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Preface

“He who loves practice without theory is like the sailor who boards ship without
a rudder and compass and never knows where he may be cast.”

Leonardo da Vinci (1452–1519)

Computer programming has been, largely, an intuitive activity. Program-
mers are taught to understand programming in operational terms, i.e., how a
computer executes a program. As the field has matured, we see many effec-
tive theories for designing and reasoning about computer programs in specific
domains. Such theories reduce the mental effort, and the amount of experimen-
tation needed to design a product. They are as indispensable for their domains
as calculus is for solving scientific and engineering problems. I am attracted
to effective theories primarily because they save labor (for the human and the
computer), and secondarily because they give us better assurance about the
properties of programs.

The original inspiration to design a computer science course which illustrates
the applications of effective theories in practice came from Elaine Rich and J
Moore. I prepared a set of notes and taught the course in the Spring and Fall
of 2003. The choice of topics and the style of presentation are my own. I have
made no effort to be comprehensive.

Greg Plaxton has used my original notes and made extensive revisions; I am
grateful to him. I am also grateful to the graduate teaching assistants, especially
Thierry Joffrain, for helping me revise the notes.

Austin, Texas Jayadev Misra
August 2006
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Chapter 1

Text Compression

1.1 Introduction

Data compression is useful and necessary in a variety of applications. These
applications can be broadly divided into two groups: transmission and storage.
Transmission involves sending a file, from a sender to a receiver, over a channel.
Compression reduces the number of bits to be transmitted, thus making the
transmission process more efficient. Storing a file in a compressed form typically
requires fewer bits, thus utilizing storage resources (including main memory
itself) more efficiently.

Data compression can be applied to any kind of data: text, image (such as
fax), audio and video. A 1-second video without compression takes around 20
megabytes (i.e., 170 megabits) and a 2-minute CD-quality uncompressed mu-
sic (44,100 samples per second with 16 bits per sample) requires more than 84
megabits. Impressive gains can be made by compressing video, for instance, be-
cause successive frames are very similar to each other in their contents. In fact,
real-time video transmission would be impossible without considerable compres-
sion. There are several new applications that generate data at prodigious rates;
certain earth orbiting satellites create around half a terabyte (1012) of data per
day. Without compression there is no hope of storing such large files in spite of
the impressive advances made in storage technologies.

Lossy and Lossless Compression Most data types, except text, are com-
pressed in such a way that a very good approximation, but not the exact content,
of the original file can be recovered by the receiver. For instance, even though
the human voice can range up to 20kHz in frequency, telephone transmissions
retain only up to about 5kHz.1 The voice that is reproduced at the receiver’s
end is a close approximation to the real thing, but it is not exact. Try lis-

1A famous theorem, known as the sampling theorem, states that the signal must be sampled
at twice this rate, i.e., around 10,000 times a second. Typically, 8 to 16 bits are produced for
each point in the sample.

9



10 CHAPTER 1. TEXT COMPRESSION

tening to your favorite CD played over a telephone line. Video transmissions
often sacrifice quality for speed of transmission. The type of compression in
such situations is called lossy, because the receiver cannot exactly reproduce
the original contents. For analog signals, all transmissions are lossy; the degree
of loss determines the quality of transmission.

Text transmissions are required to be lossless. It will be a disaster to change
even a single symbol in a text file.2 In this note, we study several lossless
compression schemes for text files. Henceforth, we use the terms string and text
file synonymously.

Error detection and correction can be applied to uncompressed as well as
compressed strings. Typically, a string to be transmitted is first compressed
and then encoded for errors. At the receiver’s end, the received string is first
decoded (error detection and correction are applied to recover the compressed
string), and then the string is decompressed.

What is the typical level of compression? The amount by which a text
string can be compressed depends on the string itself. A repetitive lyric like “Old
McDonald had a farm” can be compressed significantly, by transmitting a single
instance of a phrase that is repeated.3 I compressed a postscript file of 2,144,364
symbols to 688,529 symbols using a standard compression algorithm, gzip; so,
the compressed file is around 32% of the original in length. I found a web site4

where The Adventures of Tom Sawyer, by Mark Twain, is in uncompressed
form at 391 Kbytes and compressed form (in zip format) at 172 Kbytes; the
compressed file is around 44% of the original.

1.2 A Very Incomplete Introduction to Informa-
tion Theory

Take a random string of symbols over a given alphabet; imagine that there is
a source that spews out these symbols following some probability distribution
over the alphabet. If all symbols of the alphabet are equally probable, then
you can’t do any compression at all. However, if the probabilities of different
symbols are non-identical —say, over a binary alphabet “0” occurs with 90%
frequency and “1” with 10%— you may get significant compression. This is
because you are likely to see runs of zeros more often, and you may encode such
runs using short bit strings. A possible encoding, using 2-bit blocks, is: 00 for
0, 01 for 1, 10 for 00 and 11 for 000. We are likely to see a large number of
“000” strings which would be compressed by one bit, whereas for encoding “1”
we lose a bit.

2There are exceptions to this rule. In some cases it may not matter to the receiver if extra
white spaces are squeezed out, or the text is formatted slightly differently.

3Knuth [27] gives a delightful treatment of a number of popular songs in this vein.
4http://www.ibiblio.org/gutenberg/cgi-bin/sdb/t9.cgi/t9.cgi?entry=74

&full=yes&ftpsite=http://www.ibiblio.org/gutenberg/



1.2. A VERY INCOMPLETE INTRODUCTION TO INFORMATION THEORY11

In 1948, Claude E. Shannon [42] published “A Mathematical Theory of Com-
munication”, in which he presented the concept of entropy, which gives a quan-
titative measure of the compression that is possible. I give below an extremely
incomplete treatment of this work.

Consider a finite alphabet; it may be binary, the Roman alphabet, all the
symbols on your keyboard, or any other finite set. A random source outputs a
string of symbols from this alphabet; it has probability pi of producing the ith
symbol. Productions of successive symbols are independent, that is, for its next
output, the source selects a symbol with the given probabilities independent of
what it has produced already. The entropy, h, of the alphabet is given by

h = −∑
i pi (log pi)

where log stands for logarithm to base 2. Shannon showed that you need at least
h bits on the average to encode each symbol of the alphabet; i.e., for lossless
transmission of a (long) string of n symbols, you need at least nh bits. And, it
is possible to transmit at this rate!

To put this theory in concrete terms, suppose we have the binary alphabet
where the two symbols are equiprobable. Then,

h = −0.5× (log 0.5)− 0.5× (log 0.5)
= − log 0.5
= 1

That is, you need 1 bit on the average to encode each symbol, so you cannot
compress such strings at all! Next, suppose the two symbols are not equiprob-
able; “0” occurs with probability 0.9 and “1” with 0.1. Then,

h = −0.9× (log 0.9)− 0.1× (log 0.1)
= 0.469

The text can be compressed to less than half its size. If the distribution is even
more lop-sided, say 0.99 probability for “0” and 0.01 for “1”, then h = 0.080; it
is possible to compress the file to 8% of its size.

Exercise 1

Show that for an alphabet of size m where all symbols are equally probable, the
entropy is log m. 2

Next, consider English text. The source alphabet is usually defined as the
26 letters and the space character. There are then several models for entropy.
The zero-order model assumes that the occurrence of each character is equally
likely. Using the zero-order model, the entropy is h = log 27 = 4.75. That is, a
string of length n would have no less than 4.75× n bits.

The zero-order model does not accurately describe English texts: letters oc-
cur with different frequency. Six letters — ‘e’, ‘t’, ‘a’, ‘o’, ‘i’, ‘n’— occur over
half the time; see Tables 1.1 and 1.2. Others occur rarely, such as ‘q’ and ‘z’. In
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Letter Frequency Letter Frequency Letter Frequency Letter Frequency
a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025
m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Table 1.1: Frequencies of letters in English texts, alphabetic order

Letter Frequency Letter Frequency Letter Frequency Letter Frequency
e 0.12702 t 0.09056 a 0.08167 o 0.07507
i 0.06966 n 0.06749 s 0.06327 h 0.06094
r 0.05987 d 0.04253 l 0.04025 c 0.02782
u 0.02758 m 0.02406 w 0.02360 f 0.02228
g 0.02015 y 0.01974 p 0.01929 b 0.01492
v 0.00978 k 0.00772 j 0.00153 x 0.00150
q 0.00095 z 0.00074

Table 1.2: Frequencies of letters in English texts, descending order

the first-order model, we assume that each symbol is statistically independent
(that is, the symbols are produced independently) but we take into account
the probability distribution. The first-order model is a better predictor of fre-
quencies and it yields an entropy of 4.219 bits/symbol. For a source alphabet
including the space character, a traditional value is 4.07 bits/symbol with this
model.

Higher order models take into account the statistical dependence among the
letters, such as that ‘q’ is almost always followed by ‘u’, and that there is a
high probability of getting an ‘e’ after an ‘r’. A more accurate model of English
yields lower entropy. The third-order model yields 2.77 bits/symbol. Estimates
by Shannon [43] based on human experiments have yielded values as low as 0.6
to 1.3 bits/symbol.

Compression Techniques from Earlier Times Samuel Morse developed a
code for telegraphic transmissions in which he encoded the letters using a binary
alphabet, a dot (·) and a dash (–). He assigned shorter codes to letters like ‘e’(·)
and ‘a’(· –) that occur more often in texts, and longer codes to rarely-occurring
letters, like ‘q’(– – · –) and ‘j’(· – – –).

The Braille code, developed for use by the blind, uses a 2× 3 matrix of dots
where each dot is either flat or raised. The 6 dots provide 26 = 64 possible
combinations. After encoding all the letters, the remaining combinations are
assigned to frequently occurring words, such as “and” and “for”.
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Symbol Prob. C1 avg. length C2 avg. length C3 avg. length
a 0.05 00 0.05× 2 = 0.1 00 0.05× 2 = 0.1 000 0.05× 3 = 0.15
c 0.5 0 0.5× 1 = 0.5 01 0.5× 2 = 1.0 1 0.5× 1 = 0.5
g 0.4 1 0.4× 1 = 0.4 10 0.4× 2 = 0.8 01 0.4× 2 = 0.8
t 0.05 11 0.05× 2 = 0.1 11 0.05× 2 = 0.1 001 0.05× 3 = 0.15

exp. length = 1.1 2.0 1.6

Table 1.3: Three different codes for {a, c, g, t}

1.3 Huffman Coding

We are given a set of symbols and the probability of occurrence of each symbol
in some long piece of text. The symbols could be {0, 1} with probability 0.9
for 0 and 0.1 for 1, Or, the symbols could be {a, c, g, t} from a DNA sequence
with appropriate probabilities, or Roman letters with the probabilities shown in
Table 1.1. In many cases, particularly for text transmissions, we consider fre-
quently occurring words —such as “in”, “for”, “to”— as symbols. The problem
is to devise a code, a binary string for each symbol, so that (1) any encoded
string can be decoded (i.e., the code is uniquely decodable, see below), and (2)
the expected code length —probability of each symbol times the length of the
code assigned to it, summed over all symbols— is minimized.

Example Let the symbols {a, c, g, t} have the probabilities 0.05, 0.5, 0.4, 0.05
(in the given order). We show three different codes, C1, C2 and C3, and the
associated expected code lengths in Table 1.3.

Code C1 is not uniquely decodable because cc and a will both be encoded by
00. Code C2 encodes each symbol by a 2 bit string; so, it is no surprise that the
expected code length is 2.0 in this case. Code C3 has variable lengths for the
codes. It can be shown that C3 is optimal, i.e., it has the minimum expected
code length.

1.3.1 Uniquely Decodable Codes and Prefix Codes

We can get low expected code length by assigning short codewords to every
symbol. If we have n symbols we need n distinct codewords. But that is not
enough. As the example above shows, it may still be impossible to decode a
piece of text unambiguously. A code is uniquely decodable if every string of
symbols is encoded into a different string.

A prefix code is one in which no codeword is a prefix of another.5 The
codewords 000, 1, 01, 001 for {a, c, g, t} constitute a prefix code. A prefix code
is uniquely decodable: if two distinct strings are encoded identically, either their
first symbols are identical (then, remove their first symbols, and repeat this step

5String s is a prefix of string t if t = s ++ x, for some string x, where ++ denotes concate-
nation.
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until they have distinct first symbols), or the codeword for one first symbol is a
prefix of the other first symbol, contradicting that we have a prefix code.

It can be shown —but I will not show it in these notes— that there is an
optimal uniquely decodable code which is a prefix code. Therefore, we can limit
our attention to prefix codes only, which we do in the rest of this note.

A prefix code can be depicted by a labeled binary tree, as follows. Each leaf
is labeled with a symbol (and its associated probability), a left edge by 0 and a
right edge by 1. The codeword associated with a symbol is the sequence of bits
on the path from the root to the corresponding leaf. See Figure 1.1 for a prefix
code for {a, c, g, t} which have associated probabilities of 0.05, 0.5, 0.4, 0.05 (in
the given order).

a t

g

c

0 1

0 1

0 1

000 001

01

1

Figure 1.1: Prefix code for {a, c, g, t}

The length of a codeword is the corresponding pathlength. The weighted
pathlength of a leaf is the probability associated with it times its pathlength.
The expected code length is the sum of the weighted pathlengths over all leaves.
Henceforth, the expected code length of a tree will be called its weight, and a
tree is best if its weight is minimum. Note that there may be several best trees
for the given probabilities.

Since the symbols themselves play no role —the probabilities identify the
associated symbols— we dispense with the symbols and work with the proba-
bilities only. Since the same probability may be associated with two different
symbols, we have a bag, i.e., a multiset, of probabilities. Also, it is immaterial
that the bag elements are probabilities; the algorithm applies to any bag of
nonnegative numbers. We use the set notation for bags below.

Exercise 2

Try to construct the best tree for the following values {1, 2, 3, 4, 5, 7, 8}.
The weight of the best tree is 78. 2
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Remark: In a best tree, there is no dangling leaf; i.e., each leaf is labeled with
a distinct symbol. Therefore, every internal node (i.e., nonleaf) has exactly two
children. Such a tree is called a full binary tree.

Exercise 3
Show two possible best trees for the alphabet {0, 1, 2, 3, 4} with probabilities
{0.2, 0.4, 0.2, 0.1, 0.1}. The trees should not be mere rearrangements of each
other through reflections of subtrees. 2

0.1 0.1

0.2

0.2

0.4

0.20.4 0.2

0.1 0.1

1.3.2 Constructing An Optimal Prefix Code

Huffman has given an extremely elegant algorithm for constructing a best tree
for a given set of symbols with associated probabilities.6

The optimal prefix code construction problem is: given a bag of nonnegative
numbers, construct a best tree. That is, construct a binary tree and label its
leaves by the numbers from the bag so that the weight, i.e., the sum of the
weighted pathlengths to the leaves, is minimized.

The Huffman Algorithm If bag b has a single number, create a tree of one
node, which is both a root and a leaf, and label the node with the number.
Otherwise (the bag has at least two numbers), let u and v be the two smallest
numbers in b, not necessarily distinct. Let b′ = b − {u, v} ∪ {u + v}, i.e., b′ is
obtained from b by replacing its two smallest elements by their sum. Construct
a best tree for b′. There is a leaf node in the tree labeled u + v; expand this
node to have two children that are leaves and label them with u and v.

Illustration of Huffman’s Algorithm Given a bag {0.05, 0.5, 0.4, 0.05},
we obtain successively

b0 = {0.05, 0.5, 0.4, 0.05} , the original bag
b1 = {0.1, 0.5, 0.4} , replacing {0.05, 0.05} by their sum
b2 = {0.5, 0.5} , replacing {0.1, 0.4} by their sum
b3 = {1.0} , replacing {0.5, 0.5} by their sum

The trees corresponding to these bags are shown below:
6I call an algorithm elegant if it is easy to state and hard to prove correct.
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0.5 0.5

0.1 0.4

0.05 0.05

Best tree for b0

1.0

0.5 0.5

0.1 0.4

Best tree for b1

1.0

0.5 0.5
Best tree for b2

1.0
1.0

Best tree for b3

1.3.3 Proof of Correctness

We prove that Huffman’s algorithm yields a best tree.

Lemma 1: Let u and v be two smallest values in bag b. Then, there is a best
tree for b in which u and v are siblings.

Proof: Consider any best tree for b. Let U and V be the pathlengths to u
and v, respectively. Without loss in generality, assume that U ≥ V . Let the
sibling of u be x. (In a best tree, u has a sibling. Otherwise, delete the edge
to u, and let the parent of u become the node corresponding to value u, thus
lowering the cost.) We show that exchanging x and v does not increase the
weighted pathlength; so, the resulting tree is also a best tree in which u and v
are siblings. (Note: There is no need to consider v = x as a special case. Then
u and v are siblings and exchanging v and x has no effect.)

To compare the weighted pathlengths of the two trees, before and after the
exchange, we need only compare the sum of the weighted pathlengths to x and
v in both trees, because no other pathlength is affected by the exchange. In the
original tree, the sum of the weighted pathlengths to x and v is xU + vV ; after
the exchange it is xV + vU . We show that xU + vV ≥ xV + vU ; that is, the
weighted pathlength does not increase due to the exchange.

From the given assumptions,

U ≥ V and v ≤ x
⇒ {x− v ≥ 0. Multiply both sides of U ≥ V by x− v}

(x− v)U ≥ (x− v)V
⇒ {Arithmetic}

xU + vV ≥ xV + vU 2
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The next theorem shows that Huffman’s algorithm constructs a best tree.

Theorem: Given is a bag b. Let u and v be two smallest values in b. And,
b′ = b− {u, v} ∪ {u + v}. There is a best tree T for b such that

1. u and v are siblings in T , and

2. T ′ is a best tree for b′, where T ′ is all of T except the two nodes u and v;
see Figure 1.2.

T’

u v

u+v

Figure 1.2: The entire tree is T for b; its upper part is T ′ for b′.

Proof: From the previous lemma, there is a best tree T for b in which u and v
are siblings. This proves part 1.

Proof of part 2: Let the pathlength to the leaf u + v in T ′ be n. Then,
the pathlengths to u and v in T are n + 1. The weighted pathlength of T ,
W (T ), is obtained from W (T ′) by replacing the term n(u + v) in the sum by
(n + 1)u + (n + 1)v, i.e.,

W (T ) = W (T ′) + (u + v)

If T ′ is not a best tree for b′ then there is a better tree, say S, for b′. Replace
T ′ by S in T to create a better tree than T for b; its weighted pathlength is
W (S)+(u+v), which is lower than W (T ′)+(u+v), i.e., W (T ). This contradicts
the assumption that T is a best tree for b. 2

Exercise 4

1. What is the structure of the Huffman tree for 2n, n ≥ 0, equiprobable
symbols?

2. Show that the tree corresponding to an optimal prefix code is a full binary
tree.

3. In a best tree, consider two nodes labeled x and y, and let the correspond-
ing pathlengths be X and Y , respectively. Show that

x < y ⇒ X ≥ Y
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4. Prove or disprove (in the notation of the previous exercise)

x ≤ y ⇒ X ≥ Y , and
x = y ⇒ X ≥ Y

5. Consider the first n fibonacci numbers (start at 1). What is the structure
of the tree constructed by Huffman’s algorithm on these values?

6. Give a 1-pass algorithm to compute the weight of the optimal tree.

7. Show that the successive values computed during execution of Huffman’s
algorithm (by adding the two smallest values) are nondecreasing.

8. (Research) As we have observed, there may be many best trees for a bag.
We may wish to find the very best tree that is a best tree in which the
maximum pathlength to any node is as small as possible. The following
procedure achieves this: whenever there is a tie in choosing values, always
choose an original value rather than a value obtained through combina-
tions of previous values. Show the correctness of this method and also
that it minimizes the sum of the pathelengths among all best trees. See
Knuth [25], Section 2.3.4.5, page 404. 2

How Good is Huffman Coding? We know from Information theory (see
Section 1.2) that it is not possible to construct code whose weight is less than
the entropy, but it is possible to find codes with this value (asymptotically). It
can be shown that for any alphabet whose entropy is h, the Huffman code with
weight H satisfies:

h ≤ H < h + 1

So, Huffman coding comes extremely close to the predicted theoretical optimum
if h is reasonably large.

However, in another sense, Huffman coding leaves much to be desired. The
probabilities are very difficult to estimate if you are compressing something
other than standard English novels. How do you get the frequencies of symbols
in a postscript file? And, which ones should we choose as symbols in such a file?
The latter question is very important because files tend to have bias toward
certain phrases, and we can compress much better if we choose those as our
basic symbols.

The Lempel-Ziv code, described in the following section addresses some of
these issues.

1.3.4 Implementation

During the execution of Huffman’s algorithm, we will have a bag of elements
where each element holds a value and it points to either a leaf node —in case
it represents an original value— or a subtree —if it has been created during
the run of the algorithm. The algorithm needs a data structure on which the
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following operations can be performed efficiently: (1) remove the element with
the smallest value and (2) insert a new element. In every step, operation (1)
is performed twice and operation (2) once. The creation of a subtree from two
smaller subtrees is a constant-time operation, and is left out in the following
discussion.

A priority queue supports both operations. Implemented as a heap, the
space requirement is O(n) and each operation takes O(log n) time, where n is the
maximum number of elements. Hence, the O(n) steps of Huffman’s algorithm
can be implemented in O(n log n) time.

There is an important special case in which the algorithm can be imple-
mented in linear time. Suppose that the initial bag is available as a sorted list.
Then, each operation can be implemented in constant time. Let leaf be the
list of initial values sorted in ascending order. Let nonleaf be the list of values
generated in sequence by the algorithm (by summing the two smallest values in
leaf ∪ nonleaf ).

The important observation is that

� (monotonicity) nonleaf is an ascending sequence.

You are asked to prove this in part 7 of the exercises in Section 1.3.3.
This observation implies that the smallest element in leaf ∪ nonleaf at any

point during the execution is the smaller of the two items at the heads of leaf and
nonleaf . That item is removed from the appropriate list, and the monotonicity
property is still preserved. An item is inserted by adding it at the tail end of
nonleaf , which is correct according to monotonicity.

It is clear that leaf is accessed as a list at one end only, and nonleaf at
both ends, one end for insertion and the other for deletion. Therefore, leaf may
be implemented as a stack and nonleaf as a queue. Each operation then takes
constant time, and the whole algorithm runs in O(n) time.

1.4 Lempel-Ziv Coding

As we have noted earlier, Huffman coding achieves excellent compression when
the frequencies of the symbols can be predicted, and when we can identify the
interesting symbols. In a book, say Hamlet, we expect the string Ophelia to
occur quite frequently, and it should be treated as a single symbol. Lempel-
Ziv coding does not require the frequencies to be known a priori. Instead, the
sender scans the text from left to right identifying certain strings (henceforth,
called words) that it inserts into a dictionary. Let me illustrate the procedure
when the dictionary already contains the following words. Each word in the
dictionary has an index, simply its position.

index word
0 〈〉
1 t
2 a
3 ta
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index word transmission
0 〈〉 none
1 t (0, t)
2 a (0, a)
3 c (0, c)
4 ca (3, a)
5 g (0, g)
6 ta (1, a)
7 cc (3, c)
8 ag (2, g)
9 tac (6, c)
10 cac (4, c)
11 ta# (6,#)

Table 1.4: Transmission of taccagtaccagtaccacta# using Lempel-Ziv Code

Suppose the remaining text to be transmitted is taaattaaa. The sender
scans this text from left until it finds a string that is not in the dictionary. In
this case, t and ta are in the dictionary, but taa is not in the dictionary. The
sender adds this word to the dictionary, and assigns it the next higher index,
4. Also, it transmits this word to the receiver. But it has no need to transmit
the whole word (and, then, we will get no compression at all). The prefix of
the word excluding its last symbol, i.e., ta, is a dictionary entry (remember, the
sender scans the text just one symbol beyond a dictionary word). Therefore, it
is sufficient to transmit (3, a), where 3 is the index of ta, the prefix of taa that
is in the dictionary, and a is the last symbol of taa.

The receiver recreates the string taa, by loooking up the word with index
3 and appending a to it, and then it appends taa to the text it has created
already; also, it updates the dictionary with the entry

index word
4 taa

Initially, the dictionary has a single word, the empty string, 〈〉, as its only
(0th) entry. The sender and receiver start with this copy of the dictionary and
the sender continues its transmissions until the text is exhausted. To ensure
that the sender can always find a word which is not in the dictionary, assume
that the end of the file, written as #, occurs nowhere else in the string.

Example Consider the text taccagtaccagtaccacta#. The dictionary and the
transmissions are shown in Table 1.4. 2

It should be clear that the receiver can update the dictionary and recreate
the text from the given transmissions. Therefore, the sequence of transmissions
constitutes the compressed file. In the small example shown above, there is
hardly any compression. But for longer files with much redundancy, this scheme
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achieves excellent results. Lempel-Ziv coding is asymptotically optimal, i.e., as
the text length tends to infinity, the compression tends to the optimal value
predicted by information theory.

The dictionary size is not bounded in this scheme. In practice, the dictionary
is limited to a fixed size, like 4096 (so that each index can be encoded in 12
bits). Beyond that point, the transmissions continue in the same manner, but
the dictionary is not updated. Also, in practical implementations, the dictionary
is initially populated by all the symbols of the alphabet.

There are a number of variations of the Lempel-Ziv algorithm, all having
the prefix LZ. What I have described here is known as LZ78 [51]. Many popular
compression programs —Unix utility “compress”, “gzip”, Windows “Winzip”—
are based on some variant of the Lempel-Ziv algorithm. Another algorithm, due
to Burrows and Wheeler [9], is used in the popular “bzip” utility.

Implementation of the Dictionary We develop a data structure to imple-
ment the dictionary and the two operations on it: (1) from a given text find
the (shortest) string that is not in the dictionary, and (2) add a new entry to
the dictionary. The data structure is a special kind of tree (sometimes called a
“trie”). Associated with each node of the tree is a word of the dictionary and its
index; associated with each branch is a symbol, and branches from a node have
different associated symbols. The root node has the word 〈〉 (empty string) and
index 0 associated with it. The word associated with any node is the sequence
of symbols on the path to that node. Initially, the tree has only the root node.

Given a text string, the sender starts matching its symbols against the sym-
bols at the branches, starting at the root node. The process continues until a
node, n, is reached from which there is no branch labelled with the next in-
put symbol, s. At this point, index of n and the symbol s are transmitted.
Additionally, node n is extended with a branch labelled s.

Consider the tree shown in Figure 1.3. If the text is taccag#, the prefix tac
matches until the node with index 8. Therefore, index 8 and the next symbol, c,
are transmitted. The tree is updated by adding a branch out of node 8, labelled
c; the new node acquires the highest index, 9.

Exercise 5

1. Is it necessary to maintain the word at each node?

2. If your input alphabet is large, it will be non-trivial to look for a branch
out of a node that is labeled with a specific symbol. Devise an efficient
implementation of the tree in this case.

3. Suppose that the string Ophelia appears in the text, but none of its pre-
fixes do. How many occurrences of this string should be seen before it is
encoded as a word? 2

Acknowledgment I am grateful to Thierry Joffrain for helping me write part
of Section 1.2.
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0, <>

1,t 2,a 3,c

4,ca5,ta 6,cc7,ag

t a c

a g a c

c

8,tac

Figure 1.3: Implementation of the dictionary in Lempel-Ziv Algorithm



Chapter 2

Error Detection and
Correction

2.1 Introduction

The following description from Economist, July 3rd, 2004, captures the essence
of error correction and detection, the subject matter of this chapter. “On July
1st [2004], a spacecraft called Cassini went into orbit around Saturn —the
first probe to visit the planet since 1981. While the rockets that got it there are
surely impressive, just as impressive, and much neglected, is the communications
technology that will allow it to transmit its pictures millions of kilometers back
to Earth with antennae that use little more power than a light-bulb.

To perform this transmission through the noisy vacuum of space, Cassini
employs what are known as error-correcting codes. These contain internal tricks
that allow the receiver to determine whether what has been received is accurate
and, ideally, to reconstruct the correct version if it is not.”

First, we study the logical operator exclusive-or, which plays a central role
in error detection and correction. The operator is written as ⊕ in these notes.
It is a binary operator, and its truth table is shown in Table 2.1. Encoding true
by 1 and false by 0, we get Table 2.2, which shows that the operator is addition
modulo 2, i.e., addition in which you discard the carry.

In all cases, we apply ⊕ to bit strings of equal lengths, which we call words.
The effect is to apply ⊕ to the corresponding bits independently. Thus,

F T
F F T
T T F

Table 2.1: Truth table of exclusive-or

23
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0 1
0 0 1
1 1 0

Table 2.2: Exclusive-or as addition modulo 2

0 1 1 0
⊕

1 0 1 1
=

1 1 0 1

2.1.1 Properties of Exclusive-Or

In the following expressions x, y and z are words of the same length, 0 is a word
of all zeros, and 1 is a word of all ones. x denotes the word obtained from x by
complementing each of its bits.

� ⊕ is commutative: x⊕ y = y ⊕ x

� ⊕ is associative: (x⊕ y)⊕ z = x⊕ (y ⊕ z)

� zero and complementation: x⊕ 0 = x, x⊕ 1 = x

� inverse: x⊕ x = 0, x⊕ x = 1

� distributivity over complementation: (x⊕ y) = (x⊕ y)

� Opposite of equivalence: (x⊕ y) = (x ≡ y)

From the inverse property, we can regard ⊕ as subtraction modulo 2.

2.1.2 Dependent Set

A nonempty set of words, W , is dependent iff Ŵ = 0, where Ŵ is the exclusive-
or of all the words in W . Dependent sets are used in two applications later in
these notes, in Sections 2.5 and 2.7.2.

Observation W is dependent iff for every partition of W into subsets X and
Y , X̂ = Ŷ .
Proof: Let X and Y be any partition of W .

Ŵ = 0
≡ {X,Y is a partition of W ; so Ŵ = X̂ ⊕ Ŷ }

X̂ ⊕ Ŷ = 0
≡ {add Ŷ to both sides of this equation}
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x = α 1 β
x⊕ u = α 0 γ

u = 0s 1 β ⊕ γ

Table 2.3: Computing x⊕ x⊕ u

X̂ ⊕ Ŷ ⊕ Ŷ = Ŷ

≡ {Ŷ ⊕ Ŷ = 0 and X̂ ⊕ 0 = X̂}
X̂ = Ŷ 2

The proof of the following observation is similar to the one above and is
omitted.

Observation W is dependent iff there is a partition of W into subsets X and
Y , X̂ = Ŷ . 2

Note: The two observations above say different things. The first one says
that if W is dependent then for all partitions into X and Y we have X̂ = Ŷ ,
and, conversely, if for all partitions into X and Y we have X̂ = Ŷ , then W
is dependent. The second observation implies a stronger result than the latter
part of the first observation: if there exists any (not all) partition into U and V
such that Û = V̂ , then W is dependent. 2

Exercise 6

1. Show that x⊕ y = x⊕ y, and (x ≡ y) = (x ≡ y).

2. Show that (x ⊕ y = x ⊕ z) ≡ (y = z). As a corollary, prove that
(x⊕ y = 0) ≡ (x = y).

3. What is the condition on x and u so that (x⊕ u) < x, where x and u are
numbers written in binary?

4. Let W ′ be a set obtained from a dependent set W by either removing an
element or adding an element. Given W ′ determine W .

Solution to Part 3 of this Exercise Since (x ⊕ u) < x, there is a bit
position where x has a 1 and x⊕u has a 0, and all bits to the left of this bit are
identical in x and x⊕ u. So, x is of the form α1β and x⊕ u is of the form α0γ.
Then, taking their exclusive-or, see Table 2.3, we find that u has a string of
zeros followed by a single 1 and then another string (β ⊕ γ). Comparing x and
u in that table, x has a 1 in the position where the leading 1 bit of u appears.
This is the only relevant condition. It is not necessary that x be larger than u;
construct an example where x < u . 2
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Exercise 7
A team of people play a game in which a hat, black or white, is placed on every
one’s head. No one knows the color of the hat on his head, but each person can
see all other hats. Every one guesses his hat color (by writing it down on a piece
of paper). The team wins if every one guesses correctly, or if every one guesses
incorrectly. The team members can initially discuss and formulate a strategy,
but they can not communicate after the hats are placed on their heads.

Solution Let hj be the color of the hat on j’s head, 0 if black and 1 if white.
Let H = (⊕k :: hk), and Hj be the same expression without the term hj , i.e.,
Hj = (⊕k : k 6= j : hk). Then,

hj ⊕Hj = H, i.e.,
hj = H ⊕Hj

Each j guesses Hj as his hat color. Then, (1) if H = 0, hj = 0⊕Hj = Hj ;
so every one guesses correctly, and (2) if H = 1, hj = 1 ⊕ Hj 6= Hj ; so every
one guesses incorrectly.

Exercise 8
There are 100 men standing in a line, each with a hat on his head. Each hat is
either black or white. A man can see the hats of all those in front of him, but
not his own hat nor of those behind him. Each man is asked to guess the color
of his hat, in turn from the back of the line to the front. He shouts his guess
which every one can hear. Devise a strategy to maximize the number of correct
guesses.

A possible strategy is as follows. Number the men starting at 0 from the
back to the front. Let the guess of 2i be the color of (2i+1)’s hat, and (2i+1)’s
guess is what he heard from 2i. So, (2i + 1)’s guess is always correct; thus, half
the guesses are correct. We do considerably better in the solution, below.

Solution Number the men 0 through N from back to front. Let

hi, 0 or 1, be the color of i’s hat,
gi, be i’s guess,
Hi the exclusive-or of all succeeding hat colors, i.e., (⊕j : i < j ≤ N : hj)
Gi the exclusive-or of all preceding guesses , i.e., (⊕j : 0 ≤ j < i : gj)
Take HN = 0 and G0 = 0

Note that every i can compute Gi (from the guesses he has heard) and Hi

(from the hats he can see). For every i, including i = 0 and i = N , the guess gi

is Gi ⊕Hi. We claim that gi is a correct guess, i.e., gi = hi, for all i, i > 0.
First, observe that

Hi = Hi+1 ⊕ hi+1

⇒ {Append hi+1 to both sides, and note that hi+1 ⊕ hi+1 = 0}
Hi ⊕ hi+1 = Hi+1
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Now, we prove that gi+1 = hi+1, for all i, i ≥ 0.

gi+1

= {definition of g}
Gi+1 ⊕Hi+1

= {from the definition of G, Gi+1 = gi ⊕Gi}
gi ⊕Gi ⊕Hi+1

= {from above, Hi+1 = Hi ⊕ hi+1}
gi ⊕Gi ⊕Hi ⊕ hi+1

= {from the definition of g, gi = Gi ⊕Hi. So, gi ⊕Gi ⊕Hi = 0}
hi+1

2.2 Small Applications

2.2.1 Complementation

To complement some bit of a word is to flip it, from 1 to 0 or 0 to 1. To
selectively complement the bits of x where y has a 1, simply do

x := x⊕ y

From symmetry of the right side, the resulting value of x is also a complemen-
tation of y by x. If y is a word of all 1s, then x ⊕ y is the complement of (all
bits of) x; this is just an application of the law: x⊕ 1 = x.

