Parallel Recursion: Batcher’s Bitonic Sort

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin
Overview

- Compare-interchange sorting algorithms
 - Adaptive versus oblivious
 - Zero-one principle
 - Comparator networks

- Batcher’s bitonic sort
 - High-level structure
 - Bitonic merge
 - Analysis
Compare-Interchange Operation

• Given an array of \(n \) items drawn from a totally ordered set (e.g., the integers) a *compare-interchange operation* is specified by an ordered pair \((i, j)\) of distinct array indices

 – The effect of this operation is to compare the two items in array locations \(i \) and \(j \) and interchange if necessary so that, after the operation, the item in location \(i \) is at most the item in location \(j \)
Compare-Interchange Algorithm

- Given an array of \(n \) items drawn from a totally ordered set (e.g., the integers) a *compare-interchange algorithm* performs a sequence of compare-interchange operations on the array.
 - No other kinds of operations are performed on the array.

- A compare-interchange algorithm is *oblivious* if, for any given \(n \), it specifies a fixed sequence of compare-interchange operations.

- A compare-interchange algorithm that is not oblivious is *adaptive*.
 - An adaptive algorithm might take into account the outcomes of previous compare-interchange operations (i.e., whether or not an interchange took place) to decide which compare-interchange operation to perform next.
Compare-Interchange Sorting Algorithm

- A compare-interchange algorithm is a sorting algorithm if it permutes the items of any given input array into ascending order.

- Example: For $n = 3$, the sequence of compare-interchange operations $(1, 2), (1, 3), (2, 3)$ corresponds to an oblivious compare-interchange sorting algorithm.
Zero-One Principle

• Theorem: If an oblivious compare-interchange algorithm sorts all zero-one inputs (i.e., any array in which each array item is either 0 or 1), then it is a sorting algorithm

• It is sufficient to prove that the theorem holds for any fixed n, that is, if a compare-interchange algorithm sorts all 2^n zero-one inputs of length n, then it sorts any input of length n

• So let us fix n in the proof of the zero-one principle that follows

• Remark: The zero-one principle also holds for adaptive compare-interchange algorithms if we assume that ties are broken in a consistent manner
 – For example, we could break a tie between two items with equal keys according to the array indices of their initial locations
 – In this course, our use of the zero-one principle is confined to the oblivious case, so we will focus on that case in what follows
Proof of the Zero-One Principle: Overview

- Definition of a k-partitioner
- Proof of a lemma related to k-partitioners
- Proof of the zero-one principle using the k-partitioner lemma
Definition of a k-Partitioner

- Let k be an integer such that $0 \leq k \leq n$

- A compare-interchange algorithm is a k-partitioner if it permutes the items of any given array of length n so that, when the algorithm terminates, for every item x in the first k array locations, and every item y in the last $n - k$ locations, $x \leq y$
k-Partitioner Lemma

- If an oblivious compare-interchange algorithm sorts every input consisting of k 0's and $n - k$ 1's, then it is a k-partitioner
Proof of the Zero-One Principle

• By the k-partitioner lemma, it is sufficient to prove the following: If an oblivious compare-interchange algorithm is a k-partitioner for $0 \leq k \leq n$, then it is a sorting algorithm.
Comparator Networks

• An oblivious compare-interchange algorithm is also called a comparator network
 – In this context, a compare-interchange algorithm is called a comparator

• An oblivious compare-interchange sorting algorithm is also called a sorting network

• A useful pictorial representation

• Size and depth of a comparator network
A Lower Bound on the Size of any Sorting Network

- A sorting network has to be able to apply $n!$ different permutations to the input
- Therefore it needs to contain at least $\log_2(n!)$ comparators
- It is not hard to argue that $\log_2(n!) = \Theta(n \log n)$
A Lower Bound on the Depth of any Sorting Network

- Each level of a sorting network can contain at most $n/2$ comparators
- Since the size of a sorting network is $\Omega(n \log n)$, the depth is $\Omega(\log n)$
Batcher’s Bitonic Sort

- An elegant construction that achieves depth \(O(\log^2 n) \) and size \(O(n \log^2 n) \)

- Much more complicated constructions have been given that achieve depth \(O(\log n) \) and size \(O(n \log n) \)
 - As we have seen, these bounds are optimal
Batcher’s Bitonic Sort: High Level

• We will assume that n is a power of 2
• If $n = 1$, do nothing
• Otherwise, proceed as follows:
 – Partition the input into two subarrays of size $n/2$
 – Recursively sort these two subarrays in parallel
 – Merge the two sorted subarrays
Bitonic Merge: Overview

- Definition of a bitonic zero-one sequence
- Recursive construction of a comparator network that sorts any bitonic sequence
- Observe that the preceding comparator network can be used for merging two sorted zero-one sequences
Bitonic Zero-One Sequence

- A zero-one sequence is said to be bitonic if it is either of the form $0^a1^b0^c$ or it is of the form $1^a0^b1^c$, where a, b, and c are integers.
A Comparator Network that Sorts any Bitonic Zero-One Sequence

• Assume that the length of the sequence is a power of 2
• If the sequence is of length 1, do nothing
• Otherwise, proceed as follows:
 – Split the bitonic zero-one sequence of length \(n \) into the first half and the second half
 – Perform \(n/2 \) compare interchange operations in parallel of the form \((i, i + n/2)\), \(0 \leq i < n/2 \) (i.e., between corresponding items of the two halves)
 – Claim: Either the first half is all 0’s and the second half is bitonic, or the first half is bitonic and the second half is all 1’s
 – Therefore, it is sufficient to apply the same construction recursively on the two halves
Analysis of Bitonic Merge

- Let $M(n)$ denote the depth of the bitonic merging network
- $M(1) = 0$ and $M(n) = M(n/2) + 1$ for $n > 1$
- Thus $M(n) = \log_2 n$
We will assume that n is a power of 2

If $n = 1$, do nothing

Otherwise, proceed as follows:

- Partition the input into two subarrays of size $n/2$
- Recursively sort these two subarrays in parallel, one in ascending order and the other in descending order
- Observe that any 0-1 input leads to a bitonic sequence at this stage, so we can complete the sort with a bitonic merge
Analysis of Bitonic Sort

• Let $T(n)$ denote the depth of the bitonic sorting network

• $T(1) = 0$ and $T(n) = T(n/2) + \log_2 n$ for $n > 1$

• This recurrence implies $T(n) = O(\log^2 n)$

• It follows that the size of the bitonic sorting network is $O(n \log^2 n)$