Equivalence of Regular Expressions and FSMs

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin
Regular Language

- Recall that a language is a (possibly infinite) set of strings over some specified alphabet.

- For any FSM M, the *language accepted by M* is the set of all strings accepted by M.

- A language is *regular* if it is equal to the set of strings defined by some regular expression.

- We’ll prove that regular expressions and FSMs are equivalent in power:
 - Every FSM accepts a regular language.
 - Every regular language is accepted by some FSM.
Every FSM Accepts a Regular Language

• Fix an FSM \(M \), and number the states of \(M \) from 1 to \(n \) arbitrarily

• Let \(R_{ij}^k \) denote the set of strings that cause \(M \) to transition from state \(i \) to state \(j \) without visiting an intermediate state numbered higher than \(k \)

• Claim: For all \(i \), \(j \), and \(k \), \(R_{ij}^k \) is a regular language
 – We’ll prove the claim by induction on \(k \geq 0 \)
 – Why does the claim imply the desired result?

• The key observation for carrying out the induction step is that

\[
R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}
\]
Every Regular Language is Accepted by Some FSM

- We prove this result in three stages:
 - First, we define the notion of a nondeterministic FSM and prove that deterministic and nondeterministic FSMs are equivalent in power
 - Second, we define the notion of a nondeterministic FSM with \(\epsilon \)-transitions and prove that nondeterministic FSMs with and without \(\epsilon \)-transitions are equivalent in power
 - Finally, we prove that every regular language is accepted by some nondeterministic FSM with \(\epsilon \)-transitions
Nondeterministic Finite State Machines

- A nondeterministic FSM is the same as a (deterministic) FSM except that the transition function maps each state/symbol pair to a (possibly empty) subset of the states, as opposed to a single state.

- When we run a nondeterministic machine on a given input string, we repeatedly choose the next state arbitrarily from the subset specified by the transition function.
 - An execution is *good* if the transition function never specifies an empty subset from which to choose the next state; otherwise, it is *bad*.
 - A nondeterministic FSM M is said to accept a string x if there exists some good execution of M on string x that terminates in an accepting state.
Simulation of a Nondeterministic FSM by a (Deterministic) FSM

• Fix a nondeterministic FSM M and let S denote the set of states of M

• We simulate M via an FSM M' with $2^{|S|}$ states, one corresponding to each subset of S

• The key idea is to define the transition function of M' so that the following condition holds for any input x
 – The execution of M' on input x terminates in the state of M' corresponding to the set of all states α of M such that some good execution of M on input x terminates in state α

• How do we define the accepting states of M' in order to complete the construction properly?
Nondeterministic FSMS with ϵ-Transitions

- A nondeterministic FSM with ϵ-transitions is the same as a nondeterministic FSM except that we allow transitions labeled ϵ (and called ϵ-transitions) that do not consume an input symbol.

- The notion of a good execution is the same as we had for a nondeterministic FSM without ϵ-transitions, except that whenever we find ourselves in a state with one or more outgoing ϵ-transitions, we have the option to make such a transition without consuming an input symbol.

- Acceptance is then defined in the same way as for nondeterministic FSMs:
 - A nondeterministic FSM M with ϵ-transitions is said to accept a string x if there exists some good execution of M on string x that terminates in an accepting state.
Simulation of a Nondeterministic FSM with ϵ-Transitions by a (Ordinary) Nondeterministic FSM

• Fix a nondeterministic FSM M with ϵ-transitions

• We’d like to create a nondeterministic FSM M' without ϵ-transitions that simulates M

• Let the states of M' be the same as the states of M

• We define the transition function of M' so that there is a transition from state α to state β on input symbol a if and only if M admits a path from α to β where one transition is labeled with a and the remaining transitions are ϵ-transitions

• How do we define the accepting states of M' in order to complete the construction properly?
Every Regular Language is Accepted by some Nondeterministic FSM with ϵ-Transitions

- Recall that regular languages are defined in terms of regular expressions.
- We prove the claim by structural induction on the definition of a regular expression.
- Base case: We need to exhibit machines that accept the languages \emptyset, \{\epsilon\}, and \{a\} where a is an arbitrary symbol in the alphabet.
- For the induction step, we need to consider regular expressions formed by concatenation, union, and Kleene closure of smaller regular expressions.