Suppose we want to construct a word w from x, y and u as follows. Wherever
u has a 0 bit choose the corresponding bit of x, and wherever it has 1 choose
from y, see the example below.

u = 0 1 0 1
x = 1 1 0 0
y = 0 0 1 1
w = 1 0 0 1

Then w is, simply, ((x⊕ y) ∧ u)⊕ x, where ∧ is applied bit-wise.

Exercise 9

Prove this result. 2

2.2.2 Toggling

Consider a variable x that takes two possible values, m and n. We would like to
toggle its value from time to time: if it is m , it becomes n and vice versa. There
is a neat way to do it using exclusive-or. Define a variable t that is initially set
to m⊕ n and never changes.

toggle:: x := x⊕ t
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To see why this works, check out the two cases: before the assignment, let
the value of x be m in one case and n in the other. For x = m, the toggle sets
x to m⊕ t, i.e., m⊕m⊕ n, which is n. The other case is symmetric.

Exercise 10
Variable x assumes the values of p, q and r in cyclic order, starting with p.
Write a code fragment to assign the next value to x, using ⊕ as the primary
operator in your code. You will have to define additional variables and assign
them values along with the assignment to x.

Solution Define two other variables y and z whose values are related to x’s
by the following invariant:

x, y, z = t, t⊕ t′, t⊕ t′′

where t′ is the next value in cyclic order after t (so, p′ = q, q′ = r and r′ = p),
and t′′ is the value following t′. The invariant is established initially by letting

x, y, z = p, p⊕ q, p⊕ r

The cyclic assignment is implemented by

x := x⊕ y;
y := y ⊕ z;
z := y ⊕ z

Show that if x, y, z = t, t ⊕ t′, t ⊕ t′′ before these assignments, then x, y, z =
t′, t′ ⊕ t′′, t′ ⊕ t after the assignments (note: t′′′ = t). 2

2.2.3 Exchange

Here is a truly surprising application of ⊕. If you wish to exchange the val-
ues of two variables you usually need a temporary variable to hold one of the
values. You can exchange without using a temporary variable. The following
assignments exchange the values of x and y.

x := x⊕ y;
y := x⊕ y;
x := x⊕ y

To see that this program actually exchanges the values, suppose the values
of x and y are X and Y before the exchange. The following annotated program
shows the values they have at each stage of the computation; I have used back-
ward substitution to construct this annotation. The code is to the left and the
annotation to the right in a line.
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y = Y, (x⊕ y)⊕ y = X, i.e., x = X, y = Y
x := x⊕ y;

x⊕ (x⊕ y) = Y, (x⊕ y) = X, i.e., y = Y, (x⊕ y) = X
y := x⊕ y;

x⊕ y = Y, y = X
x := x⊕ y

x = Y, y = X

2.2.4 Storage for Doubly-Linked Lists

Each node x in a doubly-linked list stores a data value, a left pointer, x .left , to
a node and a right pointer, x .right , to a node. One or both pointers may be
nil, a special value. A property of the doubly-linked list is that for any node x

x .left 6= nil ⇒ x .left .right = x
x .right 6= nil ⇒ x .right .left = x

Typically, each node needs storage for the data value and for two pointers.
The storage for two pointers can be reduced to the storage needed for just one
pointer; store x .left ⊕ x .right at x. How do we retrieve the two pointer values
from this one value? During a computation, node x is reached from either the
left or the right side; therefore, either x .left or x .right is known. Applying ⊕ to
the known pointer value and x .left ⊕ x .right yields the other pointer value; see
the treatment of toggling in Section 2.2.2. Here, nil should be treated as 0.

We could have stored x .left + x .right and subtracted the known value from
this sum; exclusive-or is faster to apply and it avoids overflow problems.

Sometimes, nodes in a doubly-linked list are reached from some node outside
the list; imagine an array each of whose entries points to a node in a doubly-
linked list. The proposed pointer compression scheme is not useful then because
you can reach a node without knowing the value of any of its pointers.

Note: These kinds of pointer manipulations are often prevented by the
compiler of a high-level language through type checks. I don’t advocate such
manipulations except when you are programming in an assembly language, and
you need to squeeze out the last drop of performance. Even then see if there
are better alternatives; often a superior data structure or algorithm gives you
far better performance than clever tricks!1 2

2.2.5 Hamming Distance

The Hamming distance —henceforth, simply called distance— between two
words is the number of positions where they differ. Thus the distance between

1“The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other things he
avoids clever tricks like the plague”. From “The Humble Programmer” by Edsger W. Dijkstra,
1972 Turing Award lecture [14].
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1 0 0 1 and 1 1 0 0 is 2. This is the number of 1s in 1 0 0 1 ⊕ 1 1 0 0, which is
0 1 0 1.

Distance is a measure of how similar two words are; smaller the distance
greater the similarity. Observe the following properties of distance. Below, x, y
and z are words and d(x, y) is the distance between x and y.

� (d(x, y) = 0) ≡ (x = y)

� d(x, y) ≥ 0

� d(x, y) = d(y, x)

� (Triangle Inequality) d(x, y) + d(y, z) ≥ d(x, z)

In order to prove these properties, you need some facts about the number
of 1s in a word. Let count(x) be the number of 1s in x. Then, d(x, y) =
count(x⊕ y). We have the following properties of count.

count(x) ≥ 0
(count(x) = 0) ≡ (x = 0)
count(x) + count(y) = count(x⊕ y) + 2f , for some nonnegative f .

The first two properties are easy to see. For the last property, let f be the
number of positions where x and y both have 1s. In x ⊕ y, the bit values at
these positions are 0, and at every other position the number of 1s in x ⊕ y is
same as the number of 1s in that position of x and y combined. Therefore, x⊕y
has 2f fewer ones than x and y combined.

It follows from the last property that

count(x) + count(y) ≥ count(x⊕ y)
count(x) + count(y) has the same parity (even or odd) as count(x⊕ y)

The proof of Triangle Inequality is now immediate.

count(x) + count(y) ≥ count(x⊕ y)
⇒ {replace x by x⊕ y and y by y ⊕ z}

count(x⊕ y) + count(y ⊕ z) ≥ count(x⊕ y ⊕ y ⊕ z)
≡ {simplify}

count(x⊕ y) + count(y ⊕ z) ≥ count(x⊕ z)
≡ {d(x, y) = count(x⊕ y); similarly for the other terms}

d(x, y) + d(y, z) ≥ d(x, z)

Hamming distance is essential to the study of error detection (Section 2.6)
and error correction (Section 2.7).

Exercise 11
A word x has even parity if count(x) is even, otherwise it has odd parity. Show
that two words of identical parity (both even or both odd) have even distance,
and words of different parity have odd distance.
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Solution In the following proof we start with a property of count.

count(x) + count(y) has the same parity (even or odd) as count(x⊕ y)
⇒ {writing even(n) to denote that number n is even}

even(count(x) + count(y)) ≡ even(count(x⊕ y))
≡ {for any two integers p and q, even(p + q) = (even(p) ≡ even(q));

let p be count(x) and q be count(y)}
(even(count(x)) ≡ even(count(y))) ≡ even(count(x⊕ y))

≡ {count(x⊕ y) = d(x, y)}
(even(count(x)) ≡ even(count(y))) ≡ even(d(x, y))

The term even(count(x)) stands for “x has even parity”. Therefore, the first
term in the last line of the above proof, (even(count(x)) ≡ even(count(y))),
denotes that x and y have identical parity. Hence, the conclusion in the above
proof says that the distance between x and y is even iff x and y have identical
parity. 2

Exercise 12
Let w1, w2, . . . , wN be a set of unknown words. Let Wi be the exclusive-or of
all the words except wi, 1 ≤ i ≤ N . Given W1,W2, . . . , WN , can you determine
the values of w1, w2, . . . , wN? You can only apply ⊕ on the words. You may
prefer to attack the problem without reading the following hint.

Hint:
1. Show that the problem can be solved when N is even.
2. Show that the problem cannot be solved when N is odd.

A more general problem:
Investigate how to solve a general system of equations that use ⊕ as the only
operator. For example, the equations may be:

w1 ⊕ w2 ⊕ w4 = 1 0 0 1 1
w1 ⊕ w3 = 1 0 1 1 0
w2 ⊕ w3 = 0 0 0 0 1
w3 ⊕ w4 = 1 1 0 1 1

Solution Let S denote the exclusive-or of all the unknowns, i.e., S = w1 ⊕
w2 ⊕ . . .⊕ wN . Then Wi = S ⊕ wi.

1. For even N :

W1 ⊕W2 ⊕ . . .⊕WN

= {Wi = S ⊕ wi}
(S ⊕ w1)⊕ (S ⊕ w2)⊕ . . .⊕ (S ⊕ wN )

= {Regrouping terms}
(S ⊕ S ⊕ . . .⊕ S) ⊕ (w1 ⊕ w2 ⊕ . . .⊕ wN )

= {the first operand has an even number of S}
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0⊕ (w1 ⊕ w2 ⊕ . . .⊕ wN )
= {the last operand is S}

S

Once S is determined, we can compute each wi because

S ⊕Wi

= {Wi = S ⊕ wi}
S ⊕ S ⊕ wi

= {S ⊕ S = 0}
wi

2. For odd N : We show that any term that we compute is exclusive-or of
some subset of w1, w2, . . . , wN , and the subset size is even. Therefore, we
will never compute a term that represents, say, w1 because then the subset
size is odd.

To motivate the proof, suppose we have N = 5, so W1 = w2⊕w3⊕w4⊕w5,
W2 = w1⊕w3⊕w4⊕w5, W3 = w1⊕w2⊕w3⊕w4, W4 = w1⊕w2⊕w3⊕w5,
W5 = w1 ⊕ w2 ⊕ w3 ⊕ w4. Initially, each of the terms, W1, W2 etc., is
represented by a subset of unknowns of size 4. Now, suppose we compute
a new term, W1⊕W4; this represents w2⊕w3⊕w4⊕w5⊕w1⊕w2⊕w3⊕w5,
which is same as w1 ⊕ w4, again a subset of even number of terms.

The proof is as follows. Initially the proposition holds because each Wi

is the exclusive-or of all but one of the unknowns, namely wi; so the
corresponding subset size is N − 1, which is even since N is odd.

Whenever we apply ⊕ to any two terms: (1) either their subsets have
no common unknowns, so the resulting subset contains all the unknowns
from both subsets, and its size is the sum of both subset sizes, which is
even, or (2) the subsets have some number of common unknowns, which
get cancelled out from both subsets, again yielding an even number of
unknowns for the resulting subset. 2

2.2.6 The Game of Nim

The game of Nim is a beautiful illustration of the power of the exclusive-or
operator.

The game is played by two players who take turns in making moves. Initially,
there are several piles of chips and in a move a player may remove any positive
number of chips from a single pile. A player loses when he can’t make a move,
i.e., all piles are empty. We develop the conditions for a specific player to win.

Suppose there is a single pile. The first player wins by removing all chips
from that pile. Now suppose there are two piles, each with one chip, call this
initial state (1,1). The first player is forced to empty out one pile, and the
second player then removes the chip from the other pile, thus winning the game.
Finally, consider two piles, one with one chip and the other with two chips. If
the first player removes all chips from either pile, he loses. But if he removes
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one chip from the bigger pile, he creates the state (1,1) which leads to a defeat
for the second player, from the previous argument.

The Underlying Mathematics Consider the number of chips in a pile as
a word (a bit string) and take the exclusive-or of all the words. Call the state
losing if the result is 0, winning otherwise. Thus, the state (1,1) results in 0, a
losing state, whereas (1,2) gives 0 1 ⊕ 1 0 = 1 1, which is a winning state. The
final state, where all piles are empty, is a losing state. The mnemonics, losing
and winning, signify the position of a player: a player who has to make a move
in a winning state has a winning strategy, i.e., if he makes the right moves he
wins no matter what his opponent does; a player in a losing state will definitely
lose provided his opponent makes the right moves. So, one of the players has a
winning strategy based on the initial state. Of course, either player is allowed
to play stupidly and squander a winning position.

The proof of this result is based on the following state diagram. We show
that any possible move in a losing state can only lead to a winning state, thus
a player who has to move in this state cannot do anything but hope that his
opponent makes a mistake! A player in a winning state has at least one move to
transform the state to losing; of course, he can make a wrong move and remain
in the winning state, thus handing his opponent the mistake he was hoping for.
Next, we prove the claims made in this diagram.

all moves

there is a move

winninglosing

Figure 2.1: State transitions in the game of Nim

A move reduces a pile of p chips to q chips, 0 ≤ q < p. Let the exclusive-or
of the remaining piles be s. Before the move, exclusive-or of all piles was s⊕ p.
After the move it is s⊕ q. First, we show that in a losing state, i.e., s⊕ p = 0,
all possible moves establish a winning state, i.e., s⊕ q 6= 0.

s⊕ q
= {p⊕ p = 0}

s⊕ q ⊕ p⊕ p
= {s⊕ p = 0}

p⊕ q
6= {p 6= q}

0

Now, we show that there is a move in the winning state to take it to losing
state. Let the exclusive-or of all piles be u, u 6= 0. Let x be any pile that has a
1 in the same position as the leading 1 bit of u. So,
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u = 0′s 1 γ
x = α 1 β

The winning move is to replace x by x ⊕ u. We show that (1) x ⊕ u < x,
and (2) the exclusive-or of the resulting set of piles is 0, i.e., the state after the
move is a losing state.

Proof of (1): x⊕u = α 0(β⊕γ). Comparing x and x⊕u, we have x⊕u < x.
Proof of (2): The exclusive-or of the piles before the move is u; so, the

exclusive-or of the piles except x is x ⊕ u. Hence, the exclusive-or of the piles
after the move is (x⊕ u)⊕ (x⊕ u), which is 0.

Exercise 13

In a winning state let y be a pile that has a 0 in the same position as the leading
bit of u. Show that removing any number of chips from y leaves a winning state.

Solution The forms of u and y are as follows.

u = 0s 1 γ
y = α 0 β

Suppose y is reduced to y′ and the exclusive-or of the resulting set is 0. Then
u⊕ y⊕ y′ = 0, or y′ = u⊕ y. Hence, y′ = α 1 (β ⊕ γ). So, y′ > y; that is , such
a move is impossible. 2

2.3 Secure Communication

The problem in secure communication is for a sender to send a message to a
receiver so that no eavesdropper can read the message during transmission. It
is impossible to ensure that no one else can see the transmission; therefore,
the transmitted message is usually encrypted so that the eavesdropper cannot
decipher the real message. In most cases, the sender and the receiver agree on
a transmission protocol; the sender encrypts the message in such a fashion that
only the receiver can decrypt it.

In this section, I describe a very simple encryption (and decryption) scheme
whose only virtue is simplicity. Usually, this form of transmission can be bro-
ken by a determined adversary. There are now very good methods for secure
transmission, see Rivest, Shamir and Adelman [41].

The sender first converts the message to be sent to a bit string, by replacing
each symbol of the alphabet by its ascii representation, for instance. This string
is usually called the plaintext. Next, the plaintext is broken up into fixed size
blocks, typically around 64 bits in length, which are then encrypted and sent.
For encryption, the sender and the receiver agree on a key k, which is a bit
string of the same length as the block. To send a string x, the sender transmits
y, where y = x ⊕ k. The receiver, on receiving y, computes y ⊕ k which is
(x⊕ k)⊕ k, i.e., x, the original message. An eavesdropper can only see y which
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appears as pure gibberish. The transmission can only be decrypted by some
one in possession of key k.

There are many variations on this simple scheme. It is better to have a
long key, much longer than the block length, so that successive blocks are en-
crypted using different strings. When the bits from k run out, wrap around and
start reusing the bits of k from the beginning. Using a longer key reduces the
possibility of the code being broken.

This communication scheme is simple to program; in fact, encryption and
decryption have the same program. Each operation is fast, requiring time pro-
portional to a block length for encryption (and decryption). Yet, the scheme
has significant drawbacks. Any party who has the key can decode the message.
More important, any one who can decode a single block can decode all blocks
(assuming that the key length is same as the block length), because given x and
y where y = x ⊕ k, k is simply x ⊕ y. Also, the sender and the receiver will
have to agree on a key before the transmission takes place, so the keys have to
be transmitted first in a secure manner, a problem known as key exchange. For
these and other reasons, this form of encryption is rarely used in high security
applications.

Exercise 14
The following technique has been suggested for improving the security of trans-
mission. The sender encrypts the first block using the key k. He encrypts
subsequent blocks by using the previous encrypted block as the key. Is this
secure? How about using the plaintext of the previous block as the key? Sup-
pose a single block is deciphered by the eavesdropper; can he then decipher all
blocks, or all subsequent blocks? 2

2.4 Oblivious Communication

This is an interesting variation of the secure communication problem. Alice has
two messages m0 and m1. Bob requests one of these messages from Alice. The
restriction is that Alice should not know which message has been requested (so,
she has to send both messages in some encoded form) and Bob should be able
to extract the message he has requested, but know nothing about the message
he has not requested.

We solve the problem using a trusted third party, Charles, who merely sup-
plies additional data to both Alice and Bob. Charles creates two messages, r0

and r1, and sends both to Alice; she will use these messages as masks for m0

and m1. Also, Charles creates a single bit d, and sends d and rd to Bob.
Now, suppose Bob needs rc, c ∈ {0, 1}. Then he sends e, where e = c ⊕ d.

Alice responds by sending a pair (f0, f1), where fi = mi ⊕ re⊕i. That is,
f0 = m0⊕ re and f1 = m1⊕ re. Bob computes fc⊕ rd; we show that this is mc.

fc ⊕ rd

= mc ⊕ re⊕c ⊕ rd

= mc ⊕ rc⊕d⊕c ⊕ rd
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= mc ⊕ rd ⊕ rd

= mc

We claim that Alice does not know c, because she receives e which tells her
nothing about c. And, Bob does not know mc from the message he receives
from Alice. All he can do is apply exclusive-or with rd. Computing fc⊕rd gives

fc ⊕ rd

= mc ⊕ re⊕c ⊕ rd

= mc ⊕ rc⊕d⊕c ⊕ rd

= mc ⊕ r1⊕d ⊕ rd

= mc ⊕ rd ⊕ rd

= mc ⊕ r0 ⊕ r1

Since r0 and r1 are arbitrary messages, this has no further simplification.

2.5 RAID Architecture

The following scenario is common in corporate data centers. A large database,
consisting of millions of records, is stored on a number of disks. Since disks may
fail, data is stored on backup disks also. One common strategy is to partition
the records of the database and store each partition on a disk, and also on a
backup disk. Then, failure of one disk causes no difficulty. Even when multiple
disks fail, the data can be recovered provided both disks for a partition do not
fail.

There is a different strategy, known as RAID, that has gained popularity
because it needs only one additional disk beyond the primary data disks, and
it can tolerate failure of any one disk.

Imagine that the database is a matrix of bits, where each row represents a
record, and each column a specific bit in all records. Store each column on a
separate disk and store the exclusive-or of all columns on a backup disk. Let ci

denote the ith column, 1 ≤ i ≤ N , in the database. Then the backup column,
c0 is given by c0 = c1 ⊕ . . . ⊕ cN . Therefore, the set of columns, c0 . . . cN , is
a dependent set, see Section 2.1.2. Then, any column ci, 0 ≤ i ≤ N , is the
exclusive-or of the remaining columns. Therefore, the contents of any failed
disk can be reconstructed from the remaining disks.

2.6 Error Detection

Message transmission is vulnerable to noise, which may cause portions of a
message to be altered. For example, message 1 1 0 0 1 may become 1 0 1 0 1.
In this section, we study methods by which a receiver can determine that the
message has been altered, and thus request retransmission. In the next section,
we discuss methods by which a receiver can correct (some of) the errors, thus
avoiding retransmission.
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Typically, a long message is broken up into fixed size blocks (extra bits,
which can be distinguished from the real ones, are added at the end of the
message so that the string fits exactly into some number of blocks; typically,
the extra bits carry information about the length and composition of the block).
Henceforth, each block is transmitted independently, and we concentrate on the
transmission of a single block.

2.6.1 Parity Check Code

Consider the following input string where spaces separate the blocks.

011 100 010 111

The sender appends a bit at the end of each block so that each 4-bit block
has an even number of 1s. This additional bit is called a parity bit, and each
block is said to have even parity. After addition of parity bits, the input string
shown above becomes,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111

Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmissions of those blocks.

If two bits (or any even number) of a block get flipped, the receiver cannot
detect the error. This is a serious problem, so simple parity check is rarely
used. In practice, the blocks are much longer (than 3, shown here) and many
additional bits are used for error detection.

Is parity coding any good? How much is the error probability reduced
if you add a single parity bit? The analysis here uses elementary probability
theory. Let p be the probability of error in the transmission of a single bit2.
The probability of correct transmission of a single bit is q, where q = 1 − p.
The probability of correct transmission of a b bit block is qb. Therefore, the
probability that there is an undetected error in the block is 1−qb. For p = 10−4

and b = 12, this probability is around 1.2× 10−3.
With the addition of a parity bit, we have to send b+1 bits. But we can detect

one error if it arises. So, the probability of undetected error is 1− the probability
that there is no error in transmission − the probability that there is a single
error in transmission. The probability that there is no error in transmission is
qb+1. The probability that there is a single error can be computed as follows: it

2I am assuming that all errors are independent, a thoroughly false assumption when burst
errors can arise.
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1 0 1 1 1
0 1 1 1 1
1 1 1 0 1
0 0 1 1 0
0 0 0 1 1

Table 2.4: Adding parity bits to rows and columns

is the probability that the first bit is incorrectly transmitted and the remaining
bits are correctly transmitted (p×qb) plus the probability that the second bit is
incorrectly transmitted and the remaining bits are correctly transmitted (same
probability) plus . . .. Therefore, the probability of a single error is (b+1)×p×qb.
Hence, the probability of undetected error is 1− qb+1− (b + 1)× p× qb. Setting
b, p, q = 12, 10−4, 1− 10−4, this probability is around 9.4× 10−7, several orders
of magnitude smaller than 1.2× 10−3.

2.6.2 Horizontal and Vertical Parity Check

A simple generalization of the simple parity check scheme is described next.
We regard the data as a matrix of bits, not just a linear string. For instance,
we may break up a 16 bit block into 4 subblocks, each of length 4. We regard
each subblock as the row of a matrix, so, column i is the sequence of ith bits
from each subblock. Then we add parity bits to each row and column, and a
single bit for the entire matrix. In Table 2.4, 4 subblocks of length 4 each are
transformed into 5 subblocks of length 5 each.

We can now detect odd number of errors in rows or columns . If two adjacent
bits in a row get altered, the row parity remains the same but the column parities
for the affected columns are altered.

The most common use of this scheme is in transmitting a sequence of ascii
characters. Each character is a 8-bit string, which we regard as a row. And 8
characters make up a block.

Exercise 15
Show an error pattern in Table 2.4 that will not be detected by this method. 2

Exercise 16
Develop a RAID architecture based on two-dimensional parity bits. 2

2.7 Error Correction

In many practical situations, retransmission is expensive or impossible. For
example, when the sender is a spacecraft from a distant planet, the time of
transmission can be measured in days; so, retransmission adds significant delay,
and the spacecraft will have to store a huge amount of data awaiting any re-
transmission request. Even more impractical is to request retransmission of the
music on a CD whose artist is dead.
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Original With Parity Additional Bits
00 000 00000
01 011 01101
10 101 10110
11 110 11011

Table 2.5: Coding for error correction; parity bits are in bold

Codeword Received Word Hamming Distance
00000 11010 3
01101 11010 4
10110 11010 2
11011 11010 1

Table 2.6: Computing Hamming distance to codewords

2.7.1 A Naive Error-Correcting Code

When retransmission is not feasible, the sender encodes the messages in such a
way that the receiver can detect and correct some of the errors. As an example,
suppose that the sender plans to send a 2-bit message. Adding a parity bit
increases the block length to 3. Repeating the original 2-bit message after that
gives a 5-bit block, as shown in Table 2.5.

Each of the possible blocks —in this case, 5-bit blocks— is called a codeword.
Codewords are the only possible messages (blocks) that will be sent. So, if the
sender plans to send 11, he will send 11011. In the example of Table 2.5, there
are only four 5-bit codewords, instead of 32 possible ones. This means that it
will take longer to transmit a message, because many redundant bits will be
transmitted. The redundancy allows us to detect and correct errors.

For the given example, we can detect two errors and correct one error in
transmission. Suppose 11011 is changed to 11010. The receiver observes that
this is not a codeword, so he has detected an error. He corrects the error
by looking for the nearest codeword, the one that has the smallest Hamming
distance from the received word. The computation is shown in Table 2.6. As
shown there, the receiver concludes that the original transmission is 11011.

Now suppose two bits of the original transmission are altered, so that 11011
is changed to 10010. The computation is shown in Table 2.7. The receiver will
detect that there is an error, but based on distances, he will assume that 10110
was sent. We can show that this particular encoding can correct one error only.
The number of errors that can be detected/corrected depends on the Hamming
distance among the codewords, as given by the following theorem.

Theorem 1 Let h be the Hamming distance between the nearest two code-
words. It is possible to detect any number of errors less than h and correct any



40 CHAPTER 2. ERROR DETECTION AND CORRECTION

Codeword Received Word Hamming Distance
00000 10010 2
01101 10010 5
10110 10010 1
11011 10010 2

Table 2.7: Hamming distance when there are two errors

number of errors less than h/2.

Proof: The statement of the theorem is as follows. Suppose codeword x is
transmitted and string y received.

1. if d(x, y) < h: the receiver can detect if errors have been introduced during
transmission.

2. if d(x, y) < h/2: the receiver can correct the errors, if any. It picks the
closest codeword to y, and that is x.

Proof of (1): The distance between any two distinct codewords is at least
h. The distance between x and y is less than h. So, either x = y or y is
not a codeword. Therefore, the receiver can detect errors as follows: if y is
a codeword, there is no error in transmission, and if y is not a codeword, the
transmission is erroneous.

Proof of (2): We show that the closest codeword to y is x, i.e., for any other
codeword z, d(y, z) > d(x, y).

d(x, y) + d(y, z)
≥ {triangle inequality}

d(x, z)
≥ {x and z are codewords, and their distance is at least h}

h
> {d(x, y) < h/2. Hence, h > 2d(x, y)}

2d(x, y)

From this proof

d(x, y) + d(y, z) > 2d(x, y), or
d(y, z) > d(x, y)

Exercise 17

Compute the nearest distance among the codewords in Table 2.5. 2

It is clear from Theorem 1 that we should choose codewords to maximize h.
But with a fixed block length, the number of codewords decreases drastically
with increasing h. Table 2.8 shows the number of codewords for certain values
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Block length h = 3 h = 5 h = 7
5 4 2 -
7 16 2 2
10 72-79 12 2
16 2560-3276 256-340 36-37

Table 2.8: Number of codewords for given block lengths and h

of the block length and h; an entry like 72-79 denotes that the exact value is
not known, but it lies within the given interval. Note that the decrease along a
row is quite dramatic.

The coding scheme described in this section can correct one error, as follows.
Suppose the sender wishes to send a bit string b; then it sends bpb, where p is the
parity bit. At most one error is introduced during transmission, so the receiver
sees b′p′b′′ where the first b could be altered to b′, p altered to p′ and the second
copy of b to b′′. The receiver can deduce the following. If both b′p′ and p′b′′

have even parity, then there is no error and b′ = b′′ = b. If one side, say b′p′

has odd parity and p′b′′ has even parity then b′′ = b; the error occurs in b′. If
both b′p′ and p′b′′ have odd parity, then the parity bit has been corrupted and
b′ = b′′ = b.

This scheme is extremely wasteful in the use of transmitted bits; only one
error can be corrected at the expense of transmitting more than double the
number of bits. We will see a more efficient scheme in the next section.

Exercise 18
Prove that the parity check code of Section 2.6.1 can be used to detect at most
one error, but cannot be used to correct any error. 2

2.7.2 Hamming Code

The coding scheme described in this section was developed by Hamming, a
pioneer in Coding theory who introduced the notion of Hamming distance. It
requires only logarithmic number of extra bits, called check bits, and it corrects
at most one error in a transmission. The novel idea is to transmit in the check
bits the positions where the data bits are 1. Since it is impractical to actually
transmit all the positions, we will instead transmit an encoding of them, using
exclusive-or. Also, since the check bits can be corrupted as easily as the data
bits, we treat check bits and data bits symmetrically; so, we also send the
positions where the check bits are 1s. More precisely, we regard each position
number in the transmitted string as a word, and encode the check bits in such
a way that the following rule is obeyed:

� HC Rule: the set of position numbers where the data bits and check
bits are 1 form a dependent set, i.e., the exclusive-or of these positions,
regarded as words, is 0 (see Section 2.1.2).



42 CHAPTER 2. ERROR DETECTION AND CORRECTION

0 0 1 1 1 1 0 1 0 1 1 0 1
d d d d d c d d d c d c c
13 12 11 10 9 8 7 6 5 4 3 2 1

* * * * * * * *

Table 2.9: Hamming code transmission

Let us look at an example where the HC rule has been applied.

Example Consider transmission of a 13-bit string, as shown in Table 2.9. The
data bits are labeled d and the check bits c. The positions where 1s appear are
labeled by *. They form a dependent set; check that

1 0 1 1 (=11)
⊕

1 0 1 0 (=10)
⊕

1 0 0 1 (=9)
⊕

1 0 0 0 (=8)
⊕

0 1 1 0 (=6)
⊕

0 1 0 0 (=4)
⊕

0 0 1 1 (=3)
⊕

0 0 0 1 (=1)
= 0 0 0 0 2

The question for the sender is where to store the check bits (we have stored
them in positions 8, 4, 2 and 1 in the example above) and how to assign values
to them so that the set of positions is dependent. The question for the receiver
is how to decode the received string and correct a possible error.

Receiver Let P be the set of positions where the transmitted string has 1s
and P ′ where the received string has 1s. From the assumption that there is at
most one error, we have either P = P ′, P ′ = P ∪ {t}, or P = P ′ ∪ {t}, for some
position t; the latter two cases arise when the bit at position t is flipped from 0
to 1, and 1 to 0, respectively. From rule HC, P̂ = 0, where P̂ is the exclusive-or
of the words in P .

The receiver computes P̂ ′. If P = P ′, he gets P̂ ′ = P̂ = 0. If P ′ = P ∪ {t},
he gets P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. If P = P ′ ∪ {t}, he gets P̂ = P̂ ′ ⊕ {t}, or
P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. Thus, in both cases where the bit at t has been
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flipped, P̂ ′ = t. If t 6= 0, the receiver can distinguish error-free transmission
from erroneous transmission and correct the error in the latter case.

Sender We have seen from the previous paragraph that there should not be
a position numbered 0, because then error-free transmission cannot be distin-
guished from one where the bit at position 0 has been flipped. Therefore, the
positions in the transmitted string are numbered starting at 1. Each position is
an n-bit word. And, we will employ n check bits.

Check bits are put at every position that is a power of 2 and the remaining
bits are data bits. In the example given earlier, check bits are put at positions
1, 2, 4 and 8, and the remaining nine bits are data bits. So the position of
any check bit as a word has a single 1 in it. Further, no two check bit position
numbers have 1s in the same place.

Let C be the set of positions where the check bits are 1s and D the positions
where the data bits are 1s. We know D, but we don’t know C yet, because
check bits have not been assigned values. We show next that C is uniquely
determined from rule HC.

From rule HC, Ĉ ⊕ D̂ = 0. Therefore, Ĉ = D̂. Since we know D, we can
compute D̂. For the example considered earlier, D̂ = 1101. Therefore, we have
to set the check bits so that Ĉ = 1101. This is done by simply assigning the
bit string Ĉ to the check bits in order from higher to lower positions; for the
example, assign 1 to the check bit at positions 8, 4 and 1, and 0 to the check
bit at position 2. The reason this rule works is that assigning a value v to the
check bit at position 2i, i ≥ 0, in the transmitted string has the effect of setting
the ith bit of Ĉ to v.

How many check bits do we need for transmitting a given number of data
bits? Let d be the number of data bits and c the number of check bits. With
c check bits, we can encode 2c positions, i.e., 0 through 2c − 1. Since we have
decided not to have a position numbered 0 (see the discussion at the end of
the “Receiver” and the beginning of the “Sender” paragraphs), the number of
positions is at most 2c − 1. We have, d + c ≤ 2c − 1. Therefore, the number of
data bits is no more than 2c − 1− c.

2.7.3 Reed-Muller Code

You have probably emailed photographs or sent faxes. Such transmissions are
always digital; text, image, audio, video are all converted first to bit strings and
then transmitted. The receiver converts the received string to its original form.
For text strings, conversion to and from bit strings is straightforward. For a
still image, like a photograph or scanned document, the image is regarded as
a matrix: a photograph, for instance may be broken up into 200 rows, each a
strip, and each row may again be broken up into columns. It is not unusual to
have over a million elements in a matrix for a photograph the size of a page.
Each matrix element is called a pixel (for picture element). Each pixel is then
converted to a bit string and the entire matrix is transmitted in either row-major
or column-major order.
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The conversion of a pixel into a bit string is not entirely straightforward;
in fact, that is the subject matter of this section. In the most basic scheme,
each pixel in a black and white photograph is regarded as either all black or all
white, and coded by a single bit. This representation is acceptable if there are a
large number of pixels, i.e., the resolution is fine, so that the eye cannot detect
minute variations in shade within a pixel. If the resolution is low, say, an image
of the size of a page is broken up into a 80 × 110 matrix, each pixel occupies
around .01 square inch; the image will appear grainy after being converted at
the receiver.

