in the worst case (e.g., if all of the symbols in the block are the
same)

Better worst-case guarantees can be achieved using algorithms
specifically designed for suffix sorting

Theory in Programming Practice, Plaxton, Spring 2005

