
Compression: Other Lossless Compression
Algorithms

Greg Plaxton
Theory in Programming Practice, Spring 2005

Department of Computer Science
University of Texas at Austin

LZ78 (Lempel-Ziv)

• The encoder and decoder each maintain a “dictionary” containing
certain words seen previously

– Initially the dictionary contains only the empty string (in practice it
is often initialized to the set of single-symbol words)

– The algorithm maintains the invariant that the encoder and decoder
dictionaries are the same (except the decoder dictionary can lag
behind by a word)

– The encoder communicates a dictionary entry to the decoder by
sending an integer index into the dictionary

– If the dictionary becomes full, a common strategy is to evict the
LRU entry

Theory in Programming Practice, Plaxton, Spring 2005

LZ78: Outline of a Single Iteration

• Suppose the encoder has consumed some prefix of the input sequence

• The encoder now considers successively longer prefixes of the remaining
input until it finds the first prefix αx such that α is a word in the
dictionary and αx is not a word in the dictionary

• The word αx is added to the dictionary of the encoder

• The word αx is communicated to the decoder by transmitting the index
i of α and the symbol x

• The decoder uses its dictionary to map i to α, and then adds the word
αx to its dictionary

Theory in Programming Practice, Plaxton, Spring 2005

LZ78: Dictionary Data Structure

• It is common to implement the dictionary as a trie

– If the set of symbols is, e.g., the 256 possible bytes, then each node
of the trie might have an array of length 256 to store its children

– While fast (linear time), this implementation is somewhat inefficient
in terms of space

– A trick that can achieve a good space-time tradeoff is to store the
children of a trie node in a linked list until the number of children is
sufficiently large (say 10 or so), and then switch to an array

– Alternatively, the children of a trie node could be stored in a hash
table

• The integers used to represent dictionary entries are indices into an
array of pointers into the trie

Theory in Programming Practice, Plaxton, Spring 2005

LZ Algorithms

• Quite a few variations of LZ77 and LZ78 have been proposed

• The LZ algorithms are popular because they run in a single pass,
provide good compression, are easy to code, and run quickly

• Used in popular compression utilities such as compress, gzip, and
WinZip

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding

• Assume an i.i.d. source with alphabet A and where the ith symbol in
A has associated probability pi, 1 ≤ i ≤ n = |A|

• Map each input string to a subinterval of the real interval [0, 1]

– Chop up the unit interval based on the first symbol of the string,
with the ith symbol assigned to the subinterval

[
∑

1≤j<i

pj,
∑

1≤j≤i

pj]

– Recursively construct the mapping within each subinterval to handle
strings of length 2, then 3, et cetera

• The encoder specifies the real interval corresponding to the next fixed-
size block of symbols to be sent

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding: Specifying a Particular Interval

• To specify an interval, the encoder sends a (variable length) bit string
that is itself interpreted as a subinterval of [0, 1]

– For example, 010 is interpreted as the interval containing all reals
with binary expansion of the form .010∗∗∗. . . where the ∗’s represent
don’t cares (0 or 1)

– Thus 010 corresponds to [1/4, 3/8), 0 corresponds to [0, 1/2), 11
corresponds to [3/4, 1), et cetera

• Once the decoder has received a bit string that is entirely contained
within an interal corresponding to a particular block, it outputs that
block and proceeds to the next iteration

Theory in Programming Practice, Plaxton, Spring 2005

Arithmetic Coding: An Example

• Consider A = {a, b} where the probability associated with a is close to
1, e.g., 0.99

– The entropy per symbol is close to zero, so a direct application of
Huffman coding performs poorly

– Even with a block size of 50, arithmetic coding communicates the
all-a’s block using only a single bit since 0.9950 > 1/2

Theory in Programming Practice, Plaxton, Spring 2005

Run-Length Coding

• Another technique that is useful for dealing with certain low-entropy
sources

• The basic idea is to encode a run of length k the same symbol a as the
pair (a, k)

• The resulting sequence of pairs are then typically coded using some
other technique, e.g., Huffman coding

• Example: FAX protocols

– Run-length coding converts document to alternating runs of white
and black pixels

– Run lengths are encoded using a fixed Huffman code that works well
on typical documents

– A long run such as 500 might be coded by passing Huffman codes
for 128+, 128+, 128+, 64+, 52

Theory in Programming Practice, Plaxton, Spring 2005

Move-To-Front Coding

• A good technique for dealing with sources where the output favors
certain symbols for a while, then favors another set of symbols, et
cetera

• Keep the symbols in a list

• When a symbol is transmitted, move it to the head of the list

• Transmit a symbol by indicating its current position (index) in the list

• The hope is that we will mostly be sending small indices

Theory in Programming Practice, Plaxton, Spring 2005

Move-To-Front Coding: Compressing the Index
Sequence

• The sequence of indices can be compressed using another method such
as Huffman coding

• An easy alternative (though perhaps unlikely to give the best
performance) is to encode each k-bit index using 2k − 1 bits as
follows

– Assume the lowest index is 1; thus k > 0

– Send (k − 1) 0’s followed by the k-bit index

– The decoder counts the leading zeros to determine k, then decodes
the k-bit index

Theory in Programming Practice, Plaxton, Spring 2005

Prediction by Partial Matching

• This is essentially the approach that Shannon used in his experiments
with English text discussed in an earlier lecture

• The idea is to maintain, for each string α of some fixed length k,
the conditional probability distribution for the symbol that follows the
string α

• The encoder specifies the next symbol using some appropriate code,
e.g., a Huffman code for the given probability distribution

• Shannon showed that for a wide class of discrete Markov sources, the
performance of this technique approaches the entropy lower bound for
k sufficiently large

– But in practice we cannot afford to use a value of k that is very large
since the number of separate probability distributions to maintain is
|A|k

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform

• A relatively recent (1994) technique

• A number of compression algorithms have been proposed that make use
of the Burrows-Wheeler transform in combination with other techniques
such as arithmetic coding, run-length coding, and move-to-front coding

• The bzip utility is such an algorithm

– Outperforms gzip and other LZ-based algorithms

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform: Abstract View

• Take the next block of symbols to be encoded

• Construct n strings corresponding to all rotations of the block,
numbering then from 0 (say)

• Sort the resulting n strings

• Given this sorted list of strings, transmit the index of the first string
and the sequence of last symbols

• Symbols with a similar context in the original string are now grouped
together, so this sequence can be compressed using other methods

• A nontrivial insight is that the information transmitted is sufficient for
decoding

Theory in Programming Practice, Plaxton, Spring 2005

Burrows-Wheeler Transform: Implementation

• The preceding high-level description seems to imply that quadratic
space is needed

• In fact, each of the n rotations of the original string can be represented
by a pointer into the original string

• A standard sorting utility can be used, but each comparison could be
costly in the worst case (e.g., if all of the symbols in the block are the
same)

• Better worst-case guarantees can be achieved using algorithms
specifically designed for suffix sorting

Theory in Programming Practice, Plaxton, Spring 2005