The Mariner 4 spacecraft, in 1965, sent 22 photographs of Mars, each one
represented by a 200 × 200 matrix of pixels. Each pixel encoded 64 possible
levels of brightness, and was transmitted as a 6-bit string. A single picture,
consisting of 200 × 200 × 6 bits, was transmitted at the rate of slightly over 8
bits per second, thus requiring around 8 hours for transmission. The subsequent
Mariners, 6, 7 and 9, did a much better job. Each picture was broken down
to 700 × 832 pixels (i.e., 582,400 pixels per picture vs. 40,000 of Mariner 4)
and each pixel of 6 bits was encoded by 32 bits, i.e., 26 redundant bits were
employed for error detection and correction. The transmission rate was 16,200
bits per second. This takes around 18 minutes of transmission time per picture
of much higher quality, compared to the earlier 8 hours.

Our interest in this section is in transmitting a single pixel so that any
error in transmission can be detected and/or corrected. The emphasis is on
correction, because retransmission is not a desirable option in this application.
We study the simple Reed-Muller code employed by the later Mariners.

To motivate the discussion let us consider how to encode a pixel that has
8 possible values. We need only 3 bits, but we will encode using 8 bits, so as
to permit error correction. As pointed out in Section 2.7.1, error correcting
capability depends on the Hamming distance between the codewords. The 8-
bit code we employ has distance 4 between every pair of codewords; so, we
can detect 3 errors and correct 1. Error correction capability is low with 8-
bit codewords. The Mariners employed 32-bit codewords, where the inter-word
distance is 16; so, 15 errors could be detected and 7 corrected.

The codewords for the 8-bit Reed-Muller code are shown as rows of the
matrix in Table 2.12. The rest of this section is devoted to the construction of
2n codewords, n ≥ 1, where the Hamming distance between any two codewords
is exactly 2n−1.

Hadamard Matrix

We will define a family of 0, 1 matrices H, where Hn is a 2n×2n matrix, n ≥ 0.
In the Reed-Muller code, we take each row of the matrix to be a codeword. We
showed H3 in Table 2.12.

The family H is defined recursively.

H0 =
[

1
]
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H1 =
[

1 1
1 0

]

Table 2.10: Hadamard matrix H1

H2 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1




Table 2.11: Hadamard matrix H2

Hn+1 =




Hn Hn

Hn Hn




where Hn is the bit-wise complementation of Hn. Matrices H1 and H2 are
shown in Tables 2.10 and 2.11, and H3 appears in Table 2.12.

Hadamard matrices have many pleasing properties. The two that are of
interest to us are: (1) Hn is symmetric for all n, and (2) the Hamming distance
between any two distinct rows in Hn, n ≥ 1, is 2n−1. Since the matrices have
been defined recursively, it is no surprise that the proofs employ induction. I
will leave the proof of (1) to you. Let us prove (2), using induction on n.

For n = 1: The result can be verified for H1, shown in Table 2.10. The
distance between the two rows is 21−1.

Before we prove the inductive case, we state a simple result. In the following,
d(x, y) stands for the Hamming distance between x and y.

Observation Let p and q be words of even length, say 2× t. Then

d(p, q) = t ≡ d(p, q) = t
d(p, q) = t ≡ d(p, q) = t

H3 =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0




Table 2.12: Hadamard matrix H3: 8-bit simple Reed-Muller code
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d(p, q) = t ≡ d(p, q) = t 2

For n + 1, n ≥ 1: Consider any two distinct rows x and y of Hn+1. Let
xl and xr denote the left and right halves of row x (similarly, yl and yr are
defined); see Figure 2.2. Then, d(x, y) = d(xl, yl) + d(xr, yr). Now, both xl and
yl are rows of Hn, because the left half of Hn+1 has only such rows. But, xr

and yr may be rows of Hn, Hn or both. We consider two cases:
(1) xl and yl are the same row of Hn: (See Case 2 in Figure 2.2.) Then

d(xl, yl) = 0. Also xr = yr. So, d(xr, yr) = 2n. Hence, d(x, y) = 2n. (Note: the
inductive hypothesis has not been used in this proof.)

(2) xl and yl are distinct rows of Hn: Using the inductive hypothesis,
d(xl, yl) = 2n−1. The computation of d(xr, yr) requires a case analysis. Ei-
ther, (a) xr ∈ Hn, yr ∈ Hn (See Case 1 in Figure 2.2), (b) xr ∈ Hn, yr ∈ Hn

(See Case 2 in Figure 2.2), (c) xr ∈ Hn, yr ∈ Hn (similar to case (b) above),
or (d) xr ∈ Hn, yr ∈ Hn (See Case 3 in Figure 2.2). Therefore, either xr or
xr is from Hn and so is yr or yr. In all cases, they correspond to different rows
of Hn. By the inductive hypothesis, the two distinct rows of Hn they corre-
spond to have distance 2n−1. Using the observation above, d(xr, yr) = 2n−1.
So, d(x, y) = d(xl, yl) + d(xr, yr) = 2n−1 + 2n−1 = 2n.

x

y
x

y
x

y

xl xr

yl yr

xl xr

yl yr

xl

yl

H H H

H H H
_xr

yr

Case 1 Case 2 Case 3

H

H
_

Figure 2.2: Proof of the distance property in Hadamard matrix



Chapter 3

Cryptography

3.1 Introduction

A central problem in secure communication is the following: how can two parties,
a sender and a receiver, communicate so that no eavesdropper can deduce the
meaning of the communication?

Suppose Alice has a message to send to Bob. Henceforth, we take a mes-
sage to be a string over a specified alphabet; the string to be transmitted is
usually called plaintext. The plaintext need not be a meaningful sentence. For
instance, it could be a password or a credit card number. Any message could
be intercepted by an eavesdropper, named Eve; so, it is not advisable to send
the message in its plaintext form. Alice will encrypt the plaintext to create a
ciphertext. Alice and Bob agree on a protocol, so that only Bob knows how to
decrypt, i.e., convert the ciphertext to plaintext.

The goal of encryption and decryption is to make it hard (or impossible)
for Eve to decrypt the ciphertext while making it easy for Alice to encrypt and
Bob to decrypt. This means that Bob has some additional information, called
a key, which Eve does not possess. When Alice and Bob share knowledge of the
key, they are using a symmetric key system. Modern public key cryptography
is asymmetric; encrypting uses a public key that is known to every one while
decrypting requires a private key known only to the receiver.

The communication medium is really not important. Alice could write her
message on a piece of paper (or on a clay tablet) and mail it physically; or she
could send the message by email. Alice and Bob could engage in a telephone
conversation in which only Alice speaks. Any communication medium is vul-
nerable, so security is achieved by choosing the encryption (and decryption)
algorithms carefully.

47
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a c d k n t w
d t k w n a c

Table 3.1: Substitution code for a subset of the Roman alphabet

3.2 Early Encryption Schemes

Secure communication has been important for at least 2,500 years, for military
and romantic matters. In the very early days, the messenger simply hid the
message, sometimes using invisible ink. As late as in the second world war, the
Germans would often shrink a page of plaintext to a very small dot, less than
1mm in diameter, using photographic techniques, and then hide the dot within
a full stop in a regular letter.

The aim of cryptography is not to hide the message but its meaning. Some
of the earliest efforts simply scrambled the letters of the plaintext; this is called
a transposition cypher. Thus, attack at dawn may be scrambled to kntadatacwat
with the spaces removed. Since there are n! permutations of n symbols it may
seem impossible for even a computer to do a brute-force search to decode such
messages. Bob, the intended recipient, can decrypt only if he is given the
scrambling sequence. Transposition cyphers are, actually, quite easy to break;
so they are rarely used except by schoolchildren.

3.2.1 Substitution Cyphers

A substitution cypher replaces a symbol (or a group of symbols) by another
symbol (or a group of symbols). In the simplest case, each symbol is paired
with another, and each occurrence of a symbol is replaced by its partner. Given
the substitution code in Table 3.1, attack at dawn becomes daadtw da kdcn.

Julius Caesar used a very simple form of substitution in communicating with
his generals. He replaced the ith symbol of the alphabet by symbol (i+3) mod n,
where n, the size of the alphabet, is 26. In general, of course, we can use
any permutation of the alphabet, not merely a shift, as Caesar did. Caesar
shift cypher is very easy to break; simply try all possible shifts. A general
permutation is harder to crack, but not much harder as we will see. In all cases,
the receiver must know the permutation in order to decrypt the message.

Cryptanalysis is the name given to unscrambling an intercepted message.
For a substitution cypher, the eavesdropper can attempt a cryptanalysis based
on the frequencies of letters in long plaintexts. Table 3.2 gives the frequencies
(probability of occurrence) of letters in a piece of English text; clearly, different
texts exhibit different frequencies, but the numbers given in the table are typical.

As can be seen in Table 3.2, e is the most common letter, followed by t
and a. The cryptanalysis strategy is to replace the most common letter in the
ciphertext by e, to see if it makes any sense. If not, then we try the remaining
letters in sequence. For the plaintext attack at dawn, which has been converted
to daadtw da kdcn, we first identify the most common letter in the ciphertext,
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Letter Frequency Letter Frequency Letter Frequency Letter Frequency
a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025
m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Table 3.2: Frequencies of letters in English text

a c d k n t w
d 3 1 1 1
a 1 3

Table 3.3: Frequencies of pairs of letters

d. Replacing each occurrence of d by e, the most common symbol, gives us the
following string (I have used uppercase letters to show the guesses):

EaaEtw Ea kEcn

Since the second word is a two letter word beginning with E, which is uncommon
except for proper names, we decide to abandon the guess that d is E. We try
replacing d by t, the next most common symbol, to get

TaaTtw Ta kTcn

Now, it is natural to assume that a is really o, from the word Ta. This gives:

TOOTtw TO kTcn

It is unlikely that we can make any progress with the first word. So, we start
fresh, with d set to the next most likely letter, a.

A variation of this scheme is to consider the frequencies of pairs of letters in
the ciphertext, in the hope of eliminating certain possibilities. In Table 3.3, we
take the two most common letters in the ciphertext, d and a, and compute the
number of times they are adjacent to certain other letters; check that d and a
are adjacent to each other 3 times and d and k are adjacent just once. We see
that the adjacency of d and a is quite common. We may reasonably guess that
one of d and a is a vowel. Because of the presence of the word da, both are not
vowels.

Cryptanalysis based on frequencies takes a lot of guesswork and backtrack-
ing. Computers are well suited to this task. It is not too difficult to write a
program that does the cryptanalysis on such cyphers. One difficulty is that if
the ciphertext is short, the frequencies may not correspond to the letter fre-
quencies we expect. Consider a short text like quick quiz, which you may send
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to a friend regarding the ease of a pop quiz in this class. It will be difficult to
decipher this one through frequency analysis, though the pair qu, which occurs
twice, may help.

Exercise 19
Would it improve security to encrypt the plaintext two times instead of just
once? 2

3.2.2 Electronic Transmission

For electronic transmissions, the encryption and decryption can be considerably
more elaborate than the transposition or substitution codes. The first step in
any such transmission is to convert the message to be sent to a bit string, by
replacing each symbol of the alphabet by its ascii representation, for instance.
This string is now the plaintext. Next, the plaintext is broken up into fixed size
blocks, typically around 64 bits in length, which are then encrypted and sent.

A simple encryption scheme is as follows. Alice and Bob agree on a key k,
which is a bit string of the same length as the block. Encrypt x by y, where
y = x⊕ k, i.e., y is the exclusive or of x and k. Bob, on receiving y, computes
y ⊕ k which is (x ⊕ k) ⊕ k, i.e., x, the original message. Eve can only see y,
which appears as pure gibberish. The transmission can only be decrypted by
someone in possession of key k.

There are many variations of this simple scheme. It is better to have a
long key, much longer than the block length, so that successive blocks are en-
crypted using different strings. When the bits from k run out, wrap around and
start reusing the bits of k from the beginning. Using a longer key reduces the
possibility of the code being broken.

This communication scheme is simple to program; in fact, encryption and
decryption have the same program. Each operation is fast, requiring time pro-
portional to a block length for encryption (and decryption). Yet, the scheme
has significant drawbacks. If Eve can decode a single block, she can decode all
blocks (assuming that the key length is the same as the block length), because
given x and y where y = x ⊕ k, k is simply x ⊕ y. Also, Alice and Bob will
have to agree on a key before the transmission takes place, so the keys have to
be transmitted first in a secure manner, a problem known as key exchange. For
these and other reasons, this form of encryption is rarely used in high security
applications.

A major problem in devising a secure communication protocol is that Alice
may send several messages to Bob, and as the number of transmissions increase,
so is the probability of breaking the code. Therefore, it is advisable to use a
different key for each transmission. This idea can be implemented as follows.
Alice and Bob possess a common sequence of distinct keys, called a pad. Each
key in the pad is used for exactly one message transmission. Both parties discard
a key after it has been used; so, the pad is a one-time pad.

It can be shown that one-time pads are unbreakable. However, the major
difficulty is in sharing the pad. How can Alice and Bob agree on a pad to begin
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with? In ancient times it was conceivable that they could agree on a common
book —say, the King James version of the Bible— and use successive strings
from the book as keys. However, the need to develop different pads for each
pair of communicants, and distribute the pads efficiently (i.e., electronically)
and securely, makes this scheme impractical.

Many military victories, defeats and political intrigues over the entire course
of human history are directly attributable to security/breakability of codes.
Lively descriptions appear in a delightful book by Singh [44].

3.3 Public Key Cryptography

The coding schemes given in the last section were symmetric, in the sense that
given the encryption mechanism it is easy to see how to decrypt a message.
Thus Alice and Bob, the sender and the receiver, both share the same secret,
the key. A consequence of this observation is that the key has to be transmitted
before any data can be transmitted.

A novel idea is for Bob to publicly announce a function f that is to be
used to encrypt any plaintext to be sent to him, i.e., Alice should encrypt x
to f(x) and then send the latter to Bob. Function f is the public key of Bob.
Upon receiving the message, Bob applies the inverse function f−1, a private key,
thus obtaining f−1(f(x)), i.e., x. Eve knows f ; so, theoretically, she can also
compute x. However, f is chosen so that it is computationally intractable to
deduce f−1 given only f , that is, the computation will take an extraordinarily
long time before Eve can deduce f−1. Bob, who designed f , also designed f−1

simultaneously. So, he can decrypt the message.
Let us examine some of the implications of using public key cryptography.

First, there is no need to exchange any key, because there are no shared secrets.
There is a publicly open database in which every one posts his own public key.
Any one may join or drop out of this community at any time. Alice sends a
message to Bob by first reading his key, f , from the database, applying f to the
plaintext x and then sending f(x) to him. Eve can see who sent the message
(Alice), who will receive the message (Bob), the public key of the recipient (f)
and the ciphertext (f(x)). Yet, she is powerless, because it will take her eons
to decode this message. Note that Alice also cannot decrypt any message sent
to Bob by another party.

Function f is called one-way because it is easy to apply —f(x) can be
computed easily from x— though hard to invert, that is, to compute x from
f(x) without using additional information. Let me repeat that it is theoretically
possible to compute x given f and f(x); simply try all possible messages y of
appropriate length as candidates for x, compute f(y), and then compare it
against f(x). This is not practical for any but the very shortest x because of
the number of possible candidates. If the function f is well-chosen, Eve has no
other way of decrypting the message. If the message is 64 bits long and she
can check 1010 messages a second, it will still take around 58 years to check all
possible messages. She could, of course, be lucky, and get a break early in the
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search; but, the probability of being lucky is quite low.
The notion of computational intractability was not available to the early

cryptanalysts; it is a product of modern computer science. We now know that
there are certain problems which, though decidable, are computationally in-
tractable in that they take huge amounts of time to solve. Normally, this is
an undesirable situation. We have, however, turned this disadvantage to an
advantage by putting the burden of solving an intractable problem on Eve, the
eavesdropper.

The idea of public key cryptography using one-way functions is due to Diffie
and Hellman [13]. Rivest, Shamir and Adelman [41] were the first to propose a
specific one-way function that has remained unbroken (or, so it is believed). In
the next section, I develop the theory behind this one-way function.

3.3.1 Mathematical Preliminaries

Modular Arithmetic

Henceforth, all variables are positive integers unless stated otherwise. We write
“x mod n” for the remainder of x divided by n. Two integers x and y that have
the same remainder after division by n are said to be congruent mod n; in that
case, we write

x
mod n≡ y

That is,

(x
mod n≡ y) ≡ (x mod n = y mod n)

So, x
mod n≡ y means x− y is divisible by n.

Note that congruence (mod n) is an equivalence relation over integers. Be-
low, we list a few properties of the congruence relation. Variables u, v, p, x and
y are positive integers.

� (P1)

u
mod p≡ v,

x
mod p≡ y

u + x
mod p≡ v + y,

u− x
mod p≡ v − y,

u× x
mod p≡ v × y

� (P2; Corollary) For all n, n ≥ 0,

x
mod p≡ y

xn
mod p≡ yn
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� (Modular Simplification Rule) Let e be any expression over integers that
has only addition, subtraction, multiplication and exponention as its op-
erators. Let e′ be obtained from e by replacing any subexpression t of e

by (t mod p). Then, e
mod p≡ e′, i.e., e mod p = e′ mod p.

Note that an exponent is not a subexpression; so, it can’t be replaced by
its mod.

Examples

(20 + 5) mod 3 = ((20 mod 3) + 5) mod 3
((x× y) + g) mod p = (((x mod p)× y) + (g mod p)) mod p
xn mod p = (x mod p)n mod p
x2n mod p = (x2)n mod p = (x2 mod p)n mod p
xn mod p = xn mod p mod p, is wrong. 2

Relatively Prime Positive integers x and y are relatively prime iff gcd(x, y) =
1. By convention, 0 and x are relatively prime iff x = 1. Note that gcd(0, 0) is
undefined.

� (P3) For p and q relatively prime,

〈u mod p≡ v ∧ u
mod q≡ v〉 ≡ 〈u mod p×q≡ v〉

Exercise 20

Disprove each of the following conclusions.

u
mod p≡ v,

x
mod p≡ y

max(u, x)
mod p≡ max(v, y),

ux mod p≡ vy

Solution Use p = 3, u, v = 2, 2 and x, y = 4, 1. 2

The following rule allows us to manipulate exponents, which we can’t do
using only the modular simplification rule (see the previous exercise).

� (P4; due to Fermat) bp−1 mod p = 1, where p is prime, and b and p are
relatively prime.

Exercise 21

With b and p as in (P4) show that for any nonnegative integer m

bm mod p≡ bm mod (p−1)
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Solution Write bm as bp−1 × bp−1 . . .× bm mod (p−1). Use (P4) to reduce each
bp−1 mod p to 1. 2

Extended Euclid Algorithm

We prove the following result: given nonnegative integers x and y, where both
integers are not zero, there exist integers a and b such that

a× x + b× y = gcd(x, y).

Note that a and b need not be positive, nor are they unique. We prove the
result by applying induction on x + y.

• x = 0 and y > 0: Then gcd(x, y) = y. We have to display a and b such that

a× x + b× y = y

Setting a, b = 0, 1 satisfies the equation. Similarly, if y = 0 and x > 0, set
a, b = 1, 0.

• x > 0 and y > 0: Without loss in generality, assume that x ≥ y. Since
x− y + y < x + y, applying induction, there exist a′ and b′ such that

a′ × (x− y) + b′ × y = gcd(x− y, y)

Note that gcd(x, y) = gcd(x− y, y). Therefore,

a′ × (x− y) + b′ × y = gcd(x, y)

a′ × x + (b′ − a′)× y = gcd(x, y)

Set a, b = a′, (b′ − a′) to prove the result.

Next, consider the classical Euclid algorithm for computing gcd. We will
modify this algorithm to compute a and b as well.

u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

u, v := v, u mod v
od

{gcd(x, y) = gcd(u, v), v = 0}
{gcd(x, y) = u}

One way of computing u mod v is to explicitly compute the quotient q,
q = bu/vc, and subtract v × q from u. Thus, u, v := v, u mod v is replaced
by

q := bu/vc;
u, v := v, u− v × q
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To compute a and b as required, we augment this program by introducing
variables a, b and another pair of variables c, d, which satisfy the invariant

(a× x + b× y = u) ∧ (c× x + d× y = v)

An outline of the program is shown below.

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v)}
u, v := v, u− v × q;
a, b, c, d := a′, b′, c′, d′

β : {(a× x + b× y = u) ∧ (c× x + d× y = v)}
od

The remaining task is to calculate a′, b′, c′, d′ so that the given annotations
are correct, i.e., the invariant (a× x + b× y = u) ∧ (c× x + d× y = v) holds
at program point β. Using backward substitution, we need to show that the
following proposition holds at program point α.

(a′ × x + b′ × y = v) ∧ (c′ × x + d′ × y = u− v × q)

We are given that the proposition (a × x + b × y = u) ∧ (c × x + d × y = v)
holds at α. Therefore, we may set

a′, b′ = c, d

Now, we compute c′ and d′.

c′ × x + d′ × y
= {from the invariant}

u− v × q
= {a× x + b× y = u and c× x + d× y = v}

(a× x + b× y)− (c× x + d× y)× q
= {algebra}

(a− c× q)× x + (b− d× q)× y

So, we may set

c′, d′ = a− c× q, b− d× q

The complete algorithm is:

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v)}
u, v := v, u− v × q;
a, b, c, d := c, d, a− c× q, b− d× q
β : {(a× x + b× y = u) ∧ (c× x + d× y = v)}

od
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a b u c d v q
1 0 157 0 1 2668

0
0 1 2668 1 0 157

16
1 0 157 −16 1 156

1
−16 1 156 17 −1 1

156
17 −1 1 −2668 157 0

Table 3.4: Computation with the extended Euclid algorithm

At the termination of the algorithm,

a× x + b× y
= {from the invariant}

u
= {u = gcd(x, y), from the annotation of the first program in page 54}

gcd(x, y)

Example Let x, y = 157, 2668. In Table 3.4, we show the steps of the extended
Euclid algorithm. 2

Exercise 22

Show that the given algorithm terminates. Also, prove that α : {(a×x+b×y =
u) ∧ (c×x + d× y = v)} is a loop invariant. Use the annotations shown in the
program. 2

3.3.2 The RSA Scheme

Joining the Cryptosystem

A principal, such as Bob, joins the public key cryptosystem by following the
steps given below.

� Choose two large primes p and q. There are efficient probabilistic schemes
for computing p and q.

� Let n = p× q. And, define φ(n) = (p− 1)× (q − 1). Any message below
n in value can be encrypted.

� Choose an integer d, 1 ≤ d < n, where d and φ(n) are relatively prime. In
particular, any prime exceeding max(p, q) is a valid choice for d.
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� Find e such that d× e
mod φ(n)≡ 1.

Computation of e is based on the Extended Euclid algorithm of page 54.
Set x := d and y := φ(n) in the formula a× x + b× y = gcd(x, y) to get:

a× d + b× φ(n) = gcd(d, φ(n))
⇒ {d and φ(n) are relatively prime, from the choice of d}

a× d + b× φ(n) = 1
⇒ {definition of mod}

a× d
mod φ(n)≡ 1

Now, let e be a. If e is positive, we are done. If e is negative (it can’t
be zero) add φ(n) to it enough times to make it positive. Note that

(a + k × φ(n))× d
mod φ(n)≡ 1, for any k.

� At this stage, Bob has the following variables:

1. p and q, which are primes,

2. n, which is p× q, and φ(n), which is (p− 1)× (q − 1),

3. d, which is a positive integer smaller than n and relatively prime to
φ(n), and

4. e, where d× e
mod φ(n)≡ 1.

� Publicize (e, n) as the public key. Save (d, n) as the private key.

Example Let p = 47 and q = 59. Then, n = p × q = 2773, and φ(2773) =
(47 − 1) × (59 − 1) = 2668. Let d = 157. Now, e is computed as shown in

Table 3.4 of page 56. Thus, e = 17. Verify that 17× 157
mod φ(n)≡ 1. 2

Encryption

To send message M to a principal whose public key is (e, n) and 0 ≤ M < n,
send M ′ where

M ′ = (Me mod n)

Example; contd. Let us represent each letter of the alphabet by two digits,
with

white space = 00 a = 01 b = 02, etc.

Suppose the message to be sent is “bad day”. The representation yields:
02010400040125.

Since n is 2773, we can convert any pair of letters to a value below n, the
largest such pair being zz which is encoded as 2626. Therefore, our block length
is 2 letters. We get the following blocks from the encoded message: 0201 0400
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0401 2500; we have appended an extra blank at the end of the last block to
make all blocks have equal size.

Now for encryption of each block. We use the parameters from the previous
example, where e = 17. For the first block, we have to compute 020117 mod
2773, for the second 040017 mod 2773, etc. 2

There is an efficient way to raise a number to a given exponent. To compute
M17, we need not multiply M with itself 16 times. Instead, we see that M17 =
M16×M = (M8)2×M = ((M4)2)2×M = (((M2)2)2)2×M . The multiplication
strategy depends on the binary representation of the exponent. Also, at each
stage, we may apply mod n, so that the result is always less than n. Specifically,
we use

M2t mod n = (M t mod n)2 mod n
M2t+1 mod n = ((M t mod n)2 ×M) mod n

The following algorithm implements this strategy. Let e, the exponent, in
binary be: ek ek−1 . . . e0. For e = 17, we get 10001. Next, use the following
algorithm that looks at the bits of e from the higher to the lower order; the
result of encryption is in C. The loop invariant is: C = Mh mod n, where h is
the portion of the exponent seen so far, i.e., ek ek−1 . . . ei (initially, h = 0).

C := 1;
for i = k..0 do

if ei = 0
then C := C2 mod n
else C := ((C2 mod n) ∗M) mod n

fi

od

We encrypt 0201 to 2710 and 0400 to 0017.

Exercise 23
The algorithm to compute Me mod n, given earlier, scans the binary represen-
tation of e from left to right. It is often easier to scan the representation from
right to left, because we can check if e is even or odd easily on a computer. We
use:

M2t = (M2)t

M2t+1 = (M2)t ×M

Here is an algorithm to compute Me in C. Prove its correctness using the
loop invariant C∗mh = Me. Also, modify the algorithm to compute Me mod n.

C := 1; h,m := e,M ;
while h 6= 0 do

if odd(h) then C := C ∗m fi ;
h := h÷ 2;
m := m2

od

{C = Me}
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Decryption

On receiving an encrypted message M ′, 0 ≤ M ′ < n, Bob, whose private key is
(d, n), computes M ′′ as follows.

M ′′ = (M ′d mod n)

We show below that M ′′ = M .

Example We continue with the previous example. The encryption and de-
cryption steps are identical, except for different exponents. We use the encryp-
tion algorithm with exponent 157 to decrypt. The encryption of 0201 is 2710
and of 0400 is 0017. Computing 2710157 mod 2773 and 0017157 mod 2773 yield
the original blocks, 0201 and 0400. 2

Lemma 1: For any M , 0 ≤ M < n, Md×e mod p≡ M .
Proof:

Md×e mod p

= {d× e
mod φ(n)≡ 1, and φ(n) = (p− 1)× (q − 1)}

M t×(p−1)+1 mod p, for some t
= {rewriting}

((M (p−1))t ×M) mod p
= {modular simplification: replace (M (p−1)) by (M (p−1)) mod p}

((M (p−1) mod p)t ×M) mod p
= {Consider two cases:

• M and p are not relatively prime:
Since p is prime, M is a multiple of p, i.e.,
(M mod p) = 0. So, M (p−1) mod p = 0.
The entire expression is 0, thus equal to M mod p.
• M and p are relatively prime:

Then, (M (p−1)) mod p = 1, from (P4).
The expression is (1t ×M) mod p = M mod p.

}
M mod p

Lemma 2: For any M , 0 ≤ M < n, (Md×e mod n) = M .
Proof:

M
mod p≡ Md×e , from Lemma 1

M
mod q≡ Md×e , replacing p by q in Lemma 1

M
mod n≡ Md×e , from above two, using P3 and n = p× q

(M mod n) = (Md×e mod n) , from above
M = (Md×e mod n) , M < n; so M mod n = M

We are now ready to prove the main theorem, that encryption followed by
decryption yields the original message.
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Theorem: M ′′ = M .

M
= {Lemma 2}

Md×e mod n
= {arithmetic}

(Me)d mod n
= {modular simplification rule}

(Me mod n)d mod n
= {from the encryption step, M ′ = Me mod n}

M ′d mod n
= {from the decryption step, M ′′ = M ′d mod n}

M ′′

Breaking RSA is hard, probably

The question of breaking RSA amounts to extracting the plaintext from the
ciphertext. Though there is no proof for it, it is strongly believed that in order
to break RSA, you will have to compute the private key given only the public

key. That is, given (e, n), find d where d × e
mod φ(n)≡ 1. We show that

computing d is as hard as factoring n.

It is strongly believed that factoring a large number is intractable. In the
naive approach to factoring, we have to test all numbers at least up to

√
n

to find a factor of n. If n is a 200 digit number, say, approximately 10100

computation steps are needed. The best known algorithm for factoring a 200
digit number would take about a million years. We can speed up matters by
employing supercomputers and a whole bunch of them to work in parallel. Yet,
it is unlikely that factoring would be done fast enough to justify the investment.
So, it is strongly believed —though not proven— that RSA is unbreakable.

Next, we show that computing d is easy given the factors of n. Suppose
we have factored n into primes p and q. Then, we can compute φ(n), which is
(p − 1) × (q − 1). Next, we can compute d as outlined earlier (we have shown
how to compute e from d; computing d from e follows the same steps with the
roles of d and e reversed).

The proof in the other direction, —if we have d and e where d×e
mod φ(n)≡ 1,

then we can factor n— is more technical. It can be shown that n is easily factored
given any multiple of φ(n), and (d× e)− 1 is a multiple of φ(n).

An easier result is that n can be factored if φ(n) is known. Recall that φ(n) =
(p−1)× (q−1) and n = p× q. Hence, φ(n) = n− (p+ q)+1. From n and φ(n),
we get p×q and p+q. Observe that p−q =

√
(p− q)2 =

√
(p + q)2 − 4× p× q.

Therefore, p− q can be computed. Then, p = (p+q)+(p−q)
2 and q = (p+q)−(p−q)

2 .
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3.4 Digital Signatures

Public key cryptography neatly solves a related problem, affixing a digital sig-
nature to a document. Suppose Bob receives a message from someone claiming
to be Alice; how can he be sure that Alice sent the message? To satisfy Bob,
Alice affixes her signature to the message, as described below.

Alice encrypts the message using her private key ; this is now a signed mes-
sage. If the message is intended for Bob’s eyes only, she encrypts the signed
message with Bob’s public key. Bob first decrypts the message using his own
private key, then decrypts the signed message using Alice’s public key. More
formally, let x be the message, fa and fb the public keys of Alice and Bob, and
f−1

a and f−1
b be their private keys, respectively. Then f−1

a (x) is the message
signed by Alice. She may send fb(f−1

a (x)), encrypting it for Bob’s eyes. Alice
may include her name in plaintext, fb(“alice” ++ f−1

a (x)) where ++ is concate-
nation, so that Bob will know whose public key he should apply to decrypt the
signed message.

We show that such signatures satisfy a number of desirable properties. First,
decrypting any message with the Alice’s public key will result in gibberish unless
it has been encrypted with her private key. So, if Bob is able to get a meaningful
message by decryption, he is convinced that Alice sent the message.

Second, Alice cannot deny sending the message, because no one else has ac-
cess to her private key. An impartial judge can determine that Alice’s signature
appears on the document (message) by decrypting it with her public key. Note
that the judge does not need access to any private information.

Third, no one can modify this message while keeping Alice’s signature af-
fixed to it. Thus, no electronic cutting and pasting of the message/signature is
possible.

Observe a very important property of the RSA scheme: any message can be
encrypted by the public or the private key and decrypted by its inverse.

Digital signatures are now accepted for electronic documents. A user can
sign a check, or a contract, or even a document that has been signed by other
parties.

Another look at one-time pads We know that one-time pads provide com-
plete security. The only difficulty with them is that both parties to a transmis-
sion must have access to the same pad. We can overcome this difficulty using
RSA, as follows.

Regard each one-time pad as a random number. Both parties to a trans-
mission have access to a pseudo-random number generator which produces a
stream of random numbers. The pseudo-random number generator is public
knowledge, but the seed which the two parties use is a shared secret. Since they
use the same seed, they will create the same stream of random numbers. Then
the encryption can be relatively simple, like taking exclusive or.

This scheme has one drawback, having the seed as a shared secret. RSA
does not have this limitation. We can use RSA to establish such a secret: Bob
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generates a random number as the seed and sends it to Alice, encrypted by
Alice’s public key. Then, both Bob and Alice know the seed.

Security of communication with a trusted third party We have so far
assumed that all public keys are stored in a public database and Alice can query
the database manager, David, to get Bob’s public key (in plaintext). Suppose
Eve intercepts the message sent by David to Alice, and replaces the public key
of Bob by her own. Then Alice encrypts a message for Bob by Eve’s public key.
Any message she sends to Bob could be intercepted and decrypted by Eve.

The problem arises because Alice does not know that the message received
from David is not authentic. To establish authenticity, David —often called a
trusted third party— could sign the message. Then, Eve cannot do the substi-
tution as described above.

Trusted third parties play a major role in security protocols, and authenti-
cating such a party is almost always handled by digital signatures.

Acknowledgement I am thankful to Steve Li for simplifying one of the
proofs.



Chapter 4

Finite State Machines

4.1 Introduction

4.1.1 Wolf-Goat-Cabbage Puzzle

A shepherd arrives at a river bank with a wolf, a goat and a cabbage. There is a
boat there that can carry them to the other bank. However, the boat can carry
the shepherd and at most one other item. The shepherd’s actions are limited
by the following constraints: if the wolf and goat are left alone, the wolf will
devour the goat, and if the goat and the cabbage are left alone, well, you can
imagine. . .

You can get a solution quickly by rejecting certain obvious possibilities. But
let us attack this problem more systematically. What is the state of affairs at
any point during the passage: what is on the left bank, what is on the right bank,
and where the boat is (we can deduce the contents of the boat by determining
which items are absent from both banks). The state of the left bank is a subset
of {w,g,c} —w for wolf, g for goat, and c for cabbage— and similarly for the
right bank. The shepherd is assumed to be with the boat (the cabbage cannot
steer the boat :-) ), so the state of the boat is that it is: (1) positioned at the left
bank, (2) positioned at the right bank, (3) in transit from left to right, or (4) in
transit from right to left; let us represent these possibilities by the symbols, L,
R, LR, RL, respectively.

Thus, we represent the initial state by a triple like 〈{w,g,c}, L, {}〉. Now
what possible choices are there? The shepherd can row alone, or take one item
with him in the boat, the wolf, the goat or the cabbage. These lead to the
following states respectively.

〈{w,g,c}, LR, {}〉
〈{g,c}, LR, {}〉
〈{w,c}, LR, {}〉
〈{w,g}, LR, {}〉

63
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Observe that all states except 〈{w,c}, LR, {}〉 are inadmissible, since some-
one will consume something. So, let us continue the exploration from 〈{w,c},
LR, {}〉.

When the shepherd reaches the other bank, the state changes from 〈{w,c},
LR, {}〉 to 〈{w,c}, R, {g}〉. Next, the shepherd has a choice: he can row back
with the goat to the left bank (an obviously stupid move, because he will then
be at the initial state), or he may row alone. In the first case, we get the state
〈{w,c}, RL, {}〉, and in the second case 〈{w,c}, RL, {g}〉. We may continue
exploring from each of these possibilities, adding more states to the diagram.
Figure 4.1 shows the initial parts of the exploration more succinctly.

<{w,g}, LR, {}>

w g

g

<{w,g,c}, L, {}>

<{w,g,c}, LR,{}> <{g,c}, LR, {}> <{w,c}, LR,{}>

<{w,c}, R, g}>

<{w,c}, RL,{g}>

<{w,c}, L. {g}>

c

−−

−−

Figure 4.1: Partial State Space for the Wolf-Goat-Cabbage Problem

The important thing to note is that the number of states is finite (prove it).
So, the exploration will terminate sometime.

Exercise 24
Complete the diagram. Show that a path in the graph corresponds to a solution.
How many solutions are there? Can you define states differently to derive a
smaller diagram? 2

Remark A beautiful treatment of this puzzle appears in Dijkstra [15]. He
shows that with some systematic thinking you can practically eliminate the
state-space search. You can play the game at http://www.plastelina.net;
choose game 1. 2

4.1.2 A Traffic Light

A traffic light is in one of three states, green, yellow or red. The light changes
from green to yellow to red; it cannot change from green to red, red to yellow or
yellow to green. We may depict the permissible state transitions by the diagram
shown in Figure 4.2.
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g y r

Figure 4.2: State Transitions in a Traffic Light

What causes the state transitions? It is usually the passage of time; let us
say that the light changes every 30 seconds. We can imagine that an internal
clock generates a pulse every 30 seconds that causes the light to change state.
Let symbol p denote this pulse.

Suppose that an ambulance arrives along an intersecting road and remotely
sets this light red (so that it may proceeed without interference from vehicles
travelling along this road). Then, we have a new state transition, from green
to red and from yellow to red, triggered by the signal from the ambulance; call
this signal a. See Figure 4.3 for the full description.

p p

p

a

a

g y r

Figure 4.3: State Transitions in an Enhanced Traffic Light

4.1.3 A Pattern Matching Problem

You are given a list of English words, as in a dictionary. Find the words in which
the five vowels —a,e,i,o,u— are in order. These are words like “abstemious”,
“facetious” and “sacrilegious”. But not “tenacious”, which contains all the
vowels but not in order.

Let us design a program to solve this problem. Our program looks at each
word in the dictionary in turn. For each word it scans it until it finds an “a”, or
fails to find it. In the latter case, it rejects the word and moves on to the next
word. In the first case, it resumes its search from the point where it found “a”
looking for “e”. This process continues until all the vowels in order are found,
or the word is rejected.

A programming hint: Sentinel How do you search for a symbol c in a
string S[0..N ]? Here is the typical strategy.

i := 0;
while S[i] 6= “c” ∧ i ≤ N do
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i := i + 1
od ;
if i ≤ N then “success” else “failure” fi

A simpler strategy uses a “sentinel”, an item at the end of the list which
guarantees that the search will not fail. It simplifies AND speeds up the loop.

S[N + 1] := “c”; i := 0;
while S[i] 6= “c” do

i := i + 1
od ;
if i ≤ N then “success” else “failure” fi 2

Bonus Programming Exercise Write a program for the pattern matching
problem, and apply it to a dictionary of your choice. 2

If you complete the program you will find that its structure is a mess. There
are five loops, each looking for one vowel. They will be nested within a loop. A
failure causes immediate exit from the corresponding loop. (Another possibility
is to employ a procedure which is passed the word, the vowel and the position
in the word where the search is to start.) Modification of this program is messy.
Suppose we are interested in words in which exactly these vowels occur in order,
so “sacrilegious” will be rejected. How will the program be modified? Suppose
we don’t care about the order, but we want all the vowels to be in the word;
so, “tenacious” will make the cut. For each of these modifications, the program
structure will change significantly.

What we are doing in all these cases is to match a pattern against a word.
The pattern could be quite complex. Think about the meaning of pattern if
you are searching a database of music, or a video for a particular scene. Here
are some more examples of “mundane” patterns that arise in text processing.

Examples

1. integer : An integer is either 0 or a non-zero digit followed by any number
of digits. So, 0, 31, 310 are all integers , but 00, 03, 3.7 are not.

2. signed integer : An integer with an optional sign, + or −, at its front.

3. number : A number is either an integer or an integer followed by a period
followed by any number of digits.

4. floating point number : A number with an optional sign, + or −, at its
front, and an optional mantissa that is of the form E n, where n is a
signed integer. The following are floating point numbers.

+3.0, 3.0, 0.3E1, 0.3E + 1, −0.3E + 1, −3E8
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begin end while do od if then fi

106 107 100 101 102 103 104 105

Table 4.1: Translations of keywords

:= ; < ≤ = 6= > ≥ +
1000 1001 1002 1003 1004 1005 1006 1007 1008

Table 4.2: Translations of non-keywords

These definitions are not the standard ones. For instance, while we accept
31.2 and 0.0 and 30.02 as numbers, .3 is not a number.

Here are some more examples of patterns.

1. Any string ending in a white space. This is often called a word.

2. Any string in which “(“ and “)” are balanced.

3. Any string starting with “b” followed by any number of “a”s and then a
“d”. These strings are: “bd”, “bad”, “baad”, “baaad”, . . . 2

In all cases, we are dealing with strings —a sequence of symbols— drawn
from a fixed alphabet. A string may or may not satisfy a pattern: “abstemious”
satisfies the pattern of having all five vowels in order, and .3 does not satisfy
the pattern of being a number.

A longer pattern matching example Consider a language that has the
following keywords:

begin end while do od if then fi

A lexical processor for the program may have to:

1. Convert every keyword to a number, as described in Table 4.1.

2. Convert every non-keyword to a distinct 2-digit number,

3. Convert every other symbol as described in Table 4.2, and

4. Ignore comments (the stuff that appears between braces) and extra white
spaces.

Thus, a string like

while i 6= n do {silly loop} j := i + 1 od

will be converted as shown in Table 4.3.
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while i 6= n do {silly loop} j := i + 1 od

100 10 1005 11 101 12 1000 10 1008 13 102

Table 4.3: Translation of a program

4.2 Finite State Machine

4.2.1 What is it?

Consider the original problem of checking a word for vowels in order. We can
describe a machine to do the checking as shown in Figure 4.4. The machine has
six states, each shown as a circle. Each directed edge has a label, the name of
a symbol (or set of symbols) from a specified alphabet.

The machine operates as follows. Initially, the machine is in the state to
which the “start” arrow points (the state labeled 1). It receives a stream of
symbols. Depending on the symbol and its current state the machine determines
its next state, which may be the same as the current state. Thus, in state 1, if
it receives symbol “a” it transits to state 2, and otherwise (shown by the arrow
looping back to the state) it stays in state 1. Any state shown by a double circle
is called an accepting state; the remaining states are rejecting states. In this
example, the only accepting state is 6.

start a e i o u1 2 3 4 5 6

A−{a} A−{e} A−{i} A−{o} A−{u} A

A= Alphabet

Figure 4.4: Machine to check for vowels in order

If the machine in Figure 4.4 receives the string “abstemious” then its suc-
cessive states are: 1 2 2 2 2 3 3 4 5 6 6. Since its final state is an accepting
state, we say that the string is accepted by the machine. A string that makes
the machine end up in a rejecting state is said to be rejected by the machine.

Which state does the machine end up in for the following strings: aeio,
tenacious, f, aaeeiioouu, ε (ε denotes the empty string)? Convince yourself that
the machine accepts a string iff five vowels appear in order in that string.

Exercise 25

Draw a machine that accepts strings which contain the five vowels in order, and
no other vowels. So, the machine will accept “abstemious”, but not “sacrile-
gious”. See Figure 4.5. 2
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start a e i o u1 2 3 4 5 6

A A A

e,i,o,u     
a,e,i,u a,e,i,o

Alphabet

A = Alphabet − {a,e,i,o,u}

A A A

a,e,o,ua,i,o,u
a,e,i,o,u

Figure 4.5: Machine to check for exactly five vowels in order

Definitions A (deterministic) finite state machine over a given alphabet has
a finite number of states, one state designated as the initial state, a subset of
states designated as accepting and a state transition function that specifies the
next state for each state and input symbol. The machine accepts or rejects every
finite string over its alphabet.

Note There is a more general kind of finite state machine called a nondeter-
ministic machine. The state transitions are not completely determined by the
current state and the input symbol as in the deterministic machines you have
seen so far. The machine is given the power of clairvoyance so that it chooses
the next state, out of a possible set of successor states, which is the “best” state
for processing the remaining unseen portion of the string. 2

Exercise 26

1. Design finite state machines for the following problems. Assume that the
alphabet is {0, 1}.
(a) Accept all strings.

(b) Reject all strings.

(c) Accept if the string has an even number of 0s.

(d) Accept if the string has an odd number of 1s.

(e) Accept if the conditions in both (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if both component machines accept? What assumptions do you
have to make about the component machines?
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(f) Accept if either of the conditions in (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if either component machine accepts? What assumptions do
you have to make about the component machines?

(g) Accept iff the machine in (1e) does not accept (that is, a string with
an odd number of 0s or even number of 1s is accepted). Again, is
there a general procedure?

(h) Convince yourself that you cannot design a finite state machine to
accept a string that has an equal number of zeros and ones.

2. For the Wolf-Goat-Cabbage puzzle, design a suitable notation to represent
each move of the shepherd using a symbol. Then, any strategy is a string.
Design a finite state machine that accepts such a string and enters an
accepting state if the whole party crosses over to the right bank, intact,
and rejects the string otherwise.

3. For the following problems, the alphabet consists of letters (from the Ro-
man alphabet) and digits (Arabic numerals).

(a) Accept if it contains a keyword, as given in Table 4.1.
(b) Accept if it is an integer, as defined in page 66. Modify the machine

to accept signed integer, as defined in page 66.
(c) Accept if it is a number as defined in page 66.
(d) Accept a string of digits if they are strictly increasing. So, 345, 069, 2

will be accepted, whereas 32 will be rejected.
(e) Accept if the string is a legal identifier : a letter followed by zero or

more symbols (a letter or digit).

4. A computer has n 32-bit words of storage. What is the number of states?
For a modern computer, n is around 225. Suppose each state transition
takes a nanosecond (10−9 second). How long will it take the machine to
go through all of its states?

5. Write a program (in C++ or Java) —without reference to finite state
machines— that outputs “accept” if the input is a string with an even
number of 0s and an odd number of 1s. Next, hand-translate the finite
state machine you have designed for this problem in Exercise (1e) into a
program. Compare the two programs in terms of length, simplicity, design
time, and execution efficiency. 2

Exercise 27
Let F be a finite state machine.

1. Design a program that accepts a description of F and constructs a Java
program J equivalent to F . That is, J accepts a string as input and prints
“accept” or “reject”. Assume that your alphabet is {0,1} , and a special
symbol, say #, terminates the input string.
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2. Design a program that accepts a description of F and a string s and prints
“accept” or “reject” depending on whether F accepts or rejects s. 2

4.2.2 Reasoning about Finite State Machines

Consider the finite state machine shown in Figure 4.6. We would like to show
that the strings accepted by the machine have an even number of 0s and an odd
number of 1s. The problem is complicated by the fact that there are loops.

0

11

0D

start A B

C

Figure 4.6: Machine that accepts strings with an even number of 0s and an odd
number of 1s

The strategy is to guess what string is accepted in each state, and attach
that as a label to that state. This is similar to program proving. Let

p ≡ this string has an even number of 0s,
q ≡ this string has an even number of 1s

A plausible annotation of the machine is shown in Figure 4.7. That is, we
guess that any string for which the machine state becomes B has an odd number
of 0s and an even number of 1s; similarly for the remaining state annotations.

0

11

0D

start A B

C

p ^ q ~p ^ q

~p ^ ~q p ^ ~q

Figure 4.7: Annotation of the machine in Figure 4.6

Verification Procedure The verification procedure consists of three steps:
(1) annotate each state with a predicate over finite strings (the predicate defines
a set of strings, namely, the ones for which it is true), (2) show that the anno-
tation on the initial state holds for the empty string, and (3) for each transition
do the following verification: suppose the transition is labeled s and it is from
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From A to B: if p ∧ q holds for x then ¬p ∧ q holds for x0
From A to D: if p ∧ q holds for x then p ∧ ¬q holds for x1
From B to A: if ¬p ∧ q holds for x then p ∧ q holds for x0
From B to C: if ¬p ∧ q holds for x then ¬p ∧ ¬q holds for x1
From C to B: if ¬p ∧ ¬q holds for x then ¬p ∧ q holds for x1
From C to D: if ¬p ∧ ¬q holds for x then p ∧ ¬q holds for x0
From D to C: if p ∧ ¬q holds for x then ¬p ∧ ¬q holds for x0
From D to A: if p ∧ ¬q holds for x then p ∧ q holds for x1

Table 4.4: Verifications of state transitions

a state annotated with b to one with c; then, show that if b holds for any string
x, then c holds for xs.

For the machine in Figure 4.7, we have already done step (1). For step
(2), we have to show that the empty string satisfies p ∧ q, that is, the empty
string has an even number of 0s and 1s, which clearly holds. For step (3), we
have to verify all eight transitions, as shown in Table 4.4. For example, it is
straightforward to verify the transition from A to B by considering an arbitrary
string x with an even number of 0s and 1s (p ∧ q) and proving that x0 has odd
number of 0s and even number of 1s (¬p ∧ q).

Why Does the Verification Procedure Work? It seems that we are using
some sort of circular argument, but that is not so. In order to convince yourself
that the argument is not circular, construct a proof using induction. The the-
orem we need to prove is as follows: after processing any string x, the machine
state is A, B, C or D iff x satisfies p∧ q, ¬p∧ q, ¬p∧¬q or p∧¬q, respectively.
The proof of this statement is by induction on the length of x.

For |x| = 0: x is an empty string and p ∧ q holds for it. The machine state
is A, so the theorem holds.

For |x| = n + 1, n ≥ 0: use the induction hypothesis and the proofs from
Table 4.4.

4.2.3 Finite State Transducers

The finite state machines we have seen so far simply accept or reject a string.
So, they are useful for doing complicated tests, such as to determine if a string
matches a given pattern. Such machines are called acceptors. Now, we will en-
hance the machine so that it also produces a string as output; such machines are
called transducers. Transducers provide powerful string processing mechanism.
Typically, acceptance or rejection of the input string is of no particular im-
portance in transducers; only the construction of the appropriate output string
matters.

Pictorially, we will depict a transition as shown in Figure 4.8. It denotes
that on reading symbol s, the machine transits from A to B and outputs string
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t. The output alphabet of the machine —over which t is a string— may differ
from its input alphabet.

A B

s/t

Figure 4.8: Transition Labeling in a Finite State Transducer

Example Accept any string of 0s and 1s. Squeeze each substring of 0s to a
single 0 and similarly for the 1s. Thus,

000100110 becomes 01010

A solution is shown in Figure 4.9.

start

0/0 1/1
0/0

1/1

0 1

Figure 4.9: Transducer that squeezes each block to a single bit

Verifications of Transducers How do we verify a transducer? We would
like to show that the output is a function, f , of the input. For the transducer
in Figure 4.9, function f is given by:

f(ε) = ε f(0) = 0 f(1) = 1
f(x00) = f(x0) f(x01) = f(x0)1
f(x10) = f(x1)0 f(x11) = f(x1)

The verification strategy for finite state acceptors is augmented as follows.
As before, annotate each state by a predicate (denoting the set of strings for
which the machine enters that state). Show for the initial state that the anno-
tation is satisfied by the empty string and it outputs f(ε). For a transition of
the form shown in Figure 4.8, if A is annotated with p and B with q, show that
(1) if p holds for any string x, then q holds for xs, and (2) f(xs) = f(x) ++ t



74 CHAPTER 4. FINITE STATE MACHINES

(the symbol ++ denotes concatenation), i.e., the output in state B (which is
the output in state A —assumed to be f(x)— concatenated with string t) is the
desired output for any string for which this state is entered.

Exercise 28
Design a transducer which replaces each 0 by 01 and 1 by 10 in a string of 0s
and 1s. 2

Exercise 29
The input is a 0-1 string. A 0 that is both preceded and succeeded by at least
three 1s is to be regarded as a 1. The first three symbols are to be reproduced
exactly. The example below shows an input string and its transformation; the
bit that is changed has an overline on it in the input and underline in the output.

0110111011111000111 becomes
0110111111111000111

Design a transducer for this problem and establish its correctness. 2

Solution In Figure 4.10, the transitions pointing downward go to the initial
state. Prove correctness by associating with each state a predicate which asserts
that the string ending in that state has a certain suffix.

1/11/1

1/1

1/1 0/ 1/ 1/ 1/1111

0/01100/0 0/0 0/0 0/00 0/010

Figure 4.10: Replace 0 by 1 if it is preceded and succeeded by at least three 1s

4.2.4 Serial Binary Adder

Let us build an adding circuit (adder) that receives two binary operands and
outputs their sum in binary. We will use the following numbers for illustration.

0 1 1 0 0
+ 0 1 1 1 0

————
1 1 0 1 0

The input to the adder is a sequence of bit pairs, one bit from each operand,
starting with their lowest bits. Thus the successive inputs for the given example
are: (0 0) (0 1) (1 1) (1 1) (0 0). The adder outputs the sum as a sequence of
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bits, starting from the lowest bit; for this example, the output is 0 1 0 1 1. If
there is a carry out of the highest bit it is not output, because the adder cannot
be sure that it has seen all inputs. (How can we get the full sum out of this
adder?)

We can design a transducer for this problem as shown in Figure 4.11. There
are two states, the initial state is n and the carry state c; in state c, the current
sum has a carry to the next position. The transitions are easy to justify. For
instance, if the input bits are (0 1) in the n state, their sum is 0 + 1 + 0 = 1;
the last 0 in the sum represents the absence of carry in this state. Therefore, 1
is output and the machine remains in the n state. If the machine is in c state
and it receives (0 0) as input, the sum is 0 + 0 + 1 = 1; hence, it outputs 1 and
transits to the n state. For input (1 1) in the c state, the sum is 1 + 1 + 1 = 3,
which is 11 in binary; hence 1 is output and the machine remains in the c state.

00/0

01/1

10/1 11/1

10/0

01/0

00/1

11/0

n c

Figure 4.11: Serial Binary Adder

4.2.5 Parity Generator

When a long string is transmitted over a communication channel, it is possible
for some of the symbols to get corrupted. For a binary string, bits may get
flipped, i.e., a 0 becomes a 1 and a 1 becomes a 0. There are many sophisticated
ways for the receiver to detect such errors and request retransmissions of the
relevant portions of the string. I will sketch a relatively simple technique to
achieve this.

First, the sender breaks up the string into blocks of equal length. Below
I take the block length to be 3, though blocks are much longer in practice .
Consider the following input string where spaces separate the blocks.

011 100 010 111

Next, the sender appends a bit at the end of each block so that each 4-bit
block has an even number of 1s. This additional bit is called a parity bit, and
each block is said to have even parity. The input string shown above becomes,
after addition of parity bits,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111
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Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmission of those blocks.

If two bits (or any even number) of bits of a block get flipped, the receiver
cannot detect the error. In practice, the blocks are much longer (than 3, shown
here) and many additional bits are used for error detection.

The logic at the receiver can be depicted by a finite state acceptor, see
Figure 4.12. Here, a block is accepted iff it has even parity. The receiver will
ask for retransmission of a block if it enters a reject state for that block (this is
not part of the diagram).

1

0 0

Figure 4.12: Checking the parity of a block of arbitrary length

The sender is a finite state transducer that inserts a bit after every three
input bits; see figure 4.13. The start state is 0. The states have the following
meanings: in a state numbered 2i, 0 ≤ i ≤ 3, the machine has seen i bits of
input of the current block (all blocks are 3 bits long) and the current block
parity is even; in state 2i− 1, 1 ≤ i ≤ 3, the machine has seen i bits of input of
the current block and the current block parity is odd. From states 5 and 6, the
machine outputs a parity bit (1 and 0, respectively) without reading an input
bit.

0

2

4

6

1

3

5

0/0

0/0

0/0 0/0

0/0

1/1

1/1

1/1

−/0 −/1

start

1/1

1/1

Figure 4.13: Append parity bit to get even parity; block length is 3
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0 0 1 0 0 0 1 1 0 0 1 1 0 0 1
Y Y Y Y Y Y N Y N Y Y Y N Y Y

Table 4.5: Checking for valid blocks

Exercise 30

A binary string is valid if all blocks of 0s are of even length and all blocks of
1s are of odd length. Design a machine that reads a string and outputs a Y or
N for each bit. It outputs N if the current bit ends a block (a block is ended
by a bit that differs from the bits in that block) and that block is not valid;
otherwise the output is Y . See Table 4.5 for an example. 2

4.3 Specifying Control Logic Using Finite State
Machines

4.3.1 The Game of Simon

A game that tests your memory —called Simon— was popular during the 80s.
This is an electronic device that has a number of keys. Each key lights up on
being pressed or on receiving an internal pulse.

The game is played as follows. The device lights up a random sequence of
keys; call this sequence a challenge, and the player is expected to press the same
sequence of keys. If the player’s response matches the challenge, the device
buzzes happily, otherwise sadly. Following a successful response, the device
poses a longer challenge. The challenge for which the player loses (the player’s
response differs from the challenge) is a measure of the memory capability of
the player.

We will represent the device by a finite state machine, ignoring the lights
and buzzings. Also, we simplify the problem by having 2 keys, marked 0 and
1. Suppose the challenge is a 2-bit sequence (generated randomly within the
machine). Figure 4.14 shows a finite state machine that accepts 4 bits of input
(2 from the device and 2 from the player) and enters an accepting state only if
the first two bits match the last two.

Exercise 31

The device expects the player to press the keys within 30 seconds. If no key
is pressed in this time interval, the machine transits to the initial state (and
rejects the response). Assume that 30 seconds after the last key press the device
receives the symbol p (for pulse) from an internal clock. Modify the machine in
Figure 4.14 to take care of this additional symbol. You may assume that p is
never received during the input of the first 2 bits. 2
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0 1

0 1 0 1

100 1

0 1

Figure 4.14: A Simplified game of Simon

Remark Finite state machines are used in many applications where the pas-
sage of time or exceeding a threshold level for temperature, pressure, humidity,
carbon-monoxide, or similar analog measures, causes a state change. A sensor
converts the analog signals to digital signals which are then processed by a finite
state machine. A certain luxury car has rain sensors mounted in its windshield
that detect rain and turn on the wipers. (Be careful when you go to a car wash
with this car.) 2

4.3.2 Soda Machine

A soda machine interacts with a user to deliver a product. The user provides
the input string to the machine by pushing certain buttons and depositing some
coins. The machine dispenses the appropriate product provided adequate money
has been deposited. Additionally, it may return some change and display warn-
ing messages.

We consider a simplified soda machine that dispenses two products, A and
B. A costs 15¢ and B 20¢. The machine accepts only nickels and dimes. It
operates according to the following rules.

1. If the user presses the appropriate button —a for A and b for B— after
depositing at least the correct amount —15¢ for A and 20¢ for B— the
machine dispenses the item and returns change, if any, in nickels.

2. If the user inserts additional coins after depositing 20¢ or more, the last
coin is returned.

3. If the user asks for an item before depositing the appropriate amount, a
warning light flashes for 2 seconds.
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4. The user may cancel the transaction at any time. The deposit, if any, is
returned in nickels.

The first step in solving the problem is to decide on the input and output
alphabets. I propose the following input alphabet:

{n, d, a, b, c}.
Insertion of a nickel (resp., dime) is represented by n (resp., d), pressing the but-
tons for A (resp., B) is represented by a (resp., b), and pressing the cancellation
button is represented by c.

The output alphabet of the machine is

{n, d, A, B, w}.
Returning a nickel (resp., dime) is represented by n (resp., d). A string like nnn
represents the return of 3 nickels. Dispensing A (resp., B) is represented by A
(resp., B). Flashing the warning light is represented by w.

The machine shown in Figure 4.15 has its states named after the multiples of
5, denoting the total deposit at any point. No other deposit amount is possible,
no other number lower than 25 is divisible by 5 (a nickel’s value) and no number
higher than 25 will be accepted by the machine. (Why do we have a state 25
when the product prices do not exceed 20?) The initial state is 0. In Figure 4.15,
all transitions of the form c/nnn . . . are directed to state 0.

n n n n0 2515

b/w
a/w
b/w

c/

20

a/w
b/w

a/w b/w

dddd

n/n

a/A,nn

b/B,n

a/A,n

b/B

n/n

a/A

105

c/n
nnc/ c/nnn c/nnnn

c/nnnnn

d/d d/d

All edges labeled with c/... are directed to state 0

Figure 4.15: Soda Machine; transitions c/nnn . . . go to state 0

Exercise 32
Design a soda machine that dispenses three products costing 35¢, 55¢ and 75¢.
It operates in the same way as the machine described here. 2

4.4 Regular Expressions

We have seen so far that a finite state machine is a convenient way of defining
certain patterns (but not all). We will study another way, regular expressions, of
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defining patterns that is exactly as powerful as finite state machines: the same
set of patterns can be defined by finite state machines and regular expressions.

Suppose we want to search a file for all occurrences of integer ; from page 66,
an integer is either 0 or a non-zero digit followed by any number of digits. We
can define the pattern by a finite state machine. We can also write a definition
using a regular expression:

0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗.

4.4.1 What is a Regular Expression?

A regular expression is like an arithmetic expression. An arithmetic expression,
such as 3 ∗ (x + 5), has operands 3, x, 5 and operators + and ∗. For a regular
expression, we have an associated alphabet that plays the role of constants, like
3 and 5. A regular expression may have operands (like x in the arithmetic ex-
pression) that are names of other regular expressions. We have three operators:
concatenation (denoted by a period or simple juxtaposition), union or alterna-
tion (denoted by |) and closure (denoted by ∗). The first two operators are
binary infix operators like + and ∗; the last one is a unary operator, like unary
minus, which is written after its operand. More formally, a regular expression
defines a set of strings, and it has one of the following forms:

the symbol φ, denoting an empty set of strings, or
the symbol ε, denoting a set with an empty string, or
a symbol of the alphabet,

denoting a set with only one string which is that symbol, or
pq, where p and q are regular expressions,

denoting a set of strings obtained by concatenation
of strings from p with those of q, or

p | q, where p and q are regular expressions,
denoting the union of the sets corresponding to p and q, or

p∗, where p is a regular expression,
denoting the closure of
(zero or more concatenations of the strings in) the set corresponding to p.

Binding Power The operators in order of increasing binding power are: al-
ternation, concatenation and closure. So, αβ∗ | α∗β is (α(β∗)) | ((α∗)β).

Examples of Regular Expressions Here are some regular expressions over
the alphabet {α, β, γ}.

ε, φ, α, β, γ
εα, αβ, αφ, εφεφ
αβ | ααβε | α | ε
(αβ)∗(ααβε)∗(α | ε | αβ)∗

(α(αβ)∗ | (βα)∗β)∗αβ | αγ∗γα∗ 2
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Each regular expression stands for a set of strings.

Name Regular expression Strings
p = α | αβ | ααβ {α, αβ, ααβ}
q = β | βγ | ββγ {β, βγ, ββγ}

pq {αβ, αβγ, αββγ,
αββ, αββγ, αβββγ,
ααββ, ααββγ, ααβββγ}

p | q {α, αβ, ααβ, β, βγ, ββγ}
p∗ {ε,

α, αβ, ααβ,
αα, ααβ, αααβ,
αβα, αβαβ,
αβααβ, . . .}

Exercise 33

1. With the given alphabet what are the strings in εα, αε, φα, φε, εφ?

2. What is the set of strings (αβ | ααβ)(βα | εαβε)?

3. What is the set of strings (α | β)∗? 2

Note on closure One way to think of closure is as follows:

p∗ = ε | p | pp | ppp | . . .

The right side is not a legal regular expression because it has an infinite num-
ber of terms in it. The purpose of closure is to make the right side a regular
expression. 2

4.4.2 Examples of Regular Expressions

1. a | bc∗d is {a, bd, bcd, bccd, bcccd, . . .}.
2. All integers are defined by (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗. How would

you avoid the “empty” integer?

3. Define an integer to be either a 0 or a nonzero digit followed by any number
of digits:
0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗.
Show that 3400 is an integer, but 0034 is not.

The definition of an integer can be simplified by naming certain subex-
pressions of the regular expression.

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
pDigit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer = 0 | (pDigit Digit∗)
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4. Legal identifiers in Java. Note that a single letter is an identifier.

Letter = A | B | . . . Z | a | b | . . . z
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
identifier = Letter(Letter | Digit)∗

5. Words in which all the vowels appear in order:

(Letter∗)a(Letter∗)e(Letter∗)i(Letter∗)o(Letter∗)u(Letter∗)

6. From page 66, a number is either an integer or an integer followed by a
period followed by any number of digits.

integer | integer .Digit∗

7. An increasing integer is a nonempty integer whose digits are strictly in-
creasing. Let us define int i, for 0 ≤ i ≤ 9, to be an increasing integer
whose first digit is greater than or equal to i. Then, an increasing integer
is

IncInt = int0

Next, let us define int i, 0 ≤ i ≤ 9. It is easier to start with the highest
index, 9, and work downwards.

int9 = 9
int8 = int9 | 8 int9 = (ε | 8)int9

int7 = int8 | 7 int9 = (ε | 7)int8

int i = int i+1 | i int i+1 = (ε | i)int i+1, for 0 ≤ i < 9

4.4.3 Solving Regular Expression Equations

We find it convenient to write a long definition, such as that of IncInt , by using
a number of sub-definitions, such as int9 through int0. It is often required to
eliminate all such variables from a regular expression and get a (long) expression
in which only the symbols of the alphabet appear. We can do it easily for a
term like int7 that is defined to be 7(ε | int8 | int9); replace int8 by its definition
to get 7(ε | (8 | 8int9) | int9), and int9 by its definition to get 7(ε | (8 | 89) | 9),
i.e., 7 | (78 | 789) | 79. However, in many cases the equations are recursive, so
this trick will not work. For instance, let pe and po be the binary strings that
have even number of 1s and odd number of 1s, respectively. Then,

p = ε | 0∗1q
q = 0∗1p

Replace q in the definition of p to get

p = ε | 0∗10∗1p

This is a recursive equation. We see that p = ε | αp where α is some string
that does not name p (α = 0∗10∗1). Then p = α∗, that is, p = (0∗10∗1)∗.
Hence, q = 0∗1(0∗10∗1)∗.
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A more elaborate example It is required to define a binary string that is a
multiple of 3 considered as a number. Thus, 000 and 011 are acceptable strings,
but 010 is not. Let bi, 0 ≤ i ≤ 2, be a binary string that leaves a remainder of
i after division by 3. We have:

b0 = ε | b00 | b11 (1)
b1 = b01 | b20 (2)
b2 = b10 | b21 (3)

These equations can be understood by answering the following questions: on
division by 3 if p leaves a remainder of i, 0 ≤ i ≤ 2, then what are the remainders
left by p0 and p1? Note that letting v(p) denote the value of string p as an
integer, v(p0) = 2v(p) and v(p1) = 2v(p) + 1.

We solve these equations to create a regular expression for b0. First, we have
the following observation. For variable z and regular expressions a and y:

z = a | zy

has the solution z = ay∗. We prove the validity of this observation by sub-
stituting ay∗ for z in the equation, and showing that that the two sides are
equal.

a | zy
= {replace z by ay∗}

a | ay∗y
= {apply (7) in Section 4.4.4}

a(ε | y∗y)
= {y∗ = ε | y∗y, see (9) in Section 4.4.4}

ay∗

= {replace ay∗ by z}
z

Apply this observation to (3) with z, a, y set to b2, b10, 1 to get

b2 = b101∗

In the RHS of (2), replace b2 by b101∗:

b1 = b01 | b101∗0

Apply the observation on this equation with z, a, y set to b1, b01, 01∗0.

b1 = b01(01∗0)∗

Replace b1 in the RHS of (1) by the RHS above.

b0 = ε | b00 | b01(01∗0)∗1, or
= ε | b0(0 | 1(01∗0)∗1)

Apply the observation with z, a, y set to b0, ε, (0 | 1(01∗0)∗1).

b0 = ε (0 | 1(01∗0)∗1)∗, or
= (0 | 1(01∗0)∗1)∗
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4.4.4 Algebraic Properties of Regular Expressions

1. Identity for Union (φ | R) = R, (R | φ) = R

2. Identity for Concatenation (εR) = R, (Rε) = R

3. (φR) = φ, (Rφ) = φ

4. Commutativity of Union (R | S) = (S | R)

5. Associativity of Union ((R | S) | T ) = (R | (S | T ))

6. Associativity of Concatenation ((RS)T ) = (R(ST ))

7. Distributivity of Concatenation over Union
(R(S | T )) = (RS | RT )
((S | T )R) = (SR | TR)

8. Idempotence of Union (R | R) = R

9. Closure
φ∗ = ε
RR∗ = R∗R
R∗ = (ε | RR∗)

Exercise 34
Write regular expressions for the following sets of binary strings.

1. Strings whose numerical values are even.

2. Strings whose numerical values are non-zero.

3. Strings that have at least one 0 and at most one 1.

4. Strings in which the 1s appear contiguously.

5. Strings in which every substring of 1s is of even length. 2

Exercise 35
Define the language over the alphabet {0, 1, 2} in which consecutive symbols
are different. 2

Exercise 36
What are the languages defined by

1. (0∗1∗)∗

2. (0∗ | 1∗)∗

3. ε∗

4. (0∗)∗

5. (ε | 0∗)∗ 2
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4.4.5 From Regular Expressions to Machines

Regular expressions and finite state machines are equivalent: for each regular
expression R there exists a finite state machine F such that the set of strings in
R is the set of strings accepted by F . The converse also holds. I will not prove
this result, but will instead give an informal argument.

First, let us construct a machine to recognize the single symbol b. The
machine has a start state S, an accepting state F and a rejecting state G.
There is a transition from S to F labeled b, a transition from S to G labeled
with all other symbols and a transition from F to G labeled with all symbols.
The machine remains in G forever (i.e., for all symbols the machine transits
from G to G), see Figure 4.16. In this figure, Alph stands for the alphabet.

S

F
G

b

Alph

Alph

Alph − {b}

Figure 4.16: Machine that accepts b

Henceforth, we will not show a permanently rejecting state, such as G, ex-
plicitly. If you see no transition from a state with a given symbol, assume that
it transits to a permanently rejecting state. So, we will simplify Figure 4.16 to
Figure 4.17.

S

F

b

Figure 4.17: Machine that accepts b, simplified

How do we construct a machine to recognize concatenation? Suppose we
have a machine that accepts a regular expression p and another machine that
accepts q. Suppose p’s machine has a single accepting state. Then we can merge
the two machines by identifying the accepting state of the first machine with the
start state of the second. We will see an example of this below. You may think
about how to generalize this construction when the first machine has several
accepting states.

Next, let us consider closure. Suppose we have to accept c∗. The machine
in Figure 4.18 does the job.
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F

c

Figure 4.18: Machine that accepts c∗

Now, let us put some of these constructions together and build a machine
to recognize bc∗. The machine is shown in Figure 4.19.

start

c

b

S

F

Figure 4.19: Machine that accepts bc∗

You can see that it is a concatenation of a machine that accepts b and one
that accepts c∗. Next, let us construct a machine that accepts bc∗ | cb∗. Clearly,
we can build machines for both bc∗ and cb∗ separately. Building their union is
easy, because bc∗ and cb∗ start out with different symbols, so we can decide
which machine should scan the string, as shown in Figure 4.20.

start

c

b c

b

Figure 4.20: Machine that accepts bc∗ | cb∗

Exercise 37

Construct a machine to accept bc∗ | bd∗. 2
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4.5 Regular Expressions in Practice; from GNU
Emacs

The material in this section is taken from the online GNU Emacs manual1.
Regular expressions have a syntax in which a few characters are special

constructs and the rest are "ordinary". An ordinary character is a simple regular
expression which matches that same character and nothing else. The special
characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ and ‘\’. Any other character
appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’
is a regular expression that matches the string ‘f’ and no other string. (It does
*not* match the string ‘ff’.) Likewise, ‘o’ is a regular expression that matches
only ‘o’. (When case distinctions are being ignored, these regexps also match
‘F’ and ‘O’, but we consider this a generalization of "the same string", rather
than an exception.)

Any two regular expressions A and B can be concatenated. The result is
a regular expression which matches a string if A matches some amount of the
beginning of that string and B matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’
to get the regular expression ‘fo’, which matches only the string ‘fo’. Still trivial.
To do something nontrivial, you need to use one of the special characters. Here
is a list of them.

‘. (Period)’ is a special character that matches any single character except a
newline. Using concatenation, we can make regular expressions like ‘a.b’ which
matches any three-character string which begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator, which means to match
the preceding regular expression repetitively as many times as possible. Thus,
‘o*’ matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the *smallest* possible preceding expression. Thus,
‘fo*’ has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so
on.

The matcher processes a ‘*’ construct by matching, immediately, as many
repetitions as can be found. Then it continues with the rest of the pattern. If
that fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to match
all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left to match,
so this try fails. The next alternative is for ‘a*’ to match only two ‘a’s. With
this choice, the rest of the regexp matches successfully.

‘+’ is a postfix character, similar to ‘*’ except that it must match the pre-
ceding expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’
and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

1Copyright (C) 1989,1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA



88 CHAPTER 4. FINITE STATE MACHINES

‘?’ is a postfix character, similar to ‘*’ except that it can match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

‘[ ... ]’ is a "character set", which begins with ‘[’ and is terminated by a ‘]’.
In the simplest case, the characters between the two brackets are what this set
can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges a character set, by writing two char-
acters with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter.
Ranges may be intermixed freely with individual characters, as in ‘[a-z$%.]’,
which matches any lower case letter or ‘$’, ‘%’ or period.

Note that the usual special characters are not special any more inside a char-
acter set. A completely different set of special characters exists inside character
sets: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ at the beginning or
end of a range. To include ‘^’, make it other than the first character in the set.

‘[^ ... ]’ ‘[^’ begins a "complemented character set", which matches any
character except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters
*except* letters and digits.

‘^’ is not special in a character set unless it is the first character. The
character following the ‘^’ is treated as if it were first (‘-’ and ‘]’ are not special
there).

A complemented character set can match a newline, unless newline is men-
tioned as one of the characters not to match. This is in contrast to the handling
of regexps in programs such as ‘grep’.

‘^’ is a special character that matches the empty string, but only at the
beginning of a line in the text being matched. Otherwise it fails to match
anything. Thus, ‘^foo’ matches a ‘foo’ which occurs at the beginning of a line.

‘$’ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’
matches a string of one ‘x’ or more at the end of a line.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it
introduces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression which
matches only ‘$’, and ‘\[’ is a regular expression which matches only ‘[’, etc.

For the most part, ‘\’ followed by any character matches only that character.
However, there are several exceptions: two-character sequences starting with ‘\’
which have special meanings. The second character in the sequence is always
an ordinary character on their own. Here is a table of ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions A and B with ‘\|’ in
between form an expression that matches anything that either A or B matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘\|’ applies to the largest possible surrounding expressions. Only a sur-

rounding ‘\( ... \)’ grouping can limit the scope of ‘\|’.
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Full backtracking capability exists to handle multiple uses of ‘\|’.
‘\( ... \)’ is a grouping construct that serves three purposes:
1. To enclose a set of ‘\|’ alternatives for other operations. Thus, ‘\(foo\|bar\)x’

matches either ‘foox’ or ‘barx’.
2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and

‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero
or more) number of ‘na’ strings.

3. To mark a matched substring for future reference.
This last application is not a consequence of the idea of a parenthetical

grouping; it is a separate feature which is assigned as a second meaning to the
same ‘\( ... \)’ construct. In practice there is no conflict between the two
meanings. Here is an explanation of this feature:

‘\D’ after the end of a ‘\( ... \)’ construct, the matcher remembers the
beginning and end of the text matched by that construct. Then, later on in the
regular expression, you can use ‘\’ followed by the digit D to mean "match the
same text matched the Dth time by the ‘\( ... \)’ construct."

The strings matching the first nine ‘\( ... \)’ constructs appearing in a
regular expression are assigned numbers 1 through 9 in order that the open-
parentheses appear in the regular expression. ‘\1’ through ‘\9’ refer to the text
previously matched by the corresponding ‘\( ... \)’ construct.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed
of two identical halves. The ‘\(.*\)’ matches the first half, which may be
anything, but the ‘\1’ that follows must match the same exact text.

If a particular ‘\( ... \)’ construct matches more than once (which can
easily happen if it is followed by ‘*’), only the last match is recorded.

‘\‘’ matches the empty string, provided it is at the beginning of the buffer.
‘\’’ matches the empty string, provided it is at the end of the buffer.
‘\b’ matches the empty string, provided it is at the beginning or end of

a word. Thus, ‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word.
‘\bballs?\b’ matches ‘ball’ or ‘balls’ as a separate word.

‘\B’ matches the empty string, provided it is *not* at the beginning or end
of a word.

‘\<’ matches the empty string, provided it is at the beginning of a word.
‘\>’ matches the empty string, provided it is at the end of a word.
‘\w’ matches any word-constituent character. The syntax table determines

which characters these are.
‘\W’ matches any character that is not a word-constituent.
‘\sC’ matches any character whose syntax is C. Here C is a character which

represents a syntax code: thus, ‘w’ for word constituent, ‘(’ for open-parenthesis,
etc. Represent a character of whitespace (which can be a newline) by either ‘-’
or a space character.

‘\SC’ matches any character whose syntax is not C.
The constructs that pertain to words and syntax are controlled by the setting

of the syntax table.
Here is a complicated regexp, used by Emacs to recognize the end of a

sentence together with any whitespace that follows. It is given in Lisp syntax to
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enable you to distinguish the spaces from the tab characters. In Lisp syntax, the
string constant begins and ends with a double-quote. ‘\"’ stands for a double-
quote as part of the regexp, ‘\\’ for a backslash as part of the regexp, ‘\t’ for
a tab and ‘\n’ for a newline.

"[.?!][]\"’)]*\\($\\|\t\\| \\)[ \t\n]*"

This contains four parts in succession: a character set matching period, ‘?’,
or ‘!’; a character set matching close-brackets, quotes, or parentheses, repeated
any number of times; an alternative in backslash-parentheses that matches end-
of-line, a tab, or two spaces; and a character set matching whitespace characters,
repeated any number of times.

To enter the same regexp interactively, you would type TAB to enter a
tab, and ‘C-q C-j’ to enter a newline. You would also type single slashes as
themselves, instead of doubling them for Lisp syntax.



Chapter 5

Recursion and Induction

5.1 Introduction

In this set of lectures, I will talk about recursive programming, a program-
ming technique you have seen before. I will introduce a style of programming,
called Functional Programming, that is especially suited for describing recursion
in computation and data structure. Functional programs are often significantly
more compact, and easier to design and understand, than their imperative coun-
terparts. I will show why induction is an essential tool in designing functional
programs.

Haskell I will use a functional programming language, called Haskell. What
follows is a very very small subset of Haskell; you should consult the refer-
ences given at the end of this document for further details. A very good source
is Thompson [48] which covers this material with careful attention to prob-
lems that students typically face. Another very good source is Richards [40],
whose lecture slides are available online. The Haskell manual is available online
at [18]; you should consult it as a reference, particularly its Prelude (haskell98-
report/standard-prelude.html) for definitions of many built-in functions. How-
ever, the manual is not a good source for learning programming. I would recom-
mend the book by Bird [6], which teaches a good deal of programming method-
ology. Unfortunately, the book does not quite use Haskell syntax, but a syntax
quite close to it. Another good source is A Gentle Introduction to Haskell [19]
which covers all the material taught here, and more, in its first 20 pages.

The Haskell compiler is installed on all Sun and Linux machines in this
department. To enter an interactive session for Haskell, type

hugs

The machine responds with something like

Haskell 98 mode: Restart with command line option -98 to enable extensions

91
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Reading file "/lusr/share/hugs/lib/Prelude.hs":

Hugs session for:
/lusr/share/hugs/lib/Prelude.hs
Type :? for help
Prelude>

At this point, whenever it displays zzz> for some zzz, the machine is waiting
for some response from you. You may type an expression and have its value
displayed on your terminal, as follows.

Prelude> 3+4
7
Prelude> 2^15
32768

5.2 Primitive Data Types

Haskell has a number of built-in data types; we will use only integer (called
Int), boolean (called Bool), character (called Char) and string (called String)
types1.

Integer You can use the traditional integer constants and the usual operators
for addition (+), subtraction (-) and multiplication (*). Unary minus sign is the
usual -, but enclose a negative number within parentheses, as in (-2); I will tell
you why later. Division over integers is written in infix as ‘div‘ and it returns
only the integer part of the quotient; thus, 5 ‘div‘ 3 is 1 and (-5) ‘div‘ 3
is -2 (‘ is the backquote symbol, usually it is the leftmost key in the top row of
your keyboard). Exponentiation is the infix operator ^ so that 2^15 is 32768.
The remainder after division is given by the infix operator ‘rem‘ and the infix
operator ‘mod‘ is for modulo; x ‘mod‘ y returns a value between 0 and y − 1,
for positive y. Thus, (-2) ‘rem‘ 3 is −2 and (-2) ‘mod‘ 3 is 1.

Two other useful functions are even and odd, which return the appropri-
ate boolean results about their integer arguments. Functions max and min take
two arguments each and return the maximum and the minimum values, respec-
tively. It is possible to write a function name followed by its arguments without
any parentheses, as shown below; parentheses are needed only to enforce an
evaluation order.

Prelude> max 2 5
5

The arithmetic relations are < <= == /= > >=. Each of these is a binary
operator that returns a boolean result, True or False. Note that equality

1Haskell supports two kinds of integers, Integer and Int data types. We will use only Int.
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operator is written as == and inequality as /=. Unlike in C++, 3 + (5 >= 2)
is not a valid expression; Haskell does not specify how to add an integer to a
boolean.

Boolean There are the two boolean constants, written as True and False.
The boolean operators are:

not -- for negation
&& -- for and
|| -- for or
== -- for equivalence
/= -- for inequivalence (also called "exclusive or")

Here is a short session with hugs.

Prelude> (3 > 5) || (5 > 3)
True
Prelude> (3 > 3) || (3 > 3)
False
Prelude> (2 ‘mod‘ (-3)) == ((-2) ‘mod‘ 3)
False
Prelude> even 3 || odd 3
True

Character and String A character is enclosed within single quotes and a
string is enclosed within double quotes.

Prelude> ’a’
’a’
Prelude> "a b c"
"a b c"
Prelude> "a, b, c"
"a, b, c"

You can compare characters using arithmetic relations; the letters (charac-
ters in the Roman alphabet) are ordered in the usual fashion with the uppercase
letters smaller than the corresponding lowercase letters. The expected ordering
applies to the digits as well.

Prelude> ’a’ < ’b’
True
Prelude> ’A’ < ’a’
True
Prelude> ’3’ < ’5’
True
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There are two functions defined on characters, ord and chr. Function ord(c)
returns the value of the character c in the internal coding table; it is a number
between 0 and 255. Function chr converts a number between 0 and 255 to
the corresponding character. Therefore, chr(ord(c))=c, for all characters c,
and ord(chr(i))=i, for all i, 0 ≤ i < 256. Note that all digits in the order
’0’ through ’9’, all lowercase letters ’a’ through ’z’ and uppercase letters ’A’
through ’Z’ are contiguous in the table. The uppercase letters have smaller ord
values than the lowercase ones.

Prelude> ord(’a’)
97
Prelude> chr(97)
’a’
Prelude> ord(chr(103))
103
Prelude> chr(255)
’\255’
Prelude> (ord ’9’)- (ord ’0’)
9
Prelude> (ord ’a’)- (ord ’A’)
32

A string is a list of characters; all the rules about lists, described later, apply
to strings.

5.3 Writing Function Definitions

We cannot compute much by working with constants alone. We need to be able
to define functions. The functions cannot be defined by interactive input. We
need to keep a file in which we list all the definitions and load that file.

5.3.1 Loading Program Files

Typically, Haskell program files have the suffix hs. I load a file Utilities.hs,
which I have stored in a directory called haskell.dir, as follows.

Prelude> :l haskell.dir/Utilities.hs
Reading file "haskell.dir/Utilities.hs":

Hugs session for:
/lusr/share/hugs/lib/Prelude.hs
haskell.dir/Utilities.hs

I have a program in that file to sort a list of numbers. So, now I may write

Utilities> sort[7, 5, 1, 9]
[1,5,7,9]
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Let me create a file 337.hs in which I will load all the definitions in this
note. Each time you change a file, by adding or modifying definitions, you have
to reload the file into hugs (a quick way to do this is to use the hugs command
:r which reloads the last loaded file).

5.3.2 Comments

Any string following -- in a line is considered a comment. So, you may write
in a command line:

Prelude> 2^15 -- This is 2 raised to 15

or, in the text of a program

-- I am now going to write a function called "power."
-- The function is defined as follows:
-- It has 2 arguments and it returns
-- the first argument raised to the second argument.

There is a different way to write comments in a program that works better
for longer comments, like the four lines I have written above: you can enclose a
region within {- and -} to make the region a comment.

{- I am now going to write a function called "power."
The function is defined as follows:
It has 2 arguments and it returns
the first argument raised to the second argument. -}

I prefer to put the end of the comment symbol, -}, in a line by itself.

5.3.3 Examples of Function Definitions

In its simplest form, a function is defined by: (1) writing the function name,
(2) followed by its arguments, (3) then a “=”, (4) followed by the body of the
function definition.

Here are some simple function definitions. Note that I do not put any paren-
theses around the arguments, they are simply written in order and parentheses
are put only to avoid ambiguity. We will discuss this matter in some detail
later, in Section 5.4.2 (page 99).

Note: Parameters and arguments I will use these two terms synony-
mously. 2

inc x = x+1 -- increment x
imply p q = not p || q -- boolean implication
digit c = (’0’ <= c) && (c <= ’9’) -- is c a digit?

We test some of our definitions now.
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Main> :l 337.hs
Reading file "337.hs":

Hugs session for:
/lusr/share/hugs/lib/Prelude.hs
337.hs
Main> inc 5
6
Main> imply True False
False
Main> digit ’6’
True
Main> digit ’a’
False
Main> digit(chr(inc (ord ’8’)))
True
Main> digit(chr(inc (ord ’9’)))
False

We can use other function names in a function definition.
We can define variables in the same way we define functions; a variable is a

function without arguments. For example,

offset = (ord ’a’) - (ord ’A’)

Unlike a variable in C++, this variable’s value does not change during the
program execution; we are really giving a name to a constant expression so that
we can use this name for easy reference later.

Exercise 38

1. Write a function to test if its argument is a lowercase letter; write another
to test if its argument is an uppercase letter.

2. Write a function to test if its argument, an integer, is divisible by 6.

3. Write a function whose argument is an uppercase letter and whose value
is the corresponding lowercase letter.

4. Define a function whose argument is a digit, 0 through 9, and whose value
is the corresponding character ’0’ through ’9’.

5. Define a function max3 whose arguments are three integers and whose
value is their maximum. 2



5.3. WRITING FUNCTION DEFINITIONS 97

5.3.4 Conditionals

In traditional imperative programming, we use if-then-else to test some con-
dition (i.e., a predicate) and perform calculations based on the test. Haskell
also provides an if-then-else construct, but it is often more convenient to use
a conditional equation, as shown below. The following function computes the
absolute value of its integer argument.

absolute x
| x >= 0 = x
| x < 0 = -x

The entire definition is a conditional equation and it consists of two clauses.
A clause starts with a bar (|), followed by a predicate (called a guard), an equals
sign (=) and the expression denoting the function value for this case. The guards
are evaluated in the order in which they are written (from top to bottom), and
for the first guard that is true, its corresponding expression is evaluated. So, if
you put x <= 0 as the second guard in the example above, it will work too, but
when x = 0 the expression in the first equation will be evaluated and the result
returned.

You can write otherwise for a guard, denoting a predicate that holds when
none of the other guards hold. An otherwise guard appears only in the last
equation. The same effect is achieved by writing True for the guard in the last
equation. If no guard is True in a conditional equation, you will get a run-tme
error message.

Given below is a function that converts the argument letter from upper to
lowercase, or lower to uppercase, as is appropriate. Assume that we have already
written two functions, uplow (to convert from upper to lowercase), lowup (to
convert from lower to uppercase), and a function upper whose value is True iff
its argument is an uppercase letter.

chCase c -- change case
| upper c = uplow c
| otherwise = lowup c

The test with hugs gives:

Main> chCase ’q’
’Q’
Main> chCase ’Q’
’q’

Exercise 39

1. Define a function that returns -1, 0 or +1, depending on whether the
argument is negative, zero or positive.
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2. Define a function that takes three integer arguments, p, q and r. If these
arguments are the lengths of the sides of a triangle, the function value
is True; otherwise, it is False. Recall from geometry that every pair of
values from p, q and r must sum to a value greater than the third one for
these numbers to be the lengths of the sides of a triangle.

max3 p q r = max p (max q r)
triangle p q r = (p+q+r) > (2* (max3 p q r))

5.4 Lexical Issues

5.4.1 Program Layout

Haskell uses line indentations in the program to delineate the scope of defini-
tions. A definition is ended by a piece of text that is to the left (columnwise)
of the start of its definition. Thus,

chCase c -- change case
| upper c = uplow c
| otherwise = lowup c

and

ch1Case c -- change case
| upper c = uplow c

| otherwise =
lowup c

are fine. But,

ch2Case c -- change case
| upper c = uplow c
| otherwise =

lowup c

is not. The line lowup c is taken to be the start of another definition. In the
last case, you will get an error message like

ERROR "337.hs":81 - Syntax error in expression (unexpected ‘;’,
possibly due to bad layout)

The semicolon (;) plays an important role; it closes off a definition (implic-
itly, even if you have not used it). That is why you see unexpected ‘;’ in the
error message.
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5.4.2 Function Parameters and Binding

Consider the expression

f 1+1

where f is a function of one argument. In normal mathematics, this will be an
invalid expression, and if forced, you will interpret it as f(1+1). In Haskell, this
is a valid expression and it stands for (f 1)+1. I give the binding rules below.

An expression consists of functions, binary infix operators and operands as
in

-2 + sqr 9 + min 2 7 - 3

Here the first minus (called unary minus) is a prefix operator, sqr is a function
of one argument, + is a binary operator, min is a function of two arguments, and
the last minus is a binary infix operator. An operator is a function; a binary
operator is typically written between its arguments (in the infix style).

Functions bind more tightly than infix operators. Function arguments are
written immediately following the function name, and the right number of ar-
guments are used up for each function, e.g., one for sqr and two for min. No
parentheses are needed unless your arguments are themselves expressions. So,
for a function g of two arguments, g x y z stands for (g x y) z. If you write g
f x y, it will be interpreted as (g f x) y; so, if you have in mind the expression
g(f(x),y), write it as g (f x) y. But, you can’t write g(f(x),y), because
(f(x),y) will be interpreted as a pair, which is a single item, see Section 5.7
(page 109). Now, sqr 9 + min 2 7 - 3 is (sqr 9) + (min 2 7) - 3. As a
good programming practice, do not ever write f 1+1; make your intentions clear
by using parentheses, as in (f 1)+1 or f(1+1).

How do we read sqr 9 + min 2 7 × max 2 7? After functions are bound
to their arguments, we get (sqr 9) + (min 2 7) × (max 2 7). That is, we
are left with operators only, and the operators bind according to their binding
powers. Since × has higher binding power than +, the expression is read as
(sqr 9) + ((min 2 7) × (max 2 7)).

Operators of equal binding power usually associate to the left; so, 5 - 3 -
2 is (5 - 3) - 2, but this is not always true. Operators in Haskell are either
(1) associative, so that the order does not matter, (2) left associative, as in
binary minus shown above, or (3) right associative, as in 2 ^ 3 ^ 5, which is
2 ^ (3 ^ 5). When in doubt, parenthesize.

In this connection, unary minus, as in -2, is particularly problematic. If you
would like to apply inc to -2, don’t write

inc -2

This will be interpreted as (inc) - (2); you will get an error message. Write
inc (-2). And -5 ‘div‘ 3 is -(5 ‘div‘ 3) which is-1, but (-5) ‘div‘ 3 is
-2.

Exercise 40
What is max 2 3 + min 2 3? 2
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Note on Terminology In computing, it is customary to say that a function
“takes an argument” and “computes (or returns) a value”. A function, being
a concept, and not an artifact, cannot “do” anything; it simply has arguments
and it has a value for each set of arguments. Yet, the computing terminology is
so prevalent that I will use these phrases without apology in these notes.

5.4.3 The where Clause

The following function has three arguments, x, y and z, and it determines if
x2 + y2 = z2.

pythagoras x y z = (x*x) + (y*y) == (z*z)

The definition would be simpler to read in the following form

pythagoras x y z = sqx + sqy == sqz
where
sqx = x*x
sqy = y*y
sqz = z*z

The where construct permits local definitions, i.e., defining variables (and
functions) within a function definition. The variables sqx, sqy and sqz are
undefined outside this definition.

We can do this example by using a local function to define squaring.

pythagoras x y z = sq x + sq y == sq z
where
sq p = p*p

5.4.4 Pattern Matching

Previously, we wrote a function like

imply p q = not p || q

as a single equation. We can also write it in the following form in which there
are two equations.

imply False q = True
imply True q = q

Observe that the equations use constants in the left side; these constants are
called literal parameters. During function evaluation with a specific argument
—say, False True— each of the equations are checked from top to bottom to
find the first one where the given arguments match the pattern of the equation.
For imply False True, the pattern given in the first equation matches, with
False matching False and q matching True.

We can write an even more elaborate definition of imply:
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imply False False = True
imply False True = True
imply True False = False
imply True True = True

The function evaluation is simply a table lookup in this case, proceeding se-
quentially from top to bottom.

Pattern matching has two important effects: (1) it is a convenient way of
doing case discrimination without writing a sphagetti of if-then-else statements,
and (2) it binds names to formal parameter values, i.e., assigns names to com-
ponents of the data structure —q in the first example— which may be used in
the function definition in the right side.

Pattern matching on integers can use simple arithmetic expressions, as shown
below in the definition of the successor function.

suc 0 = 1
suc (n+1) = (suc n)+1

Asked to evaluate suc 3, the pattern in the second equation is found to match —
with n = 2— and therefore, evaluation of (suc 3) is reduced to the evaluation
of (suc 2) + 1.

Pattern matching can be applied in elaborate fashions, as we shall see later.

5.5 Recursive Programming

Recursive programming is closely tied to problem decomposition. In program
design, it is common to divide a problem into a number of subproblems where
each subproblem is easier to solve by some measure, and the solutions of the
subproblems can be combined to yield a solution to the original problem. A
subproblem is easier if its solution is known, or if it is an instance of the original
problem, but over a smaller data set. For instance, if you have to sum twenty
numbers, you may divide the task into four subtasks of summing five numbers
each, and then add the four results. A different decomposition may (1) scan the
numbers, putting negative numbers in one subset, discarding zeros and putting
positive numbers in another subset, (2) sum the positive and negative subsets
individually, and (3) add the two answers. In this case, the first subproblem is
different in kind from the original problem.

In recursive programming, typically, a problem is decomposed into subprob-
lems of the same kind, and we apply the same solution procedure to each of the
subproblems, further subdividing them. A recursive program has to specify the
solutions for the very smallest cases, those which cannot be decomposed any
further.

The theoretical justification of recursive programming is mathematical in-
duction. In fact, recursion and induction are so closely linked that they are
often mentioned in the same breath (see the title of this note); I believe we
should have used a single term for this concept.
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5.5.1 Computing Powers of 2

Compute 2n, for n ≥ 0, using only doubling. As in typical induction, we consider
two cases, a base value of n and the general case where n has larger values. Let
us pick the base value of n to be 0; then the function value is 1. For n+1 the
function value is double the function value of n.

power2 0 = 1
power2 (n+1) = 2 * (power2 n)

How does the computer evaluate a call like power2 3? Here is a very rough
sketch. The interpreter has an expression to evaluate at any time. It picks
an operand (a subexpression) to reduce. If that operand is a constant, there
is nothing to reduce. Otherwise, it has to compute a value by applying the
definitions of the functions (operators) used in that expression. This is how the
evaluation of such an operand proceeds. The evaluator matches the pattern in
each equation of the appropriate function until a matching pattern is found.
Then it replaces the matched portion with the right side of that equation. Let
us see how it evaluates power2 3.

power2 3
= 2 * (power2 2) -- apply function definition on 3
= 2 * (2 * (power2 1)) -- apply function definition on 2
= 2 * (2 * (2 * (power2 0))) -- apply function definition on 1
= 2 * (2 * (2 * (1))) -- apply function definition on 0
= 2 * (2 * (2)) -- apply definition of *
= 2 * (4) -- apply definition of *
= 8 -- apply definition of *

What is important to note is that each recursive call is made to a strictly
smaller argument, and there is a smallest argument for which the function value
is explicitly specified. In this case, numbers are compared by their magnitudes,
and the smallest number is 0. You will get an error in evaluating power2 (-1).
We will see more general recursive schemes in which there may be several base
cases, and the call structure is more elaborate, but the simple scheme described
here, called primitive recursion, is applicable in a large number of cases.

5.5.2 Counting the 1s in a Binary Expansion

Next, let us program a function whose value is the number of 1s in the binary
expansion of its argument, where we assume that the argument is a natural
number. Imagine scanning the binary expansion of a number from right to left
(i.e., from the lower order to the higher order bits) starting at the lowest bit; if
the current bit is 0, then we ignore it and move to the next higher bit, and if
it is 1, then we add 1 to a running count (which is initially 0) and move to the
next higher bit. Checking the lowest bit can be accomplished by the functions
even and odd. Each successive bit can be accessed via integer division by 2
(right shift).
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count 0 = 0
count n
| even n = count (n ‘div‘ 2)
| odd n = count (n ‘div‘ 2) + 1

Note on pattern matching It would have been nice if we could have written
the second equation as follows.

count 2*t = count t
count 2*t + 1 = (count t) + 1

Unfortunately, Haskell does not allow such pattern matching.

5.5.3 Multiplication via Addition

Let us now implement multiplication using only addition. We make use of the
identity x ∗ (y + 1) = x ∗ y + x.

mlt x 0 = 0
mlt x (y+1) = (mlt x y) + x

The recursive call is made to a strictly smaller argument in each case. There
are two arguments which are both numbers, and the second number is strictly
decreasing in each call. The smallest value of the arguments is attained when
the second argument is 0.

The multiplication algorithm has a running time roughly proportional to the
magnitude of y, because each call decreases y by 1. We now present a far better
algorithm. You should study it carefully because it introduces an important
concept, generalizing the function. The idea is that we write a function to
calculate something more general, and then we call this function with a restricted
set of arguments to calculate our desired answer. Let us write a function,
quickMlt, that computes x*y + z over its three arguments. We can then define

mlt x y = quickMlt x y 0

The reason we define quickMlt is that it is more efficient to compute than mlt
defined earlier. We will use the following result from arithmetic.

x× (2× t) + z = (2× x)× t + z
x× (2× t + 1) + z = (2× x)× t + (x + z)

The resulting program is:

quickMlt x 0 z = z
quickMlt x y z
| even y = quickMlt (2 * x ) (y ‘div‘ 2) z
| odd y = quickMlt (2 * x ) (y ‘div‘ 2) (x + z)
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In each case, again the second argument is strictly decreasing. In fact, it is
being halved, so the running time is proportional to log y.

Exercise 41

Use the strategy shown for multiplication to compute xy. I suggest that you
compute the more general function z ∗ xy. 2

5.5.4 Fibonacci Numbers

The Fibonacci sequence (named after a famous Italian mathematician of the
10th century) is the sequence of integers whose first two terms are 0 and 1,
and where each subsequent term is the sum of the previous two terms. So, the
sequence starts out:

0 1 1 2 3 5 8 13 21 34 . . .

Let us index the terms starting at 0, so the 0th fibonacci number is 0, the next
one 1, and so forth. Our goal is to write a function that has argument n and
returns the nth Fibonacci number. The style of programming applies to many
other sequences in which each successive term is defined in terms of the previous
ones. Note, particularly, the pattern matching applied in the last equation.

fib 0 = 0
fib 1 = 1
fib (n + 2) = (fib n) + (fib (n+1))

Or, equivalently, we may write

fib n
| n == 0 = 0
| n == 1 = 1
| otherwise = (fib (n-1)) + (fib (n-2))

The first definition has three equations and the second has one conditional
equation with three (guarded) clauses. Either definition works, but these pro-
grams are quite inefficient. Let us see how many times fib is called in computing
(fib 6), see Figure 5.1. Here each node is labeled with a number, the argument
of a call on fib; the root node is labeled 6. In computing (fib 6), (fib 4)
and (fib 5) have to be computed; so, the two children of 6 are 4 and 5. In
general, the children of node labeled i+2 are i and i+1. As you can see, there
is considerable recomputation; in fact, the computation time is proportional
to the value being computed. (Note that (fib 6) (fib 5) (fib 4) (fib 3)
(fib 2) (fib 1) are called 1 1 2 3 5 8 times, respectively, which is a part of
the Fibonacci sequence). We will see a better strategy for computing Fibonacci
numbers in the next section.
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6

5

44

33 3

2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

1 1 1

Figure 5.1: Call pattern in computing (fib 6)

5.5.5 Greatest Common Divisor

The greatest common divisor (gcd) of two positive integers is the largest positive
integer that divides both m and n. (Prove the existence and uniqueness of gcd).
Euclid gave an algorithm for computing gcd about 2,500 years ago, an algorithm
that is still used today. Euclid’s algorithm is as follows.

egcd m n
| m == 0 = n
| n == 0 = m
| m == n = m
| m > n = egcd (m ‘rem‘ n) n
| n > m = egcd m (n ‘rem‘ m)

A simpler version of this algorithm, though not as efficient, is

gcd m n
| m == n = m
| m > n = gcd (m - n) n
| n > m = gcd m (n - m)

This algorithm, essentially, computes the remainders, (m ‘rem‘ n) and (n
‘rem‘ m), using repeated subtraction.

There is a modern version of the gcd algorithm, known as binary gcd. This
algorithm uses multiplication and division by 2, which are implemented by shifts
on binary numbers. The algorithm uses the following facts: (1) if m == n, then
gcd m n = m, (2) if m and n are both even, say 2s and 2t, then gcd m n = 2*
(gcd s t), (3) if exactly one of m and n, say m, is even and equal to 2s, then
gcd m n = gcd s n, (5) if m and n are both odd (so m-n is even) and, say, m >
n, then gcd m n = gcd (m-n) n.
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bgcd m n
| m == n = m
| (even m) && (even n) = 2 * (bgcd s t)
| (even m) && (odd n) = bgcd s n
| (odd m) && (even n) = bgcd m t
| m > n = bgcd (m-n) n
| n > m = bgcd m (n-m)

where s = m ‘div‘ 2
t = n ‘div‘ 2

Exercise 42
For positive integers m and n prove that

1. gcd m n = gcd n m

2. gcd (m+n) n = gcd m n 2

5.6 Reasoning about Recursive Programs

We are interested in proving properties of programs, imperative and recursive,
for similar reasons, to guarantee correctness, establish equivalence among alter-
native definitions, and, gain insight into the performance of the program. Our
main tool in proving properties of functional programs is induction.

Note on Font Usage I will be using mathematical font instead of computer
font —i.e., power2 instead of power2— in this section.

5.6.1 Proving Properties of power2

On page 102 we defined the function power2 that computes 2n given n as input.
We prove this result for all natural n. So, the desired proposition to be proven
is, for all n, n ≥ 0,

P (n) :: power2 n = 2n

We prove P (n) by induction on n.

• P (0) :: power2 0 = 20: The left side, from the definition of power2, is 1; the
right side, from arithmetic, is 1. Hence, P (0).

• P (n + 1) given P (n):

power2 (n + 1)
= {definition of power2}

2 ∗ (power2 n)
= {induction hypothesis: P (n) :: power2 n = 2n}

2 ∗ (2n)
= {arithmetic}

2n+1
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Exercise 43

Prove the following facts about power2 directly from its definition (i.e., not
using the fact that power2 n = 2n). Below, n and m are arbitrary natural
numbers.

1. (power2 n) > n

2. (power2 (n + 1)) > (power2 n)

3. (power2 (n + m)) = (power2 n) ∗ (power2 m)

4. power2 n = 3n. Where does the proof break down? 2

5.6.2 Proving Properties of count

The example power2 of Section 5.6.1 was too easy; the property was obvious.
Proofs are particularly important when the properties are not obvious. We will
see one such proof for function count of page 102.

Unlike power2, count does not have a closed arithmetic form. In fact, this is
true of most functions defined in a functional program. But we can still prove
facts about such a function using induction.

We will prove that for non-negative integers m and n,

count(m + n) ≤ (count m) + (count n)

The result is immediate if either m or n is zero. But the general result is
not obvious. If you start proving this result by considering the addition process
for binary numbers, you will be doing some of the steps of the proof given next.
First, we note that we have two parameters, m and n, over which the property
is defined. So, we will do induction over pairs of naturals and we will call a pair
(p, q) smaller than (m,n) if p < m and q < n.

Next, we will use the following properties of count without proof. You are
asked to prove the first property in one of the exercises, the other two are mere
rewritings of the definition. We use them because they are easier to manipulate
in a proof than the expressions involving ‘div‘.

count(0) = 0
count(2× x) = (count x)
count(2× x + 1) = (count x) + 1

We will consider four cases: (even m) ∧ (even n), (even m) ∧ (odd n),
(odd m)∧ (even n), (odd m)∧ (odd n). The second and third cases are identical,
because m and n are interchangeable due to symmetry in the problem statement.
We will write m = 2×s for (even m) and m = 2×s+1 for (odd m), and similarly
for n. In all cases, we apply induction on the magnitude of the numbers.

Here is the proof of count(m + n) ≤ (count m) + (count n) for (even m) ∧
(even n): We have m = 2× s and n = 2× t, for some s and t.
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count(m + n)
= {m = 2× s and n = 2× t}

count(2× s + 2× t)
= {arithmetic}

count(2× (s + t))
= {definition of count, given above}

count(s + t)
≤ {induction hypothesis}

(count s) + (count t)
= {definition of count, given above}

count(2× s) + count(2× t)
= {m = 2× s and n = 2× t}

count(m) + count(n)

This is the easiest of the four proofs. Now, we prove count(m + n) ≤
(count m)+(count n) for (even m)∧(odd n): We have m = 2×s and n = 2×t+1,
for some s and t.

count(m + n)
= {m = 2× s and n = 2× t + 1}

count(2× s + 2× t + 1)
= {arithmetic}

count(2× (s + t) + 1)
= {definition of count, given above}

count(s + t) + 1
≤ {induction hypothesis}

(count s) + (count t) + 1
= {definition of count, given above}

count(2× s) + count(2× t + 1)
= {m = 2× s and n = 2× t + 1}

count(m) + count(n)

Now we prove count(m + n) ≤ (count m) + (count n) for (odd m)∧ (odd n):
We have m = 2× s + 1 and n = 2× t + 1, for some s and t.

count(m + n)
= {m = 2× s + 1 and n = 2× t + 1}

count(2× s + 1 + 2× t + 1)
= {arithmetic}

count(2× (s + t) + 2)
= {definition of count, given above}

count(s + t + 1)
= {regrouping the terms}

count((s) + (t + 1))
≤ {induction hypothesis}

(count s) + (count (t + 1))
≤ {induction hypothesis, applied to the second term}
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(count s) + (count t) + count(1)
< {arithmetic; count(1) = 1}

((count s) + 1) + ((count t) + 1)
= {definition of count, given above}

count(2× s + 1) + count(2× t + 1)
= {m = 2× s + 1 and n = 2× t + 1}

count(m) + count(n)

Exercise 44
Prove each of the following statements:

1. count 2n = 1, for all n, n ≥ 0,

2. count (2n − 1) = n, for all n, n > 0,

3. count (2n + 1) = 2, for all n, n > 0.

4. count(power2 n) = 1, for all n, n ≥ 0. Use only the definitions of count
and power2; do not use the fact that power2 n = 2n. 2

Exercise 45
This set of exercises are about fib and gcd , defined in Sections 5.5.4 (page 104)
and 5.5.5 (page 105).

1. Prove that for all m and n, m > 0 and n ≥ 0.

fib(m + n) = fib(m− 1)× fib(n) + fib(m)× fib(n + 1).

2. Prove that

gcd (fib n) (fib (n + 1)) = 1, for all n, n > 0.

There is a beautiful generalization of this result (it is slightly hard to
prove); for all m and n, m > 0 and n > 0

gcd (fib m) (fib n) = fib(gcd m n).

3. Show that during the computation of (fib n), for any m, 0 < m ≤ n,
(fib m) is called (fib (n + 1−m)) times. Use the fact that (fib t) is called
once for each call on (fib (t + 1)) and(fib (t + 2)). 2

5.7 Tuple

We have, so far, seen a few elementary data types. There are two important
ways we can build larger structures using data from the elementary types—
tuple and list. We cover tuple in this section.

Tuple is the Haskell’s version of a record ; we may put several kinds of data
together and give it a name. In the simplest case, we put together two pieces of
data and form a 2-tuple, also called a pair. Here are some examples.
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(3,5) ("Misra","Jayadev") (True,3) (False,0)

As you can see, the components may be of different types. Note that Haskell
treats (3) and 3 alike, both are treated as numbers. Let us add the following
definitions to our program file:

teacher = ("Misra","Jayadev")
uniqno = 59285
course = ("cs337",uniqno)

There are two predefined functions, fst and snd , that return the first and
the second components of a pair, respectively.

Main> fst(3,5)
3
Main> snd teacher
"Jayadev"
Main> snd course
59285

There is no restriction at all in Haskell about what you can have as the first
and the second component of a tuple. In particular, we can create another tuple

hard = (teacher,course)

and extract its first and second components by

Main> fst hard
("Misra","Jayadev")
Main> snd hard
("cs337",59285)

Haskell allows you to create tuples with any number of components, but fst
and snd are applicable only to a pair.

Revisiting the Fibonacci Computation As we saw in the Figure 5.1 of
page 105, there is considerable recomputation in evaluating fib n, in general.
Here, I sketch a strategy to eliminate the recomputation. We define a function,
called fibpair, which has an argument n, and returns the pair ((fib n),
(fib (n+1))), i.e., two consecutive elements of the Fibonacci sequence. This
function can be computed efficiently, as shown below, and we may define fib n
= fst(fibpair n).

fibpair 0 = (0,1)
fibpair n = (y, x+y)

where (x,y) = fibpair (n-1)
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Exercise 46

1. What is the difference between (3,4,5) and (3,(4,5))?

2. A point in two dimensions is a pair of coordinates; assume that we are
dealing with only integer coordinates. Write a function that takes two
points as arguments and returns True iff either the x−coordinate or the
y−coordinate of the points are equal. Here is what I expect (ray is the
name of the function).

Main> ray (3,5) (3,8)
True
Main> ray (3,5) (2,5)
True
Main> ray (3,5) (3,5)
True
Main> ray (3,5) (2,8)
False

3. A line is given by a pair of distinct points (its end points). Define function
parallel that has two lines as arguments and value True iff they are
parallel. Recall from coordinate geometry that two lines are parallel if
their slopes are equal, and the slope of a line is given by the difference
of the y−coordinates of its two points divided by the difference of their
x−coordinates. In order to avoid division by 0, avoid division altogether.
Here is the result of some evaluations.

Main> parallel ((3,5), (3,8)) ((3,5), (3,7))
True
Main> parallel ((3,5), (4,8)) ((4,5), (3,7))
False
Main> parallel ((3,5), (4,7)) ((2,9), (0,5))
True

Solution This program is due to Jeff Chang, class of Spring 2006.

parallel ((a,b),(c,d)) ((u,v),(x,y))
= (d-b) * (x-u) == (y - v) * (c - a)

Note that we do not expect both (d - b) and (c - a) to be zero, because
the points (a,b) and (c,d) are distinct.

4. The function fibpair n returns the pair ((fib n), (fib (n+1))). The
computation of (fib (n+1)) is unnecessary, since we are interested only
in fib n. Redefine fib so that this additional computation is avoided.
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Solution

fib 0 = 0
fib n = snd(fibpair (n-1))

5.8 Type

Every expression in Haskell has a type. The type may be specified by the
programmer, or deduced by the interpreter. If you write 3+4, the interpreter
can deduce the type of the operands and the computed value to be integer (not
quite, as you will see). When you define

imply p q = not p || q
digit c = (’0’ <= c) && (c <= ’9’)

the interpreter can figure out that p and q in the first line are booleans (because
|| is applied only to booleans) and the result is also a boolean. In the second
line, it deduces that c is a character because of the two comparisons in the right
side, and that the value is boolean, from the types of the operands.

The type of an expression may be a primitive one: Int, Bool, Char or
String, or a structured type, as explained below. You can ask to see the type
of an expression by giving the command :t, as in the following.

Main> :t (’0’ <= ’9’)
’0’ <= ’9’ :: Bool

The type of a tuple is a tuple of types, one entry for the type of each operand.
In the following, [Char] denotes a string; I will explain why in the next section.

Main> :t ("Misra","Jayadev")
("Misra","Jayadev") :: ([Char],[Char])
Main> :t teacher
teacher :: ([Char],[Char])
Main> :t course
course :: ([Char],Integer)
Main> :t (teacher,course)
(teacher,course) :: (([Char],[Char]),([Char],Integer))

Each function has a type, namely, the types of its arguments in order followed
by the type of the result, all separated by ->.

Main> :t imply
imply :: Bool -> Bool -> Bool
Main> :t digit
digit :: Char -> Bool
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Capitalizations for types Type names (e.g., Int, Bool) are always capital-
ized. The name of a function or parameter should never be capitalized.

5.8.1 Polymorphism

Haskell allows us to write functions whose arguments can be any type, or any
type that satisfies some constraint. Consider the identity function:

identity x = x

This function’s type is

Main> :t identity
identity :: a -> a

That is for any type a, it accepts an argument of type a and returns a value of
type a.

A less trivial example is a function whose argument is a pair and whose value
is the same pair with its components exchanged.

exch (x,y) = (y,x)

Its type is as follows:

Main> :t exch
exch :: (a,b) -> (b,a)

Here, a and b are arbitrary types. So, exch(3,5), exch (3,"misra"), exch
((2,’a’),5) and exch(exch ((2,’a’),5)) are all valid expressions. The in-
terpreter chooses the most general type for a function so that the widest range
of arguments would be accepted.

Now, consider a function whose argument is a pair and whose value is True
iff the components of the pair are equal.

eqpair (x,y) = x == y

It is obvious that eqpair (3,5) makes sense, but not eqpair (3,’j’). We
would expect the type of eqpair to be (a,a) -> Bool, but it is more subtle.

Main> :t eqpair
eqpair :: Eq a => (a,a) -> Bool

This says that the type of eqpair is (a,a) -> Bool, for any type a that belongs
to the Eq class, i.e., types over which == is defined. Otherwise, the test == in
eqpair cannot be performed. Equality is not necessarily defined on all types,
particularly on function types.

Finally, consider a function that sorts two numbers which are given as a pair.
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sort (x,y)
| x <= y = (x,y)
| x > y = (y,x)

The type of sort is

Main> :t sort
sort :: Ord a => (a,a) -> (a,a)

It says that sort accepts any pair of elements of the same type, provided the
type belongs to the Ord type class, i.e., there is an order relation defined over
that type; sort returns a pair of the same type as its arguments. An order
relation is defined over most of the primitive types. So we can do the following
kinds of sorting. Note, particularly, the last example.

Main> sort (5,2)
(2,5)
Main> sort (’g’,’j’)
(’g’,’j’)
Main> sort ("Misra", "Jayadev")
("Jayadev","Misra")
Main> sort (True, False)
(False,True)
Main> sort ((5,3),(3,4))
((3,4),(5,3))

Polymorphism means that a function can accept and produce data of many
different types. This allows us to define a single sorting function, for example,
which can be applied in a very general fashion. We will see later that we can
sort a pair of trees using this sorting function.

5.8.2 Type Classes

Haskell has an extensive type system, which we will not cover in this course.
Beyond types are type classes, which provide a convenient treatment of over-
loading. A type class is a collection of types, each of which has a certain function
(or set of functions) defined on it. Here are several examples of type classes:
the Eq class consists of all types on which an equality operation is defined; the
Ord class consists of all types on which an order relation is defined; the Num
class consists of all types on which typical arithmetic operations (+, *, etc.)
are defined. The following exchange is instructive.

Main> :t 3
3 :: Num a => a
Main> :t (3,5)
(3,5) :: (Num a, Num b) => (b,a)
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Read the second line to mean 3 has the type a, where a is any type in the
type class Num. The last line says that (3,5) has the type (b,a), where a and
b are arbitrary (and possibly equal) types in the type class Num. So, what is the
type of 3+4? It has the type of any member of the Num class.

Main> :t 3+4
3 + 4 :: Num a => a

5.8.3 Type Violation

Since the interpreter can deduce the type of each expression, it can figure out if
you have supplied the arguments of the right type for a function. If you provide
invalid arguments, you will see something like this.

Main> digit 9
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : digit 9
*** Type : Num Char => Bool

Main> imply True 3
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : imply True 3
*** Type : Num Bool => Bool

5.9 List

Each tuple has a bounded number of components —two each for course and
teacher and two in (teacher,course). In order to process larger amounts of
data, where the number of data items may not be known a priori, we use the
data structure list. A list consists of a finite sequence of items2 all of the same
type. Here are some lists.

[1,3,5,7,9] -- all odd numbers below 10
[2,3,5,7] -- all primes below 10
[[2],[3],[5],[7]] -- a list of lists
[(3,5), (3,8), (3,5), (3,7)] -- a list of tuples
[[(3,5), (3,8)], [(3,5), (3,7), (2,9)]] -- a list of list of tuples
[’a’,’b’,’c’] -- a list of characters
["misra", "Jayadev"] ---- a list of strings

The following are not lists because not all their elements are of the same
type.

2We deal with only finite lists in this note. Haskell permits definitions of infinite lists and
computations on them, though only a finite portion can be computed in any invocation of a
function.
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[[2],3,5,7]
[(3,5), 8]
[(3,5), (3,8,2)]
[’J’,"misra"]

The order and number of elements in a list matter. So,

[2,3] 6= [3,2]
[2] 6= [2,2]

5.9.1 The Type of a List

The type of any list is [ItemType] where ItemType is the type of one of its items.
So, [True] is a list of booleans and so are [True, False] and [True, False,
True, False]. Any function that accepts a list of booleans as arguments can
process any of these three lists. Here are these and some more examples.

Main> :t [True]
[True] :: [Bool]
Main> :t [True, False]
[True,False] :: [Bool]
Main> :t [(2,’c’), (3,’d’)]
[(2,’c’),(3,’d’)] :: Num a => [(a,Char)]
Main> :t [[2],[3],[5],[7]]
[[2],[3],[5],[7]] :: Num a => [[a]]
Main> :t [(3,5), (3,8), (3,5), (3,7)]
[(3,5),(3,8),(3,5),(3,7)] :: (Num a, Num b) => [(a,b)]
Main> :t [[(3,5), (3,8)], [(3,5), (3,7), (2,9)]]
[[(3,5),(3,8)],[(3,5),(3,7),(2,9)]] :: (Num a, Num b) => [[(b,a)]]
Main> :t [’a’,’b’,’c’]
[’a’,’b’,’c’] :: [Char]

A string is a list of characters, i.e., [Char]; each of its characters is taken to
be a list item. Therefore, a list whose items are strings is a list of [Char], or
[[Char]].

Main> :t ["misra"]
["misra"] :: [[Char]]

Empty List A very special case is an empty list, one having no items. We
write it as []. It appears a great deal in programming. What is the type of []?

Main> :t []
[] :: [a]

This says that [] is a list of a, where a is any type. Therefore, [] can be given
as argument wherever a list is expected.
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5.9.2 The List Constructor Cons

There is one built-in operator that is used to construct a list element by element;
it is pronounced Cons and is written as : (a colon). Consider the expression
x:xs, where x is an item and xs is a list. The value of this expression is a list
obtained by prepending x to xs. Note that x should have the same type as the
items in xs. Here are some examples.

Main> 3: [2,1]
[3,2,1]
Main> 3: []
[3]
Main> 1: (2: (3: [])) --Study this one carefully.
[1,2,3]
Main> ’j’: "misra"
"jmisra"
Main> "j": "misra"
ERROR - Type error in application
*** Expression : "j" : "misra"
*** Term : "j"
*** Type : String
*** Does not match : Char

5.9.3 Pattern Matching on Lists

When dealing with lists, we often need to handle the special case of the empty
list in a different manner. Pattern matching can be applied very effectively in
such situations.

Let us consider a function len on lists that returns the length of the argument
list. We need to differentiate between two cases, as shown below.

len [] = ..
len (x:xs) = ..

The definition of this function spans more than one equation. During func-
tion evaluation with a specific argument —say, [1,2,3]— each of the equations
is checked from top to bottom to find the first one where the given list matches
the pattern of the argument. So, with [1,2,3], the first equation does not
match because the argument is not an empty list. The second equation matches
because x matches with 1 and xs matches with [2,3]. Additionally, pattern
matching assigns names to components of the data structure —x and xs in this
example— which may then be used in the RHS of the function definition.

5.9.4 Recursive Programming on Lists

Let us try to complete the definition of the function len sketched above. Clearly,
we expect an empty list to have length 0. The general case, below, should be
studied very carefully.
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len [] = 0
len (x:xs) = 1 + (len xs)

The RHS of the second equation says that the length of the list (x:xs) is
one more than the length of xs. This is surely true, but how does a computer
use this to evaluate the result for a specific list like [1,2,3]? Here is a very
rough explanation.

The interpreter has an expression to evaluate at any time. If the expression
is not a constant, we expect it to match the left side of a pattern in a function
definition. In that case, the definition is used to rewrite the expression. This is
how len [1,2,3] is evaluated. Recall that [1,2,3] is (1:(2:(3:[]))).

len [1,2,3]
= len (1:(2:(3:[]))) -- [1,2,3] is (1:(2:(3:[])))
= 1 + len (2:(3:[])) -- applying function definition on [1,2,3]
= 1 + (1 + len (3:[])) -- applying function definition on [2,3]
= 1 + (1 + (1+ len []) -- applying function definition on [3]
= 1 + (1 + (1+ 0) -- applying function definition on []
= 3 -- reducing the expression

What is important to note is that each recursive call should be made to
a smaller argument, and there should be a smallest argument for which the
function value is explicitly specified. In our case, a list is smaller than another
if the former has fewer elements, and since xs is smaller than x:xs our required
criterion is met. The smallest list, by this measure, is the empty list, for which
we have an explicit function value 0. This is, in fact, the strategy you will use
in most of your programs.

Consider now a function that sums the elements of a list of integers. It
follows the same pattern.

suml [] = 0
suml (x:xs) = x + (suml xs)

A function that multiplies the elements of a list of integers.

multl [] = 1
multl (x:xs) = x * (multl xs)

Next, we write a program for a function whose value is the maximum of a
list of integers. Here it does not make much sense to talk about the maximum
over an empty list.3 So, our smallest list will have a single element, and here is
how you pattern match for a single element.

maxl [x] = x
maxl (x:xs) = max x (maxl xs)

3But people do and they define it to be −∞. The value −∞ is approximated by the
smallest value in type Int which is minBound::Int; similarly, +∞ is approximated by the
largest value, maxBound::Int.
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Exercise 47
Write a function that takes the conjunction (&&) of the elements of a list of
booleans.

andl [] = True
andl (x:xs) = x && (andl xs)

So, we have

Main> andl [True, True, 2 == 5]
False

2

Now consider a function whose value is not just one item but a list. The
following function negates every entry of a list of booleans.

notl[] = []
notl (x:xs) = (not x) : (notl xs)

So,

Main> notl [True, True, 2 == 5]
[False,False,True]

The following function removes all negative numbers from the argument list.

negrem [] = []
negrem (x:xs)
| x < 0 = negrem xs
| otherwise = x : (negrem xs)

So,

Main> negrem []
[]
Main> negrem [2,-3,1]
[2,1]
Main> negrem [-2,-3,-1]
[]

Pattern matching over a list may be quite involved. The following function,
divd, partitions the elements of the argument list between two lists, putting the
elements with even index in the first list and with odd index in the second list
(list elements are numbered starting at 0). So, divd [1,2,3] is ([1,3],[2])
and divd [1,2,3,4] is ([1,3],[2,4]). See Section 5.9.5 for another solution
to this problem.

divd [] = ([], [])
divd (x: xs) = (x:ys, zs)

where (zs,ys) = divd xs
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We conclude this section with a small example that goes beyond “primitive
recursion”, i.e., recursion is applied not just on the tail of the list. The problem
is to define a function uniq that returns the list of unique items from the argu-
ment list. So, uniq[3, 2, 2, 2] = [3, 2], uniq[3, 2, 2] = [3, 2] and
uniq[3, 2] = [3, 2].

uniq [] = []
uniq (x:xs) = x: (uniq(minus x xs))

where
minus y [] = []
minus y (z: ys)
| y == z = (minus y ys)
| otherwise = z: (minus y ys)

Note This program does not work if you try to evaluate uniq [] on the
command line. This has to do with type classes; the full explanation is beyond
the scope of these notes.

Exercise 48

1. Define a function unq that takes two lists xs and ys as arguments. Assume
that initially ys contains distinct elements. Function unq returns the list
of unique elements from xs and ys. Define uniq using unq.

unq [] ys = ys
unq (x:xs) ys
| inq x ys = unq xs ys -- inq x ys is: x in ys?
| otherwise = unq xs (x:ys)

where
inq y [] = False
inq y (z: zs) = (y == z) || (inq y zs)

uniq xs = unq xs []

2. Define a function that creates a list of unique elements from a sorted
list. So, a possible input is [2,2,3,3,4] and the corresponding output is
[2,3,4].

3. The prefix sum of a list of numbers is a list of equal length whose ith
element is the sum of the first i items of the original list. So, the prefix
sum of [3,1,7] is [3,4,11]. Write a linear-time algorithm to compute the
prefix sum.
Hint: Use function generalization.

ps xs = pt xs 0
where pt [] c = []

pt (x:xs) c = (c+x) : (pt xs (c+x))
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5.9.5 Mutual Recursion

All of our examples so far have involved recursion in which a function calls itself.
It is easy to extend this concept to a group of functions that call each other.
To illustrate mutual recursion, I will consider the problem of partitioning a list;
see page 119 for another solution to this problem.

It is required to create two lists of nearly equal size from a given list, lis. The
order of items in lis is irrelevant, so the two created lists may contain elements
from lis in arbitrary order. If lis has an even number of elements, say 2 × n,
then each of the created lists has n elements, and if lis has 2× n + 1 items, one
of the lists has n + 1 elements and the other has n elements.

One possible solution for this problem is to determine the length of lis (you
may use the built-in function length) and then march down lis half way, adding
elements to one output list, and then continue to the end of lis adding items to
the second output list. We adopt a simpler strategy. We march down lis, adding
items alternately into the two output lists. We define two functions, divide0
and divide1 each of which partitions the argument list, divide0 starts with
prepending the first item of the argument into the first list, and divide1 by
prepending the first item to the second list. Here, divide0 calls divide1 and
divide1 calls divide0.

divide0 [] = ([],[])
divide0 (x: xs) = (x:f, s)

where (f,s) = divide1 xs

divide1 [] = ([],[])
divide1 (x: xs) = (f, x:s)

where (f,s) = divide0 xs

We then get,

Main> divide0 [1,2,3]
([1,3],[2])
Main> divide0 [1,2,3,4]
([1,3],[2,4])

5.10 Examples of Programming with Lists

In this section, we take up more elaborate examples of list-based programming.

5.10.1 Some Useful List Operations

snoc

The list constructor cons of Section 5.9.2 (page 117) is used to add an item at
the head of a list. The function snoc, defined below, adds an item at the “end”
of a list.
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snoc x [] = [x]
snoc x (y: xs) = y:(snoc x xs)

The execution of snoc takes time proportional to the length of the argument
list, whereas cons takes constant time. So, it is preferable to use cons.

concatenate

The following function concatenates two lists in order. Remember that the two
lists need to have the same type in order to be concatenated.

conc [] ys = ys
conc (x:xs) ys = x : (conc xs ys)

There is a built-in operator that does the same job; conc xs ys is written
as xs ++ ys. The execution of conc takes time proportional to the length of
the first argument list.

Exercise 49

1. Implement a double-ended queue in which items may be added at either
end and removed from either end.

2. Define a function to left-rotate a list. Left-rotation of [1,2,3] yields
[2,3,1] and of the empty list yields the empty list. 2

flatten

Function flatten takes a list of lists, like

[ [1,2,3], [10,20], [], [30] ]

and flattens it out by putting all the elements into a single list, like

[1,2,3,10,20,30]

This definition should be studied carefully. Here xs is a list and xss is a list
of lists.

flatten [] = []
flatten (xs : xss) = xs ++ (flatten xss)

Exercise 50

1. What is the type of flatten?

2. Evaluate

["I"," love"," functional"," programming"]

and

flatten ["I"," love"," functional"," programming"]

and note the difference.

3. What happens if you apply flatten to a list of list of lists? 2
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reverse

The following function reverses the order of the items in a list.

rev [] = []
rev (x: xs) = (rev xs) ++ [x] -- put x at the end of (rev xs)

The running time of this algorithm is O(n2), where n is the length of the
argument list. (Prove this result using a recurrence relation. Use the fact that
append takes O(k) time when applied to a list of length k.) In the imperative
style, reversing of an array can be done in linear time. Something is terribly
wrong with functional programming! Actually, we can attain a linear time
bound using functional programming.

The more efficient algorithm uses function generalization which was intro-
duced for the quickMlt function for multiplication example in Section 5.5.3
(page 103). We define a function reverse that has two arguments xs and ys,
each a list. Here xs denotes the part that remains to be reversed (a suffix of the
original list) and ys is the reversal of the prefix. So, during the computation
of reverse [1,2,3,4,5], there will be a call to reverse [4,5] [3,2,1]. We
have the identity

reverse xs ys = (rev xs) ++ ys

Given this identity,

reverse xs [] = rev xs

The definition of reverse is as follows.

reverse [] ys = ys
reverse (x:xs) ys = reverse xs (x:ys)

Exercise 51

1. Show that the execution time of reverse xs ys is O(n) where the length
of xs is n.

2. Prove from the definition of rev that rev (rev xs) = xs.

3. Prove from the definition of rev and reverse that

reverse xs ys = (rev xs) ++ ys

4. Show how to right-rotate a list efficiently (i.e., in linear time in the size of
the argument list). Right-rotation of [1,2,3,4] yields [4,1,2,3].
Hint: use rev.

right_rotate [] = []
right_rotate xs = y: (rev ys)

where
y:ys = (rev xs)

5. Try proving rev (xs ++ ys) = (rev ys) ++ (rev xs). 2
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5.10.2 Towers of Hanoi

This is a well-known puzzle. Given is a board on which there are three pegs
marked ’a’, ’b’ and ’c’, on each of which can rest a stack of disks. There
are n disks, n > 0, of varying sizes, numbered 1 through n in order of size. The
disks are correctly stacked if they are increasing in size from top to bottom in
each stack. Initially, all disks are correctly stacked at ’a’. It is required to
move all the disks to ’b’ in a sequence of steps under the constraints that (1)
in each step, the top disk of one stack is moved to the top of another stack, and
(2) the disks are correctly stacked at all times.

For n = 3, the sequence of steps given below is sufficient. In this sequence,
a triple (i,x,y) denotes a step in which disk i is moved from stack x to y.
Clearly, i is at the top of stack x before the step and at the top of stack y after
the step.

[(1,’a’,’b’),(2,’a’,’c’),(1,’b’,’c’),(3,’a’,’b’),
(1,’c’,’a’),(2,’c’,’b’),(1,’a’,’b’)]

There is an iterative solution for this problem, which goes like this. Disk
1 moves in every alternate step starting with the first step. If n is odd, disk
1 moves cyclically from ’a’ to ’b’ to ’c’ to ’a’ . . ., and if n is even, disk 1
moves cyclically from ’a’ to ’c’ to ’b’ to ’a’ . . .. In each remaining step,
there is exactly one possible move: ignore the stack of which disk 1 is the top;
compare the tops of the two remaining stacks and move the smaller one to the
top of the other stack (if one stack is empty, move the top of the other stack to
its top).

I don’t know an easy proof of this iterative scheme; in fact, the best proof
I know shows that this scheme is equivalent to an obviously correct recursive
scheme.

The recursive scheme is based on the following observations. There is a step
in which the largest disk is moved from ’a’; we show that it is sufficient to
move it only once, from ’a’ to ’b’. At that moment, disk n is the top disk
at ’a’ and there is no other disk at ’b’. So, all other disks are at ’c’, and,
according to the given constraint, they are correctly stacked. Therefore, prior
to the move of disk n, we have the subtask of moving the remaining n−1 disks,
provided n > 1, from ’a’ to ’c’. Following the move of disk n, the subtask
is to move the remaining n − 1 disks from ’a’ to ’c’. Each of these subtasks
is smaller than the original task, and may be solved recursively. Note that in
solving the subtasks, disk n may be disregarded, because any disk can be placed
on it; hence, its presence or absence is immaterial.

tower n a b c
| n == 0 = []
| otherwise = (tower (n-1) a c b)

++ [(n,a,b)]
++ (tower (n-1) c b a)

We get
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Main> tower 3 ’a’ ’b’ ’c’
[(1,’a’,’b’),(2,’a’,’c’),(1,’b’,’c’),(3,’a’,’b’),
(1,’c’,’a’),(2,’c’,’b’),(1,’a’,’b’)]

Exercise 52

1. What is the type of function tower?

2. What is the total number of moves, as a function of n?

3. Argue that there is no scheme that uses fewer moves, for any n.

4. Show that disk 1 is moved in every alternate move.

5. (very hard) What is a good strategy (i.e., minimizing the number of moves)
when there are four pegs instead of three?

6. (Gray code; hard) Start with an n-bit string of all zeros. Number the bits
1 through n, from lower to higher bits. Solve the Towers of Hanoi problem
for n, and whenever disk i is moved, flip the ith bit of your number and
record it. Show that all 2n n-bit strings are recorded exactly once in this
procedure. 2

5.10.3 Gray Code

If you are asked to list all 3-bit numbers, you will probably write them in
increasing order of their magnitudes:

000 001 010 011 100 101 110 111

There is another way to list these numbers so that consecutive numbers (the
first and the last numbers are consecutive too) differ in exactly one bit position.

000 001 011 010 110 111 101 100

The problem is to generate such a sequence for every n. Let us attack the
problem by induction on n. For n = 1, the sequence 0 1 certainly meets the
criterion. For n+1, n ≥ 1, we argue as follows. Assume, inductively, that there
is a sequence Xn of n-bit numbers in which the consecutive numbers differ in
exactly one bit position. Now, we will take Xn and create Xn+1, a sequence of
n + 1-bit numbers with the same property. To gain some intuition, let us look
at X2. Here is a possible sequence:

00 01 11 10

How do we construct X3 from X2? Appending the same bit, a 0 or a 1, to
the left end of each bit string in X2 preserves the property among consecutive
numbers, and it makes each bit string longer by one. So, from the above sequence
we get:
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000 001 011 010

Now, we need to list the remaining 3-bit numbers, which we get by appending
1s to the sequence X2:

100 101 111 110

But merely concatenating this sequence to the previous sequence won’t do; 010
and 100 differ in more than one bit position. But concatenating the reverse of
the above sequence works, and we get

000 001 011 010 110 111 101 100

Define function gray to compute such a sequence given n as the argument.
The output of the function is a list of 2n items, where each item is a n-bit string.
Thus, the output will be

Main> gray 3
["000","001","011","010","110","111","101","100"]

Considering that we will have to reverse this list to compute the function
value for the next higher argument, let us define a more general function,
grayGen, whose argument is a natural number n and whose output is a pair
of lists, (xs,ys), where xs is the Gray code of n and ys is the reverse of xs. We
can compute xs and ys in similar ways, without actually applying the reverse
operation.

First, define a function cons0 whose argument is a list of strings and which
returns a list by prepending a ’0’ to each string in the argument list. Similarly,
define cons1 which prepends ’1’ to each string.

cons0 [] = []
cons0 (x:xs) = (’0’:x):(cons0 xs)

cons1 [] = []
cons1 (x:xs) = (’1’:x):(cons1 xs)

Then grayGen and gray are easy to define.

grayGen 0 = ([""],[""])
grayGen (n+1) = ((cons0 a) ++ (cons1 b), (cons1 a) ++ (cons0 b))

where (a,b) = grayGen n

gray n = fst(grayGen n)

Exercise 53

1. Show another sequence of 3-bit numbers that has the Gray code property.

2. Prove that for all n,
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rev a = b
where (a,b) = grayGen n

You will have to use the following facts; for arbitrary lists xs and ys

rev (rev xs) = xs
rev (cons0 ys) = cons0 (rev ys)
rev (cons1 ys) = cons1 (rev ys)

3. Given two strings of equal length, their Hamming distance is the number of
positions in which they differ. Define a function to compute the Hamming
distance of two given strings.

4. In a Gray code sequence consecutive numbers have hamming distance of
1. Write a function that determines if the strings in its argument list have
the Gray code property. Make sure that you compare the first and last
elements of the list. 2

5.10.4 Sorting

Consider a list of items drawn from some totally ordered domain such as the
integers. We develop a number of algorithms for sorting such a list, that is, for
producing a list in which the same set of numbers are arranged in ascending
order.4 We cannot do in situ exchanges in sorting, as is typically done in
imperative programming, because there is no way to modify the argument list.

Insertion Sort

Using the familiar strategy of primitive recursion, let us define a function for
sorting, as follows.

isort [] = []
isort (x:xs) = .. (isort xs) .. -- skeleton of a definition

The first line is easy to justify. For the second line, the question is: how
can we get the sorted version of (x:xs) from the sorted version of xs —that is
isort xs— and x? The answer is, insert x at the right place in (isort xs).
So, let us first define a function insert y ys, which produces a sorted list by
appropriately inserting y in the sorted list ys.

insert y [] = [y]
insert y (z:zs)
| y <= z = y:(z:zs)
| y > z = z: (insert y zs)

4A sequence of numbers . . . x y . . . is ascending if for consecutive elements x and y, x ≤ y
and increasing if x < y. It is descending if x ≥ y and decreasing if x > y.
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Then, function isort is

isort [] = []
isort (x:xs) = insert x (isort xs)

Exercise 54

1. What is the worst-case running time of insert and isort?

2. What is the worst-case running time of isort if the input list is already
sorted? What if the reverse of the input list is sorted (i.e., the input list
is sorted in descending order)? 2

Merge sort

This sorting strategy is based on merging two lists. First, we divide the input list
into two lists of nearly equal size —function divide0 of Section 5.9.5 (page 121)
works very well for this— sort the two lists recursively and then merge them.
Merging of sorted lists is easy; see function merge below.

merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| x <= y = x : (merge xs (y:ys))
| x > y = y : (merge (x:xs) ys)

Based on this function, we develop mergesort.

mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge left right

where
(xsl,xsr) = divide0 xs
left = mergesort xsl
right = mergesort xsr

Exercise 55

1. Why is

merge [] [] = []

not a part of the definition of merge?

2. Show that mergesort has a running time of O(2n×n) where the argument
list has length 2n.

3. Modify merge so that it discards all duplicate items.
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4. Develop a function similar to merge that has two ascending lists as argu-
ments and creates an ascending list of common elements.

5. Develop a function that has two ascending lists as arguments and cre-
ates the difference, first list minus the second list, as an ascending list of
elements.

6. Develop a function that has two ascending lists of integers as arguments
and creates an increasing list of pairwise sums from the two lists (dupli-
cates are discarded). 2

Quicksort

Function quicksort partitions its input list xs into two lists, ys and zs, so
that every item of ys is at most every item of zs. Then ys and zs are sorted
and concatenated. Note that in mergesort, the initial partitioning is easy and
the final combination is where the work takes place; in quicksort the initial
partitioning is where all the work is.

We develop a version of quicksort that differs slightly from the description
given above. First, we consider the partitioning problem. A list is partitioned
with respect to some value v that is supplied as an argument; all items smaller
than or equal to v are put in ys and all items greater than v are put in zs.

partition v [] = ([],[])
partition v (x:xs)
| x <= v = ((x:ys),zs)
| x > v = (ys,(x:zs))

where (ys,zs) = partition v xs

There are several heuristics for choosing v; let us choose it to be the first
item of the given (nonempty) list. Here is the definition of quicksort.

quicksort [] = []
quicksort (x:xs) = (quicksort ys ) ++ [x] ++ (quicksort zs)

where (ys,zs) = partition x xs

Exercise 56

1. Show that each call in quicksort is made to a smaller argument.

2. What is the running time of quicksort if the input file is already sorted?

3. Find a permutation of 1 through 15 on which quicksort has the best
performance; assume that the clause with guard x <= v executes slightly
faster than the other clause.

8 4 2 1 3 6 5 7 12 10 9 11 14 13 15

2
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Exercise 57

1. Define a function that takes two lists of equal length as arguments and
produces a boolean list of the same length as the result; an element of the
boolean list is True iff the corresponding two elements of the argument
lists are identical.

2. Define a function that creates a list of unique elements from a sorted list.
Use this function to redefine function uniq of Section 5.9.4 (page 120).

3. Define function zip that takes a pair of lists of equal lengths as argument
and returns a list of pairs of corresponding elements. So,

zip ([1,2,3], [’a’,’b’,’c’]) = [(1,’a’), (2,’b’), (3,’c’)]

4. Define function unzip that is the inverse of zip:

unzip (zip (xs,ys)) = (xs,ys)

5. Define function take where take n xs is a list containing the first n items
of xs in order. If n exceeds the length of xs then the entire list xs is
returned.

6. Define function drop where

xs = (take n xs) ++ (drop n xs)

7. Define function index where index i xs returns the ith element of xs.
Assume that elements in a list are indexed starting at 0. Also, assume
that the argument list is of length at least i. 2

Exercise 58
A matrix can be represented as a list of lists. Let us adopt the convention that
each outer list is a column of the matrix. Develop an algorithm to compute the
determinant of a matrix of numbers. 2

Exercise 59
It is required to develop a number of functions for processing an employee
database. Each entry in the database has four fields: employee, spouse, salary
and manager. The employee field is a string that is the name of the employee,
the spouse field is the name of his/her spouse –henceforth, “his/her” will be ab-
breviated to “its” and “he/she” will be “it”—, the salary field is the employee’s
annual salary and the manager field is the name of employee’s manager. Assume
that the database contains all the records of a hierachical (tree-structured) orga-
nization in which every employee’s spouse is also an employee, each manager is
also an employee except root, who is the manager of all highest level managers.
Assume that root does not appear as an employee in the database.
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A manager of an employee is also called its direct manager; an indirect
manager is either a direct manager or an indirect manager of a direct manager;
thus, root is every employee’s indirect manager.

Write functions for each of the following tasks. You will find it useful to
define a number of auxiliary functions that you can use in the other functions.
One such function could be salary, which given a name as an argument returns
the corresponding salary.

In the following type expressions, DB is the type of the database, a list of
4-tuples, as described above.

1. Call an employee overpaid if its salary exceeds that of its manager. It is
grossly overpaid if its salary exceeds the salaries of all its indirect man-
agers. List all overpaid and grossly overpaid employees. Assume that the
salary of root is 100,000.

overpaid :: DB -> [String]
grossly_overpaid :: DB -> [String]

2. List all employees who directly manage their spouses; do the same for
indirect management.

spouse_manager :: DB -> [String]

3. List all managers who indirectly manage both an employee and its spouse.

indirect_manager :: DB -> [String]

4. Are there employees e and f such that e’s spouse is f ’s manager and f ’s
spouse is e’s manager?

nepotism :: DB -> [(String,String)]

5. Find the family that makes the most money.

rich :: DB -> [(String,String)]

6. Define the rank of a manager as the number of employees it manages.
Define the worth of a manager as its salary/rank. Create three lists in
which you list all managers in decreasing order of their salaries, ranks and
worth.

sorted_salaries :: DB -> [String]
sorted_rank :: DB -> [String]
sorted_worth :: DB -> [String]

7. The database is in normal form if the manager of x appears as an employee
before x in the list. Write a function to convert a database to normal form.
Are any of the functions associated with the above exercises easier to write
or more efficient to run on a database that is given in normal form?

normalize :: DB -> DB
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5.11 Higher Order Functions

Infix and Prefix Operators I use the term operator to mean a function
of two arguments. An infix operator, such as +, is written between its two
arguments, whereas a prefix operator, such as max, precedes its arguments. You
can convert an infix operator to a prefix operator by putting parentheses around
the function name (or symbol). Thus, (+) x y is the same as x + y. You can
convert from prefix to infix by putting backquotes around an operator, so div
5 3 is the same as 5 ‘div‘ 3.

Most built-in binary operators in Haskell that do not begin with a letter,
such as +, *, &&, and ||, are infix; max, min, rem, div, and mod are prefix. 2

5.11.1 Function foldr

We developed a number of functions —suml, multl— in Section 5.9.4 (page 117)
that operate similarly on the argument list: (1) for the empty list, each function
produces a specific value (0 for suml, 1 for multl) and (2) for a nonempty list,
say x:xs, the item x and the function value for xs are combined using a specific
operator (+ for suml, * for multl). This suggests that we can code a generic
function that has three arguments: the value supplied as in (1) —written as z
below—, the function applied as in (2) — written as f below—, and the the list
itself on which the function is to be applied. Here is such a function.

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Then we can define

suml xs = foldr (+) 0 xs
multl xs = foldr (*) 1 xs

Similarly, we can define for boolean lists

andl xs = foldr (&&) True xs
orl xs = foldr (||) False xs
eql xs = foldr (==) True xs

The last one applies the equivalence operator (≡) over a list of booleans; the
result is True if there are an even number of False elements in the list, and
False otherwise.

We can define flatten of Section 5.10.1 (page 122) by

flatten xs = foldr (++) [] xs

Note I have been writing the specific operators, such as (+), within paren-
theses, instead of writing them as just +, for instance, in the definition of suml.
This is because the definition of foldr requires f to be a prefix operator, and +
is an infix operator; (+) is the prefix version of +. 2
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Note There is an even nicer way to define functions such as suml and multl;
just omit xs from both sides of the function definition. So, we have

suml = foldr (+) 0
multl = foldr (*) 1

In these notes, I will not describe the justification for this type of definition. 2

Function foldr has an argument that is a function; foldr is called a higher
order function. The rules of Haskell do not restrict the type of argument of a
function; hence, a function, being a typed value, may be supplied as an argu-
ment. Function (and procedure) arguments are rare in imperative programming,
but they are common and very convenient to define and use in functional pro-
gramming. Higher order functions can be defined for any type, not just lists.

What is the type of foldr? It has three arguments, f, z and xs, so its type
is

(type of f) -> (type of z) -> (type of xs) -> (type of result)

The type of z is arbitrary, say a. Then f takes two arguments of type a and
produces a result of type a, so its type is (a -> a -> a). Next, xs is a list of
type a, so its type is [a]. Finally, the result type is a. So, we have for the type
of foldr

(a -> a -> a) -> a -> [a] -> a

Actually, the interpreter gives a more general type:

Main> :t foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

This means that the two arguments of f need not be of the same type. Here
is an example; function evenl determines if all integers of a given list are even.
For its definition, we use function ev that takes an integer and a boolean as
arguments and returns a boolean.

ev x b = (even x) && b
evenl xs = foldr ev True xs

Main> evenl [10,20]
True
Main> evenl [1,2]
False

Function fold Function fold is a simpler version of foldr. It applies to
nonempty lists only, and does not have the parameter z.

fold f [x] = x
fold f (x:xs) = f x (fold f xs)
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Applying fold to the list [a,b,c,d] gives f a (f b (f c d)). To use an
infix operator ! on [a,b,c,d], call fold (!)[a,b,c,d]. This gives a!(b!(c!d)),
which is same as a!b!c!d when ! is an associative operator. Quite often fold
suffices in place of foldr. For example, we can define function maxl of Sec-
tion 5.9.4, which computes the maximum element of a nonempty list, by

maxl = fold max

5.11.2 Function map

Function map takes as arguments (1) a function f and (2) a list of elements
on which f can be applied. It returns the list obtained by applying f to each
element of the given list.

map f [] = []
map f (x:xs) = (f x) : (map f xs)

So,

Main> map not [True,False]
[False,True]
Main> map even [2,4,5]
[True,True,False]
Main> map chCase "jmisra"
"JMISRA"
Main> map len ["Jayadev","Misra"]
[7,5]

The type of map is:

Main> :t map
map :: (a -> b) -> [a] -> [b]

This function is so handy that it is often used to transform a list to a form
that can be more easily manipulated. For example, to determine if all integers
in a given list, xs, are even, we write

andl (map even xs)

where andl is defined in Section 5.11.1 (page 132). Here (map even xs) creates
a list of booleans of the same length as the list xs such that the ith boolean
is True iff the ith element of xs is even. The function andl then take the
conjunction of the booleans in this list.

Exercise 60

Redefine the functions cons0 and cons1 from page 126 using map. 2
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5.11.3 Function filter

Function filter has two arguments, a predicate p and a list xs; it returns the
list containing the elements of xs for which p holds.

filter p [] = []
filter p (x:xs)
| p x = x: (filter p xs)
| otherwise = (filter p xs)

So, we have

Main> filter even [2,3,4]
[2,4]
Main> filter digit [’a’,’9’,’b’,’0’,’c’]
"90"
Main> filter upper "Jayadev Misra"
"JM"
Main> filter digit "Jayadev Misra"
""

The type of filter is

Main> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Exercise 61

What is filter p (filter q xs)? In particular, what is filter p (filter
(not p) xs)? 2

5.12 Program Design: Boolean Satisfiability

We treat a longer example —boolean satisfiability— in this section. The prob-
lem is to determine if a propositional boolean formula is satisfiable, i.e., if there
is an assignment of (boolean) values to variables in the formula that makes the
formula true. For example, (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) is satisfiable with
p, q = true, false.

In Section 5.12.1, I introduce the problem more precisely and present the
Davis-Putnam procedure, which is an effective solution method for this prob-
lem. In Section 5.12.2, I develop a Haskell implementation of this procedure
by choosing a suitable data structure and then presenting an appropriate set of
functions in a top-down fashion.
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5.12.1 Boolean Satisfiability

The satisfiability problem is an important problem in computer science, one
that has surprising applicability to a diverse range of problems, such as circuit
design, theorem proving and robotics. It has been studied since the early days
of computing science. Indeed, a landmark theoretical paper by Steve Cook
demonstrated that if someone could devise a fast algorithm for the general
satisfiability problem, it could be used to solve many other difficult problems
quickly. As a result, for a long time, satisfiability was considered too difficult
to tackle, and a lot of effort was invested in trying to design domain-specific
heuristics to solve specific instances of satisfiability.

However, recent advances in the design of “satisfiability solvers” (algorithms
for solving instances of the satisfiability problem) have changed this perception.
Although the problem remains difficult in general, recent satisfiability solvers,
such as Chaff [36], employ clever data structures and learning techniques that
prove to work surprisingly well in practice (for reasons no one quite under-
stands).

Today, satisfiability solvers are used as the core engine in a variety of in-
dustrial products. CAD companies like Synopsys and Cadence use them as the
engine for their tools for property checking and microprocessor verification [33],
in automatic test pattern generation [30], and even in FPGA routing [16]. Veri-
fication engineers at Intel, Motorola and AMD incorporate satisfiability solvers
in their tools for verifying their chip designs. Researchers in artificial intelli-
gence and robotics are discovering that their planning problems can be cast
as boolean satisfiability, and solvers like Chaff outperform even their domain-
specific planning procedures [24]. Other researchers are increasingly beginning
to use satisfiability solvers as the engine inside their model checkers, theorem
provers, program checkers, and even optimizing compilers.

Conjunctive Normal Form

A propositional formula is said to be in Conjunctive Normal Form (CNF ) if it
is the conjunction of a number of terms, where each term is the disjunction of
a number of literals, and each literal is either a variable or its negation. For
example, the formula (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) is in CNF. Any boolean
formula can be converted to a logically equivalent CNF formula. Henceforth,
we assume that the input formula is in CNF.

Complexity of the Satisfiability Problem

The satisfiability problem has been studied for over five decades. It may seem
that the problem, particularly the CNF version, is easy to solve: each term has
to be made true for the entire conjunction to be true and a term can be made
true by making any constituent literal true. However, the choice of literal for
one term may conflict with another: for (p ∨ q) ∧ (¬p ∨ ¬q), if p is chosen to
be true for the first term and ¬p is chosen to be true for the second term, there
is a conflict.



5.12. PROGRAM DESIGN: BOOLEAN SATISFIABILITY 137

There is no known polynomial algorithm for the satisfiability problem. In
fact, the CNF satisfiability problem in which each term has exactly 3 literals —
known as 3-SAT— is NP-complete, though 2-SAT can be solved in linear time.
However, there are several solvers that do extremely well in practice. The Chaff
solver [47] can determine satisfiability of a formula with hundreds of thousands
of variables and over a million terms in an hour, or so, on a PC circa 2002. This
astounding speed can be attributed to (1) a very good algorithm, the Davis-
Putnam procedure, which we study next, (2) excellent heuristics, and (3) fast
computers with massive main memories.

The Davis-Putnam procedure

To explain the procedure, I will use the following formula, f , over variables p,
q and r:

f :: (¬p ∨ q ∨ r) ∧ (p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) ∧ (p ∨ q ∨ r)

Next, we ask whether f is satisfiable, given that p is true. Then, any term in
f that contains p becomes true, and can be removed from consideration (since
it is part of a conjunction). Any term that contains ¬p, say (¬p ∨ q ∨ r), can
become true only by making (q ∨ r) true . Therefore, given that p is true, f is
satisfiable iff fp is satisfiable, where

fp :: (q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r)

Note that p does not appear in fp.
Similarly, given that p is false, f is satisfiable provided that f¬p is satisfiable,

where

f¬p :: (¬r) ∧ (¬q ∨ r) ∧ (q ∨ r)

We have two mutually exclusive possibilities: p is true and ¬p is true .
Therefore, f is satisfiable iff either fp is satisfiable or f¬p is satisfiable. Thus,
we have divided the problem into two smaller subproblems, each of which may
be decomposed further in a similar manner. Ultimately, we will find that

� a formula is empty (i.e., it has no terms), in which case it is satisfiable,
because it is a conjunction, or

� some term in the formula is empty (i.e., it has no literals), in which case
the term (and hence also the formula) is unsatisfiable, because it is a
disjunction.

As long as neither possibility holds, we have a nonempty formula none of
whose terms is empty, and we can continue with the decomposition process.

The entire procedure can be depicted as a binary tree, see Figure 5.2, where
each node has an associated formula (whose satisfiability is being computed)
and each edge has the name of a literal. The literals on the two outgoing edges
from a node are negations of each other. The leaf nodes are marked either F
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or T, corresponding to false and true. A path in the tree corresponds to an
assignment of values to the variables. The value, F or T, at a leaf is the value of
the formula (which is associated with the root) for the variable values assigned
along the path to the leaf. Thus, in Figure 5.2, assigning true to p, ¬q and r
makes f true (therefore, f is satisfiable). For all other assignments of variable
values, f is false.

(~p v q v r) ^ (p v ~r) ^ (~q v r) ^ (~p v ~q v ~r) ^ (p v q v r)

(q v r) ^ (~q v r) ^ (~q v ~r) (~r) ^ (~q v r) ^ (q v r)

(r)

F F F

(r) ^ (~r)

p ~p

q ~q r ~r

(~q) ^ (q)F

T F F

~r rr ~r q ~q

Figure 5.2: Davis-Putnam Computation

Note Assume that no term contains a variable and its negation.

5.12.2 Program Development

Data Structure Here, we consider representation of a formula in Haskell.
Recall that

a formula is a conjunction of a set of terms.
a term is the disjunction of a set of literals, and
a literal is either a variable or the negation of a variable.

We can regard a formula as a list of terms and a term as a list of literals;
conjunction and disjunction are implicit. Now, we consider representations of
literals. A variable may be represented as a string, and a negation, such as
¬p, by a string, "-p", whose first symbol is "-". To preserve symmetry, let me
add a "+" sign in front of a variable; so p is represented by "+p". Then the
representation of f is:



5.12. PROGRAM DESIGN: BOOLEAN SATISFIABILITY 139

[
["-p", "+q", "+r"],
["+p", "-r"],
["-q", "+r"],
["-p", "-q", "-r"],
["+p", "+q", "+r"]
]

We should be clear about the types. I define the types explicitly (I have not
told you how to do this in Haskell; just take it at face value).

type Literal = String
type Term = [Literal]
type Formula = [Term]

The top-level function I define a function dp that accepts a formula as input
and returns a boolean, True if the formula is satisfiable and False otherwise.
So, we have

dp :: Formula -> Bool

If the formula is empty, then the result is True. If it contains an empty
term, then the result is False. Otherwise, we choose some literal of the formula,
decompose the formula into two subformulae based on this literal, solve each
subformula recursively for satisfiability, and return True if either returns True.

dp xss
| xss == [] = True
| emptyin xss = False
| otherwise = (dp yss) || (dp zss)

where
v = literal xss
yss = reduce v xss
zss = reduce (neg v) xss

We have introduced the following functions which will be developed next:

emptyin xss: returns True if xss has an empty term,

literal xss: returns a literal from xss, where xss is nonempty and does not
contain an empty term,

neg v: returns the string corresponding to the negation of v.

reduce v xss, where v is a literal: returns the formula obtained from xss by
dropping any term containing the literal v and dropping any occurrence
of the literal neg v in each remaining term.
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Functions emptyin, literal, reduce, neg
The code for emptyin is straightforward:

-- Does the formula contain an empty list?
emptyin :: Formula -> Bool
emptyin [] = False
emptyin ([]: xss) = True
emptyin (xs: xss) = emptyin xss

Function literal can return any literal from the formula; it is easy to return
the first literal of the first term of its argument. Since the formula is not empty
and has no empty term, this procedure is valid.

{- Returns a literal from a formula.
It returns the first literal of the first list.
The list is not empty, and
it does not contain an empty list.

-}
literal :: Formula -> Literal
literal ((x: xs):xss) = x

A call to reduce v xss scans through the terms of xss. If xss is empty,
the result is the empty formula. Otherwise, for each term xs,

� if v appears in xs, drop the term,

� if the negation of v appears in xs then modify xs by removing the negation
of v,

� if neither of the above conditions hold, retain the term.

-- reduce a literal through a formula
reduce :: Literal -> Formula -> Formula
reduce v [] = []
reduce v (xs:xss)
| inl v xs = reduce v xss
| inl (neg v) xs = (remove (neg v) xs): (reduce v xss)
| otherwise = xs : (reduce v xss)

Finally, neg is easy to code:

-- negate a literal
neg :: Literal -> Literal
neg (’+’: var) = ’-’: var
neg (’-’: var) = ’+’: var

Function reduce introduces two new functions, which will be developed next.

inl v xs, where v is a literal and xs is a term: returns True iff v appears in
xs,

remove u xs, where u is a literal known to be in term xs: return the term
obtained by removing u from xs.
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Functions inl, remove
Codes for both of these functions are straightforward:

-- check if a literal is in a term
inl :: Literal -> Term -> Bool
inl v [] = False
inl v (x:xs) = (v == x) || (inl v xs)

-- remove a literal u from term xs. u is in xs.
remove :: Literal -> Term -> Term
remove u (x:xs)
| x == u = xs
| otherwise = (x : (remove u xs))

Exercise 62

1. Test the program.

2. Function reduce checks if xss is empty. Is this necessary given that
reduce is called from dp with a nonempty argument list? Why doesn’t
reduce check whether xss has an empty term?

3. Rewrite dp so that if the formula is satisfiable, it returns the assignments
to variables that make the formula true. 2

5.12.3 Variable Ordering

It is time to take another look at our functions to see if we can improve any
of them, either the program structure or the performance. Actually, we can do
both.

Note that in reduce we look for a literal by scanning all the literals in each
term. What if we impose an order on the variables and write each term in the
given order of variables? Use the following ordering in f : [ "p", "q" ,"r" ].
Then, a term like (¬p ∨ q ∨ r) is ordered whereas (¬p ∨ r ∨ q) is not. If each
term in the formula is ordered and in reduce v xss, v is the smallest literal in
xss, then we can check the first literal of each term to see whether it contains
v or its negation.

Function dp2, given below, does the job of dp, but it needs an extra ar-
gument, a list of variables like [ "p", "q" ,"r" ], which defines the variable
ordering. Here, reduce2 is the counterpart of reduce. Now we no longer need
the functions inl, remove and literal.
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dp2 vlist xss
| xss == [] = True
| emptyin xss = False
| otherwise = (dp2 wlist yss) || (dp2 wlist zss)

where
v:wlist = vlist
yss = reduce2 (’+’: v) xss
zss = reduce2 (’-’: v) xss

-- reduce a literal through a formula
reduce2 :: Literal -> Formula -> Formula
reduce2 w [] = []
reduce2 w ((x:xs):xss)
| w == x = reduce2 w xss
| (neg w) == x = xs: (reduce2 w xss)
| otherwise = (x:xs): (reduce2 w xss)

A further improvement is possible. Note that reduce2 scans its argument
list twice, once for w and again for neg w. We define reduce3 to scan the given
list only once, to create two lists, one in which w is removed and the other in
which neg w is removed. Such a solution is shown below, where reduce3 is the
counterpart of reduce2. Note that the interface to reduce3 is slightly different.
Also, we have eliminated the use of function neg.

dp3 vlist xss
| xss == [] = True
| emptyin xss = False
| otherwise = (dp3 wlist yss) || (dp3 wlist zss)

where
v:wlist = vlist
(yss,zss) = reduce3 v xss

reduce3 v [] = ([],[])
reduce3 v ((x:xs):xss)
| ’+’: v == x = (yss , xs:zss)
| ’-’: v == x = (xs:yss, zss )
| otherwise = ((x:xs):yss, (x:xs):zss)

where
(yss,zss) = reduce3 v xss

Exercise 63

1. What are the types of dp2, reduce2, dp3 and reduce3?

2. When dp2 vlist xss is called initially, vlist is the list of names of the
variables in xss. Argue that the program maintains this as an invariant.
In particular, vlist is empty iff xss is empty.
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3. Is there any easy way to eliminate the function emptyin? In particular,
can we assert that any empty term will be the first term in a formula?

4. Here is another strategy that simplifies the program structure and im-
proves the performance. Convert each variable to a distinct positive inte-
ger (and its negation to the corresponding negative value). Make sure that
each term is an increasing list (in magnitude). Having done this, the argu-
ment vlist is no longer necessary. Modify the solution to accommodate
these changes. 2
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Chapter 6

Relational Database

6.1 Introduction

You can now purchase a music player that stores nearly 10,000 songs. The
storage medium is a tiny hard disk, a marvel of hardware engineering. Equally
impressive is the software which combines many aspects of compression, error
correction and detection, and database manipulation.

First, the compression algorithm manages to store around 300 music CDs,
each with around 600MB of storage, on my 20GB player; this is a compression
of about 10 to 1. While it is possible to compress music to any extent, because
exact reproduction is not expected, you would not want to listen to such music.
Try listening to a particularly delicate piece over the telephone! The compression
algorithm manages to reproduce music reasonably faithfully.

A music player begins its life expecting harsh treatment, even torture. The
devices are routinely dropped, they are subjected to X-ray scans at airports,
and left outside in very cold or very hot cars. Yet, the hardware is reasonably
resilient, but more impressively, the software works around the hardware glitches
using error-correcting strategies some of which we have outlined in an earlier
chapter.

The question that concerns us in this chapter is how to organize a large
number of songs so that we can locate a set of songs quickly. The songs are
first stored on a desktop (being imported from a CD or over the internet from
a music store); they can be organized there and then downloaded to a player.
A naive organization will make it quite frustrating to find that exact song in
your player. And, you may wish to listen to all songs which are either by artist
A or composer B, in the classical genre, and have not been played more than 6
times in the last 3 months. The subject matter of this chapter is organization
of certain kinds of data, like songs, to allow efficient selection of a subset which
meets a given search criterion.

For many database applications a set of tuples, called a table, is often the
appropriate data structure. Let me illustrate it with a small database of movies;

145
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Title Actor Director Genre Year
Jurassic Park Jeff Goldblum Steven Spielberg Action 1993
Jurassic Park Sam Neill Steven Spielberg Action 1993
Men in Black Tommy Lee Jones Barry Sonnenfeld SciFi 1997
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996
Independence Day Bill Pullman Roland Emmerich SciFi 1996
My Fair Lady Audrey Hepburn George Cukor Classics 1964
My Fair Lady Rex Harrison George Cukor Classics 1964
The Sound of Music Julie Andrews Robert Wise Classics 1965
The Sound of Music Christopher Plummer Robert Wise Classics 1965
Bad Boys II Martin Lawrence Michael Bay Action 2003
Bad Boys II Will Smith Michael Bay Action 2003
Ghostbusters Bill Murray Ivan Reitman Comedy 1984
Ghostbusters Dan Aykroyd Ivan Reitman Comedy 1984
Tootsie Dustin Hoffman Sydney Pollack Comedy 1982
Tootsie Jessica Lange Sydney Pollack Comedy 1982

Table 6.1: A list of movies arranged in a table

Title Actor Director Genre Year
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996

Table 6.2: Result of selection on Table 6.1 (page 146)

see Table 6.1 (page 146). We store the following information for each movie: its
title, actor, director, genre and the year of release. We list only the two most
prominent actors for a movie, and they have to appear in different tuples; so
each movie is being represented by two tuples in the table. We can now easily
specify a search criterion such as, find all movies released between 1980 and
2003 in which Will Smith was an actor and the genre is SciFi. The result of this
search is a table, shown in Table 6.2 (page 146).

Chapter Outline We introduce the table data structure and some terminol-
ogy in section 6.2. A table resembles a mathematical relation, though there
are some significant differences which we outline in that section. An algbra of
relations is developed in section 6.3. The algebra consists of a set of operations
on relations (section 6.3.1) and a set of identities over relational expressions
(section 6.3.2). The identities are used to process queries efficiciently, as shown
in section 6.3.3. A standard query language, SQL, is described in section 6.3.4.
This chapter is a very short introduction to the topic; for more thorough treat-
ment see the relevant chapters in [32] and [2].
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6.2 The Relational Data Model

Central to the relational data model is the concept of relation. You are familiar
with relations from algebra, which I briefly review below. Next, I will explain
relations in databases, which are slightly different.

6.2.1 Relations in Mathematics

The > operator over positive integers is a (binary) relation. We write 5 > 3,
using the relation as an infix operator. More formally, the relation > is a set of
pairs:

{(2, 1), (3, 1), (3, 2), · · ·}

A general relation consists of tuples, not necessarily pairs as for binary re-
lations. Consider a family relation which consists of triples (c, f,m), where c is
the name of a child, and f and m are the father and the mother. Or, the rela-
tion Euclid which consists of triples (x, y, z) where the components are positive
integers and x2 + y2 = z2. Or, Fermat which consists of quadruples of positive
integers (x, y, z, n), where xn + yn = zn and n > 2. (A recent breakthrough
in mathematics has established that Fermat = φ.) In databases, the relations
need not be binary; in fact, most often, they are not binary.

A relation, being a set, has all the set operations defined on it. We list some
of the set operations below which are used in relational algebra.

1. Union: R ∪ S = {x| x ∈ R ∨ x ∈ S}

2. Intersection: R ∩ S = {x| x ∈ R ∧ x ∈ S}

3. Difference: R− S = {x| x ∈ R ∨ x 6∈ S}

4. Cartesian Product: R× S = {(x, y)| x ∈ R ∧ y ∈ S}

Thus, given R = {(1, 2), (2, 3), (3, 4)} and S = {(2, 3), (3, 4), (4, 5)}, we get

R ∪ S = {(1, 2), (2, 3), (3, 4), (4, 5)}
R ∩ S = {(2, 3), (3, 4)}
R− S = {(1, 2)}
R× S = {((1, 2), (2, 3)), ((1, 2), (3, 4)), ((1, 2), (4, 5)),

((2, 3), (2, 3)), ((2, 3), (3, 4)), ((2, 3), (4, 5)),
((3, 4), (2, 3)), ((3, 4), (3, 4)), ((3, 4), (4, 5))}

In algebra, you have seen reflexive, symmetric, asymmetric and transitive
binary relations. None of these concepts is of any use in relational algebra.
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Year Genre Title Director Actor
1997 SciFi Men in Black Barry Sonnenfeld Will Smith
1996 SciFi Independence Day Roland Emmerich Will Smith

Table 6.3: A column permutation of Table 6.2 (page 146)

Theatre Address
General Cinema 2901 S 360
Tinseltown USA 5501 S I.H. 35
Dobie Theater 2021 Guadalupe St
Entertainment Film 6700 Middle Fiskville Rd

Table 6.4: Theatres and their addresses

6.2.2 Relations in Databases

Database relations are inspired by mathematical relations. A database relation
is best represented by a matrix, called a table, in which (1) each row is a tuple
and (2) each column has a name, which is an attribute of the relation. Table 6.1
(page 146) shows such a relation; it has 5 attributes: Title, Actor, Director,
Genre, Year. There are 16 rows, each is a tuple of the relation.

In both mathematical and database relations, the tuples are distinct and
they may appear in any order. The type of an attribute, i.e., the type of values
that may appear in that column, is called the domain of the attribute. The
name of a database relation along with the names and domains of attributes is
called a relational schema. A schema is a template; an instance of the schema
has a number of tuples which fit the template.

The most fundamental difference between mathematical and database re-
lations is that in the latter the columns can be permuted arbitrarily keeping
the same relation. Thus, Table 6.2 (page 146) and Table 6.3 (page 148) repre-
sent the same relation. Therefore, we have the identity (we explain R × S, the
cartesian product of database relations R and S, in section 6.3.1).

R× S = S ×R

For mathematical relations, this identity does not hold because the components
cannot be permuted.

A relational database is a set of relations with distinct relation names. The
relations in Tables 6.1 (page 146), 6.4 (page 148), and 6.5 (page 149) make up
a relational database. Typically, every relation in a database has a common
attribute with some other relation.
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Theatre Title Time Rating
General Cinema Jurassic Park Sat, 9PM G
General Cinema Men in Black Sat, 9PM PG
General Cinema Men in Black Sun, 3PM PG
Tinseltown USA Independence Day Sat, 9PM PG-13
Dobie Theater My Fair Lady Sun, 3PM G
Entertainment Film Ghostbusters Sun, 3PM PG-13

Table 6.5: Theatres, Movies, Time and Rating

6.3 Relational Algebra

An algebra consists of (1) elements, (2) operations and (3) identities. For exam-
ple, to do basic arithmetic over integers we define: (1) elements to be integers,
(2) operations to be +, −, ×, ÷, and (3) identities such as,

x + y = y + x
x× (y + z) = x× y + x× z

where x, y and z range over the elements (i.e., integers).
We define an algebra of database relations in this section. The elements are

database relations. We define a number of operations on them in section 6.3.1
and several identities in section 6.3.2.

6.3.1 Operations on Database Relations

Henceforth, R, S and T denote relations, and a and b are sets of attributes.
Relations R and S are union-compatible, or just compatible, if they have the
same set of attributes.

Union R ∪ S is the union of compatible relations R and S. Relation R ∪ S
includes all tuples from R and S with duplicates removed.

Intersection R∩S is the intersection of compatible relations R and S. Rela-
tion R ∩ S includes all tuples which occur in both R and S.

Difference R−S is the set difference of compatible relations R and S. Relation
R− S includes all tuples which are in R and not in S.

Cartesian Product or Cross Product R × S is the cross product of rela-
tions R and S. The relations need not be compatible. Assume for the moment
that the attributes of R and S are disjoint. The set of attributes of R × S are
the ones from both R and S. Each tuple of R is concatenated with each tuple
of S to form tuples of R × S. Two database relations are shown in Table 6.6
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Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003

Ivan Reitman 1984

Table 6.6: Two relations separated by vertical line

Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Jurassic Park Sam Neill Michael Bay 2003
Jurassic Park Sam Neill Ivan Reitman 1984
Men in Black Tommy Lee Jones Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003
Men in Black Tommy Lee Jones Ivan Reitman 1984

Table 6.7: Cross Product of the two relations in Table 6.6 (page 150)

(page 150); they are separated by a vertical line. Their cross product is shown
in Table 6.7 (page 150).

The cross product in Table 6.7 makes no sense. We introduce the join
operator later in this section which takes a more “intelligent” cross product.

If R and S have common attribute names, the names are changed so that
we have disjoint attributes. One strategy is to prefix the attribute name by the
name of the relation. So, if you are computing Prof × Student where both Prof
and Student have an attribute id, an automatic renaming may create Profid and
Studentid . This does not always work, for instance, in Prof × Prof . Manual
aid is then needed. In this chapter, we write R × S only if the attributes of R
and S are disjoint.

Note a subtle difference between mathematical and database relations for
cross product. For tuple (r, s) in R and (u, v) in S, their mathematical cross
product gives a tuple of tuples, ((r, s), (u, v)), whereas the database cross prod-
uct gives a tuple containing all 4 elements, (r, s, u, v).

The number of tuples in R×S is the number of tuples in R times the number
in S. Thus, if R and S have 1,000 tuples each, R × S has a million tuples and
R × (S × S) has a billion. So, cross product is rarely computed in full. It is
often used in conjunction with other operations which can be applied in a clever
sequence to eliminate explicit computations required for a cross product.

Projection The operations we have described so far affect only the rows (tu-
ples) of a table. The next operation, projection, specifies a set of attributes of
a relation that are to be retained to form a relation. Projection removes all
other attributes (columns), and removes any duplicate rows that are created as
a result. We write πu,v (R) to denote the relation which results by retaining
only the attributes u and v of R. Let R be the relation shown in Table 6.1
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(page 146). Then, πTitle,Director ,Genre,Year (R) gives Table 6.9 (page 152) and
πTitle,Actor (R) gives Table 6.10 (page 153).

Selection The selection operation chooses the tuples of a relation that sat-
isfy a specified predicate. A predicate uses attribute names as variables, as
in year ≥ 1980 ∧ year ≤ 2003 ∧ actor = “Will Smith′′ ∧ genre =
“SciF i′′. A tuple satisfies a predicate if the predicate is true when the at-
tribute names are replaced by the corresponding values from the tuple. We
write σp(R) to denote the relation consisting of the subset of tuples of R that
satisfy predicate p. Let R be the relation in Table 6.1 (page 146). Then,
σyear≥1980∧year≤2003∧actor=“Will Smith′′∧genre=“SciFi′′(R) is shown in Table 6.2
(page 146) and σactor=“Will Smith′′∧genre=“Comedy′′(R) is the empty relation.

Join There are several join operators in relational algebra. We study only one
which is called natural join, though we simply call it join in this chapter. The
join of R and S is written as R ./ S. Here, R and S need not be compatible;
typically, they will have some common attributes.

The join is a more refined way of taking the cross product. As in the cross
product, take each tuple r of R and s of S. If r and s match in their common
attributes, concatenate them keeping only one set of columns for the common
attributes. Consider Tables 6.4 (page 148) and 6.5 (page 149). Their join is
shown in Table 6.8 (page 151). And, the join of Tables 6.9 (page 152) and 6.10
(page 153) is Table 6.1 (page 146).

Theatre Title Time Rating Address
General Cinema Jurassic Park Sat, 9PM G 2901 S 360
General Cinema Men in Black Sat, 9PM PG 2901 S 360
General Cinema Men in Black Sun, 3PM PG 2901 S 360
Tinseltown USA Independence Day Sat, 9PM PG-13 5501 S I.H. 35
Dobie Theater My Fair Lady Sun, 3PM G 2021 Guadalupe St
Entertainment Film Ghostbusters Sun, 3PM PG-13 6700 Middle Fiskville

Table 6.8: Join of Tables 6.4 and 6.5

If R and S have no common attributes, R ./ S is an empty relation, though
it has all the attributes of R and S. We will avoid taking R ./ S if R and S
have no common attributes.

Writing attr(R) for the set of attributes of R, we have

attr(R ./ S) = attr(R) ∪ attr(S), and
x ∈ R ./ S ≡ (attr(R) ∩ attr(S) 6= φ) ∧ πattr(R)(x ) ∈ R ∧ πattr(S)(x ) ∈ S

The condition attr(R)∩ attr(S) 6= φ, i.e., R and S have a common attribute, is
essential. Without this condition, R ./ S would be R× S in case the attributes
are disjoint.



152 CHAPTER 6. RELATIONAL DATABASE

Title Director Genre Year
Jurassic Park Steven Spielberg Action 1993
Men in Black Barry Sonnenfeld SciFi 1997
Independence Day Roland Emmerich SciFi 1996
My Fair Lady George Cukor Classics 1964
The Sound of Music Robert Wise Classics 1965
Bad Boys II Michael Bay Action 2003
Ghostbusters Ivan Reitman Comedy 1984
Tootsie Sydney Pollack Comedy 1982

Table 6.9: Compact representation of a portion of Table 6.1 (page 146)

The join operator selects only the tuples which match in certain attributes;
so, join results in a much smaller table than the cross product. Additionally,
the result is usually more meaningful. In many cases, a large table can be
decomposed into two much smaller tables whose join recreates the original table.
See the relations in Tables 6.9 (page 152) and 6.10 (page 153) whose join gives
us the relation in Table 6.1. The storage required for these two relations is much
smaller than that for Table 6.1 (page 146).
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Title Actor
Jurassic Park Jeff Goldblum
Jurassic Park Sam Neill
Men in Black Tommy Lee Jones
Men in Black Will Smith
Independence Day Will Smith
Independence Day Bill Pullman
My Fair Lady Audrey Hepburn
My Fair Lady Rex Harrison
The Sound of Music Julie Andrews
The Sound of Music Christopher Plummer
Bad Boys II Martin Lawrence
Bad Boys II Will Smith
Ghostbusters Bill Murray
Ghostbusters Dan Aykroyd
Tootsie Dustin Hoffman
Tootsie Jessica Lange

Table 6.10: Table 6.1 (page 146) arranged by Title and Actor

Exercise 64
Suppose R× S is defined. What is R ./ S?

Exercise 65
Suppose R and S are compatible. Show that R ./ S = R ∩ S.

6.3.2 Identities of Relational Algebra

We develop a number of identities in this section. I don’t prove the identities;
I recommend that you do. These identities are used to transform a relational
expression into an equivalent form whose evaluation is more efficicient, a proce-
dure known as query optimization. Query optimization can reduce evaluation
time of relational expressions by several orders of magnitude. In the following,
R , S and T denote relations, a and b are sets of attributes, and p and q are
predicates.

1. (Selection splitting) σp∧q(R) = σp(σq(R))

2. (Commutativity of selection)

σp(σq(R)) = σq(σp(R))

This is a corollary of Selection splitting given above.

3. (Projection refinement) Let a and b be subsets of attributes of relation R,
and a ⊆ b. Then,
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πa(R) = πa(πb(R))

4. (Commutativity of selection and projection) πa(σp(R)) = σp(πa(R))

5. (Commutativity and Associativity of union, cross product, join)

R ∪ S = S ∪R
(R ∪ S) ∪ T = R ∪ (S ∪ T )
R× S = S ×R
(R× S)× T = R× (S × T )
R ./ S = S ./ R
(R ./ S) ./ T = R ./ (S ./ T ),

provided R and S have common attributes and so do S and T , and
no attribute is common to all three relations.

6. (Selection pushing)

σp(R ∪ S ) = σp(R) ∪ σp(S )
σp(R ∩ S ) = σp(R) ∩ σp(S )
σp(R − S ) = σp(R)− σp(S )

Suppose predicate p names only attributes of R. Then,

σp(R × S ) = σp(R)× S
σp(R ./ S ) = σp(R) ./ S

7. (Projection pushing)

πa(R ∪ S ) = πa(R) ∪ πa(S )

8. (Distributivity of projection over join)

πa(R ./ S ) = πa(πb(R) ./ πc(S ))

where R and S have common attributes d, a is a subset of attributes of
both R and S, b is a’s subset from R plus d and c is a’s subset from S
plus d. That is,

a ⊆ attr(R) ∪ attr(S)
b = (a ∩ attr(R)) ∪ d
c = (a ∩ attr(S)) ∪ d
d = attr(R) ∩ attr(S) 2
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Selection splitting law says that evaluations of σp∧q(R) and σp(σq(R)) are
interchangeable; so, apply either of the following procedures: look at each tuple
of R and decide if it satisfies p∧ q, or first identify the tuples of R which satisfy
q and from those identify the ones which satisfy p. The benefit of one strategy
over another depends on the relative costs of access times to the tuples and
predicate evaluation times. For large databases, which are stored in secondary
storage, access time is the major cost. Then it is preferable to evaluate σp∧q(R).

The distributivity of projection over join is often used in query optimization.
It is a good heuristic to apply selection to as small a relation as possible. There-
fore, it is almost always better to evluate σp(R) ./ S instead of σp(R ./ S ), i.e.,
apply selection to R which tends to be smaller than R ./ S.

Exercise 66

Suppose predicate p names only the attributes of S. Show that σp(R ./ S ) =
R ./ σp(S ).

Exercise 67

Show that πa(R ∩ S ) = πa(R) ∩ πa(S ) does not necessarily hold.

6.3.3 Example of Query Optimization

We consider the relations in Tables 6.1 (page 146), 6.5 (page 149), and 6.4
(page 148). We call these relations R, S and T , respectively. Relation R is
prepared by some movie distribution agency independent of the theatres; theatre
owners in Austin compile the databases S and T . Note that T is relatively stable.

We would like to know the answer to: What are the addresses of theatres
where Will Smith is playing on Sat. day at 9PM. We write a relational expression
for this query and then transform it in several stages to a form which can be
efficiciently evaluated. Let predicates

p be Actor = Will Smith
q be Time = Sat. day, 9PM

The query has the form πAddress(σp∧q(x )), where x is a relation yet to be
defined. Since x has to include information about Actor, Time and Address,
we take x to be R ./ S ./ T . Relation x includes many more attributes than
the ones we desire; we will project away the unneeded attributes. The selection
operation extracts the tuples which satisfy the predicate p ∧ q, and then the
projection operation simply lists the addresses. So, the entire query is

πAddress(σp∧q〈R ./ S ./ T 〉)

Above and in the following expressions, we use brackets of different shapes to
help readibility.

We transform this relational expression.
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πAddress(σp∧q〈R ./ S ./ T 〉)
≡ {Associativity of join; note that the required conditions are met}

πAddress(σp∧q〈(R ./ S ) ./ T 〉)
≡ {Selection pushing over join}

πAddress(σp∧q〈R ./ S 〉 ./ T )
≡ {See lemma below. p names only the attributes of R and q of S}

πAddress(〈σp(R) ./ σq(S )〉 ./ T )
≡ {Distributivity of projection over join; d = {Theatre}}

πAddress(πTheatre〈σp(R) ./ σq(S )〉 ./ πAddress,Theatre(T ))
≡ {πAddress,Theatre(T ) = T}

πAddress(πTheatre〈σp(R) ./ σq(S )〉 ./ T )
≡ {Distributivity of projection over join;

the common attribute of σp(R) and σq(S ) is Title}
πAddress(〈πTitle(σp(R)) ./ πTheatre,Title(σq(S ))〉 ./ T )

Lemma Suppose predicate p names only the attributes of R and q of S. Then,

σp∧q(R ./ S ) = σp(R) ./ σq(S )

Proof:

σp∧q(R ./ S )
≡ {Selection splitting}

σp〈σq(R ./ S )〉
≡ {Commutativity of join}

σp〈σq(S ./ R)〉
≡ {Selection pushing over join}

σp〈σq(S ) ./ R〉
≡ {Commutativity of join}

σp〈R ./ σq(S )〉
≡ {Selection pushing over join}

σp(R) ./ σq(S )

Compare the original query πAddress(σp∧q〈R ./ S ./ T 〉) with the transformed
query πAddress(〈πTitle(σp(R)) ./ πTheatre,Title(σq(S ))〉 ./ T ) in terms of the ef-
ficiency of evaluation. The original query would first compute R ./ S ./ T , a
very expensive operation involving three tables. Then selection operation will
go over all the tuples again, and the projection incurs a small cost. In the
transformed expression, selections are applied as soon as possible, in σp(R) and
σq(S ). This results in much smaller relations, 3 tuples in σp(R) and 3 in σq(S ).
Next, projections will reduce the number of columns in both relations, though
not the number of rows. The join of the resulting relation is much more efficient,
being applied over smaller tables. Finally, the join with T and projection over
Address is, again, over smaller tables.
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Student Id Dept Q1 Q2 Q3
216285932 CS 61 72 49
228544932 CS 35 47 56
859454261 CS 72 68 75
378246719 EE 70 30 69
719644435 EE 60 70 75
549876321 Bus 56 60 52

Table 6.11: Relation Grades

6.3.4 Additional Operations on Relations

The operations on relations that have appeared so far are meant to move the
data around from one relation to another. There is no way to compute with the
data. For example, we cannot ask: How many movies has Will Smith acted in
since 1996. To answer such questions we have to count (or add), and none of the
operations allow that. We describe two classes of operations, Aggregation and
Grouping, to do such processing. Aggregation operations combine the values in
a column in a variety of ways. Grouping creates a number of subrelations from a
relation based on some specified attribute values, applies a specified aggregation
operation on each, and stores the result in a relation.

Aggregation The following aggregation functions are standard; all except
Count apply to numbers. For attribute t of a relation,

Count: the number of distinct values (in t)
Sum: sum
Avg: average
Min: minimum
Max: maximum

We write Af t, g u, h v···(R) where f , g and h are aggregation functions
(shown above) and t, u and v are attribute names in R. The result is a relation
which has just one tuple, with values obtained by applying f , g and h to the
values of attributes t, u and v of R, respectively. The number of columns in the
result is the number of attributes chosen.

Example of Aggregation Consider the Grades relation in Table 6.11 (page 157).
Now AAvg Q1(Grades) creates Table 6.12 (page 157).

Avg Q1
59

Table 6.12: Relation Grades, Table 6.11, averaged on Q1



158 CHAPTER 6. RELATIONAL DATABASE

Min Q1 Min Q2 Min Q3
35 47 49

Table 6.13: Min of each quiz from relation Grades, Table 6.11

We create Table 6.13 (page 158) by AMin Q1, Min Q2, Min Q3(Grades).
We discuss the names of the attributes of the resulting table, next. 2

Consider the names of the attributes in the result Table 6.13, created by
AMin Q1, Min Q2, Min Q3(Grades). We have simply concatenated the name of
the aggregation function and the attribute in forming those names. In general,
the user specifies what names to assign to each resulting attribute; we do not
develop the notation for such specification here.

Grouping A grouping operation has the form gAL(R) where g is a group
(see below) and AL(R) is the aggregation (L is a list of function, attribute pairs
and R is a relation). Whereas AL(R) creates a single tuple, gAL(R) typically
creates multiple tuples. The parameter g is a set of attributes of R. First, R is
divided into subrelations R0, R1 · · ·, based on the attributes g; tuples in each Ri

have the same values for g and tuples from different Ris have different values.
Then aggregation is applied to each subrelation Ri. The resulting relation has
one tuple for each Ri.

Example of Grades, contd. Compute the average score in each quiz for each
department. We write DeptAAvg Q1, Avg Q2, Avg Q3(Grades) to get Table 6.14
(page 158).

Dept Avg Q1 Avg Q2 Avg Q3
CS 56 62 60
EE 71 49 72
Bus 56 60 52

Table 6.14: Avg of each quiz by department from relation Grades, Table 6.11

Count the number of students in each department whose total score exceeds
170: DeptACount, Student Id〈πQ1+Q2+Q3>170 (Grades)〉.

Query Language SQL A standard in the database community, SQL is a
widely used language for data definition and manipulation. SQL statements
can appear as part of a C++ program, and, also they can be executed from a
command line. A popular version is marketed as MySQL.

Query facility of SQL is based on relational algebra (most SQL queries can
be expressed as relational expressions). But, SQL also provides facilities to
insert, delete and update items in a database.



Chapter 7

String Matching

7.1 Introduction

In this chapter, we study a number of algorithms on strings, principally, string
matching algorithms. The problem of string matching is to locate all (or some)
occurrences of a given pattern string within a given text string. There are many
variations of this basic problem. The pattern may be a set of strings, and the
matching algorithm has to locate the occurrence of any pattern in the text.
The pattern may be a regular expression for which the “best” match has to be
found. The text may consist of a set of strings if, for instance, you are trying
to find the occurrence of “to be or not to be” in the works of Shakespeare. In
some situations the text string is fixed, but the pattern changes, as in searching
Shakespeare’s works. Quite often, the goal is not to find an exact match but a
close enough match, as in DNA sequences or Google searches.

The string matching problem is quite different from dictionary or database
search. In dictionary search, you are asked to determine if a given word belongs
to a set of words. Usually, the set of words —the dictionary— is fixed. A
hashing algorithm suffices in most cases for such problems. Database searches
can be more complex than exact matches over strings. The database entries
may be images (say, thumbprints), distances among cities, positions of vehicles
in a fleet or salaries of individuals. A query may involve satisfying a predicate,
e.g., find any hospital that is within 10 miles of a specific vehicle and determine
the shortest path to it.

We spend most of this chapter on the exact string matching problem: given
a text string t and a pattern string p over some alphabet, construct a list of
positions where p occurs within t. See Table 7.1 for an example.

The naive algorithm for this problem matches the pattern against the string
starting at every possible position in the text. This may take O(m × n) time
where m and n are the two string lengths. We show three different algorithms
all of which run much faster, and one is an O(m + n) algorithm.

159
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
text a g c t t a c g a a c g t a a c g a
pattern a a c g
output * *

Table 7.1: The pattern matching problem

Exercise 68

You are given strings x and y of equal length, and asked to determine if x is a
rotation of y. Solve the problem through string matching. 2

Solution Determine if x occurs as a substring in yy.

Notation Let the text be t and the pattern be p. The symbols in a string
are indexed starting at 0. We write t[i] for the ith symbol of t, and t[i..j] for
the substring of t starting at i and ending just before j, i ≤ j. Therefore, the
length of t[i..j] is j − i; it is empty if i = j. Similar conventions apply to p.

For a string r, write r for its length. Henceforth, the length of the pattern
p, p, is m; so, its elements are indexed 0 through m − 1. Text t is an infinite
string. This assumption is made to avoid worrying about the termination of
the algorithm. We simply show that every substring in t that matches p will be
found ultimately.

7.2 Rabin-Karp Algorithm

The idea of this algorithm is based on hashing. Given text t and pattern p, com-
pute val(p), where function val will be specified later. Then, for each substring
s of t whose length is p, compute val(s). Since

p = s ⇒ val(p) = val(s), or
val(p) 6= val(s) ⇒ p 6= s

we may discard string s if val(p) 6= val(s). We illustrate the procedure for strings
of 5 decimal digits where val returns the sum of the digits in its argument string.

Let p = 27681; so, val(p) = 24. Consider the text given in Table 7.2; the
function values are also shown there (at the position at which a string ends).
There are two strings for which the function value is 24, namely 27681 and
19833. We compare each of these strings against the original string, 27681, to
find that there is one exact match.

Function val is similar to a hash function. It is used to remove most strings
from consideration. Only when val(s) = val(p) do we have a collision, and we
match s against p. As in hashing, we require that there should be very few col-
lisions on the average; moreover, val should be easily computable incrementally,
i.e., from one string to the next.
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text 2 4 1 5 7 2 7 6 8 1 9 8 3 3 7 8 1 4
val(s) 19 19 22 27 30 24 31 32 29 24 30 29 22 23

Table 7.2: Computing function values in Rabin-Karp algorithm

Minimizing Collisions A function like val partitions the set of strings into
equivalence classes: two strings are in the same equivalence class if their function
values are identical. Strings in the same equivalence class cause collisions, as
in the case of 27681 and 19833, shown above. In order to reduce collisions, we
strive to make the equivalence classes equal in size. Then, the probability of
collision is 1/n, where n is the number of possible values of val .

For the function that sums the digits of a 5-digit number, the possible values
range from 0 (all digits are 0s) to 45 (all digits are 9s). But the 46 equiva-
lence classes are not equal in size. Note that val(s) = 0 iff s = 00000; thus if
you are searching for pattern 00000 you will never have a collision. However,
val(s) = 24 for 5875 different 5-digit strings. So, the probability of collision
is around 0.05875 (since there are 105 5-digit strings). If there had been an
even distribution among the 46 equivalence classes, the probability of collision
would have been 1/46, or around 0.02173, almost three times fewer collisions
than when val(s) = 24.

One way of distributing the numbers evenly is to let val(s) = s mod q, for
some q; we will choose q to be a prime, for efficient computation. Since the
number of 5-digit strings may not be a multiple of q, the distribution may not
be completely even, but no two classes differ by more than 1 in their sizes. So,
this is as good as it gets.

Incremental computation of val The next question is how to calculate val
efficiently, for all substrings in the text. If the function adds up the digits in
5-digit strings, then it is easy to compute: suppose we have already computed
the sum, s, for a five digit string b0b1b2b3b4; to compute the sum for the next
substring b1b2b3b4b5, we assign s := s−b0 +b5. I show that the modulo function
can be calculated equally easily.

The main observation for performing this computation is as follows. Suppose
we have already scanned a n-digit string “ar”, where a is the first symbol of the
string and r is its tail; let ar denote the numerical value of “ar”. The function
value, ar mod q, has been computed already. When we scan the digit b following
r, we have to evaluate rb mod q where rb is the numerical value of “rb”. We
represent rb in terms of ar, a and b. First, remove a from ar by subtracting
a × 10n−1; this gives us r. Next, left shift r by one position, which is r × 10.
Finally, add b. So, rb = (ar − a × 10n−1) × 10 + b. To compute rb mod q, for
prime q, we need a few simple results about mod.

(a + b) mod q = (a + b mod q) mod q
(a− b) mod q = (a− b mod q) mod q
(a× b) mod q = (a× b mod q) mod q



162 CHAPTER 7. STRING MATCHING

Modular Simplification Rule
Let e be any expression over integers that has only addition, subtraction,

multiplication and exponention as its operators. Let e′ be obtained from e

by replacing any subexpression t of e by (t mod p). Then, e
mod p≡ e′, i.e.,

e mod p = e′ mod p.
Note that an exponent is not a subexpression; so, it can’t be replaced by its

mod.

Examples

(20 + 5) mod 3 = ((20 mod 3) + 5) mod 3
((x× y) + g) mod p = (((x mod p)× y) + (g mod p)) mod p
xn mod p = (x mod p)n mod p
x2n mod p = (x2)n mod p = (x2 mod p)n mod p
xn mod p = xn mod p mod p, is wrong. 2

We use this rule to compute rb mod q.

rb mod q
= {rb = (ar − a× 10n−1)× 10 + b}

((ar − a× 10n−1)× 10 + b) mod q
= {replace ar and 10n−1}

(((ar mod q)− a× (10n−1 mod q))× 10 + b) mod q
= {let u = ar mod q and f = 10n−1 mod q, both already computed}

((u− a× f)× 10 + b) mod q

Example Let q be 47. Suppose we have computed 12768 mod 47, which is
31. And, also 104 mod 47 which is 36. We compute 27687 mod 47 by

((31− 1× 36)× 10 + 7) mod 47
= ((−5)× 10 + 7) mod 47
= (−43) mod 47
= 4 2

Exercise 69
Show that the equivalence classes under mod q are almost equal in size. 2

Exercise 70
Derive a general formula for incremental calculation when the alphabet has d
symbols, so that each string can be regarded as a d-ary number. 2

7.3 Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm (KMP) locates all occurrences of a pattern
in a text in linear time (in the combined lengths of the two strings). It is a
refined version of the naive algorithm.
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7.3.1 Informal Description

Let the pattern be “JayadevMisra”. Suppose, we have matched the portion
“JayadevM” against some part of the text string, but the next symbol in the
text differs from ’i’, the next symbol in the pattern. The naive algorithm would
shift one position beyond ’J’ in the text, and start the match all over, starting
with ’J’, the first symbol of the pattern. The KMP algorithm is based on the
observation that no symbol in the text that we have already matched with
“JayadevM” can possibly be the start of a full match: we have just discovered
that the there is no match starting at ’J’, and there is no match starting at any
other symbol because none of them is a ’J’. So, we may skip this entire string
in the text and shift to the next symbol beyond “JayadevM” to begin a match.

In general, we will not be lucky enough to skip the entire piece of text that
we had already matched, as we could in the case of “JayadevM”. For instance,
suppose the pattern is “axbcyaxbts”, and we have already matched “axbcyaxb”;
see Table 7.3. Suppose the next symbol in the text does not match ’t’, the next
symbol in the pattern. A possible match could begin at the second occurrence
of ’a’, because the text there is “axb”, a prefix of the pattern. So, we shift to
that position in the text, but we avoid scanning any symbol in this portion of
the text again. The formal description, given next, establishes the conditions
that need to be satisfied for this scheme to work.

7.3.2 Algorithm Outline

At any point during the algorithm we have matched a portion of the pattern
against the text; that is, we maintain the following invariant where l and r are
indices in t defining the two ends of the matched portion.

KMP-INV:
l ≤ r ∧ t[l..r] = p[0..r − l], and
all occurrences of p starting prior to l in the text have been located.

The invariant is established initially by setting

l, r := 0, 0

In subsequent steps we compare the next symbols from the text and the
pattern. If there is no next symbol in the pattern, we have found a match, and
we discuss what to do next below. For the moment, assume that p has a next
symbol, p[r − l].

t[r] = p[r − l] → r := r + 1
{ more text has been matched }

t[r] 6= p[r − l] ∧ r = l → l := l + 1; r := r + 1
{ we have an empty string matched so far;

the first pattern symbol differs from the next text symbol }
t[r] 6= p[r − l] ∧ r > l → l := l′

{ a nonempty prefix of p has matched but the next symbols don’t }
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Note that in the third case, r is not changed; so, none of the symbols in
t[l′..r] will be scanned again.

The question (in the third case) is, what is l′? Abbreviate t[l..r] by v and
t[l′..r] by u. We show below that u is a proper prefix and a proper suffix of v.
Thus, l′ is given by the longest u that is both a proper prefix and a proper suffix
of v.

From the invariant, v is a prefix of p. Also, from the invariant, u is a prefix
of p, and, since l′ > l, u is a shorter prefix than v. Therefore, u is a proper
prefix of v. Next, since their right ends match, t[l′..r] is a proper suffix of t[l..r],
i.e., u is a proper suffix of v.

We describe the algorithm in schematic form in Table 7.3. Here, we have
already matched the prefix “axbcyaxb”, which is v. There is a mismatch in
the next symbol. We shift the pattern so that the prefix “axb”, which is u, is
aligned with a portion of the text that matches it.

index l l′ r
text a x b c y a x b z - - - - - -
pattern a x b c y a x b t s
newmatch a x b c y a x b t s

Table 7.3: Matching in the KMP algorithm

In general, there may be many strings, u, which are both proper prefix and
suffix of v; in particular, the empty string satisfies this condition for any v.
Which u should we choose? Any u we choose could possibly lead to a match,
because we have not scanned beyond t[r]. So, we increment l by the minimum
required amount, i.e., u is the longest string that is both a proper prefix and
suffix of v; we call u the core of v.

The question of computing l′ then reduces to the following problem: given a
string v, find its core. Then l′ = l+(length of v)− (length of core of v). Since v
is a prefix of p, we precompute the cores of all prefixes of the pattern, so that we
may compute l′ whenever there is a failure in the match. In the next subsection
we develop a linear algorithm to compute cores of all prefixes of the pattern.

After the pattern has been completely matched, we record this fact and let
l′ = l + (length of p)− (length of core of p).

We show that KMP runs in linear time. Observe that l + r increases in each
step (in the last case, l′ > l). Both l and r are bounded by the length of the
text string; so the number of steps is bounded by a linear function of the length
of text. The core computation, in the next section, is linear in the size of the
pattern. So, the whole algorithm is linear.

7.3.3 The Theory of Core

First, we develop a small theory about prefixes and suffixes from which the
computation of the core will follow.
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For strings u and v, we write u ¹ v to mean that u is both a prefix and a
suffix of v. Observe that u ¹ v holds whenever u is a prefix of v and the reverse
of u is a prefix of the reverse of v. The following properties of ¹ follow from
the properties of the prefix relation; you are expected to develop the proofs.
Henceforth, u and v denote arbitrary strings and ε is the empty string.

1. ε ¹ u.

2. ¹ is a partial order.

As is usual, we write u ≺ v to mean that u ¹ v and u 6= v; in that case we
say u is below v.

Exercise 71
Find all strings below ababab. 2

Exercise 72

1. Show that ¹ is a partial order. Use the fact that prefix relation is a partial
order.

2. Show that for any v there is a total order among all u where u ¹ v, i.e.,

(u ¹ v ∧ w ¹ v) ⇒ (u ¹ w ∨ w ¹ u) 2

Definition of core For any nonempty v, core of v, written as c(v), is the
longest string below v. The core is defined for every v, v 6= ε, because there is at
least one string, namely ε, that is a proper prefix and suffix of every nonempty
string.

Example We compute the cores of several strings.

String Core
a ε
ab ε
abb ε
abba a
abbab ab
abbabb abb
abbabba abba
abbabbb ε 2

The traditional way to define core is as follows: (1) c(v) ≺ v, and (2) for
any w where w ≺ v, w ¹ c(v). We give a different, though equivalent, definition
that is more convenient for formal manipulations. For any u and v, v 6= ε,

(core definition): u ¹ c(v) ≡ u ≺ v

It follows, by replacing u with c(v), that c(v) ≺ v. In particular, c(v) < v.

Exercise 73
Show that every non-empty string has a unique core.
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Solution Let r and s be cores of v. We show that r = s. For any u

u ¹ r
≡ {r is a core; use definition of core}

u ≺ v
≡ {s is a core; use definition of core}

u ¹ s

From above, u ¹ r ≡ u ¹ s, for all u. Setting u to r, we get r ¹ r ≡ r ¹ s,
i.e., r ¹ s. Similarly, we can deduce s ¹ r. So, r = s from the antisymmetry of
¹. 2

Exercise 74

Compute cores of all prefixes of ababab. 2

Exercise 75

Let u be a longer string than v. Is c(u) necessarily longer than c(v)? 2

We write ci(v) for i-fold application of c to v, i.e., ci(v) =

i times︷ ︸︸ ︷
c(c(..(c (v)..)))

and c0(v) = v. Since c(v) < v, ci(v) is defined only for some i, not necessarily
all i, in the range 0 ≤ i ≤ v. Note that, ci+1(v) ≺ ci(v) . . . c1(v) ≺ c0(v) = v.

Exercise 76

Compute ci(ababab) for all possible i. 2

The following proposition says that any string below v can be obtained by
applying the function c a sufficient number of times to v.

P1: For any u and v,

u ¹ v ≡ 〈∃i : 0 ≤ i : u = ci(v)〉

Proof: The proof is by induction on the length of v.

• v = 0:

u ¹ v
≡ {v = 0, i.e., v = ε}

u = ε ∧ v = ε
≡ {definition of c0: v = ε ⇒ ci(v) is defined for i = 0 only}

〈∃i : 0 ≤ i : u = ci(v)〉

• v = n + 1, n ≥ 0:
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u ¹ v
≡ {definition of ¹}

u = v ∨ u ≺ v
≡ {definition of core}

u = v ∨ u ¹ c(v)
≡ {c(v) < v; induction hypothesis on second term}

u = v ∨ 〈∃i : 0 ≤ i : u = ci(c(v))〉
≡ {rewrite}

u = c0(v) ∨ 〈∃i : 0 < i : u = ci(v)〉
≡ {rewrite}

〈∃i : 0 ≤ i : u = ci(v)〉 2

Corollary For any u and v, v 6= ε,

u ≺ v ≡ 〈∃i : 0 < i : u = ci(v)〉 2

Exercise 77

Show that the core function is monotonic, that is,

u ¹ v ⇒ c(u) ¹ c(v) 2

An abstract program for the core computation

We develop a program to compute the cores of all nonempty prefixes of a given
string p. First, we present an abstract version, and, later, a concrete version.

Notation Henceforth, p is a non-empty string, u and v are proper prefixes of
p, and u′ and v′ their one-symbol extensions. So, u′ and v′ are prefixes of p.
We write ε′ for the string containing the first symbol of p. Recall that p[u] is
the last symbol of u′ and p[v] of v′. 2

The structure of the program is:

v := ε′; c(v) := ε;
while v is a proper prefix of p do

{cores of all prefixes of p up to and including v have been computed}
compute c(v′);
v := v′

endwhile

The following lemma is the basis for computing c(v′).

Lemma u′ ≺ v′ ≡ u ≺ v ∧ p[u] = p[v]
Proof:
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u′ ≺ v′

≡ {definition of ≺}
u′ is a proper prefix of v′, u′ is a proper suffix of v′

≡ {given that u′ and v′ are prefixes of p,
u′ is a proper prefix of v′ ≡ u is a proper prefix of v}

u is a proper prefix of v, u′ is a proper suffix of v′

≡ {definition of suffix}
u is a proper prefix of v, u is a proper suffix of v, p[u] = p[v]

≡ {definition of ≺}
u ≺ v ∧ p[u] = p[v] 2

This lemma tells us that every nonempty string u′ that is below v′ satisfies

u ≺ v ∧ p[u] = p[v] (*)

If no string u satisfies (*), there is no nonempty string below v′; so, c(v′) = ε.
Otherwise, the longest string satisfying (*) defines c(v′).

To find the longest string satisfying (*), we enumerate all strings u satisfying
u ≺ v in decreasing order of length, and for each one check if p[u] = p[v]. The
first string for which this test succeeds is the desired u and c(v′) = u′; if the test
fails for all u, c(v′) = ε. Proposition (P1) tells us how to enumerate strings below
v in decreasing order of length: enumerate c1(v), c2(v), . . . , ε. This enumeration
is easy because cores of all prefixes of p up to and including v have already been
computed. The complete program is given below.

v := ε′; c(v) := ε;
while v is a proper prefix of p do

u := c(v);
while p[u] 6= p[v] ∧ u 6= ε do

{u = ci(v), for some i, i > 0}
u := c(u)

endwhile ;
{u = ci(v), for some i, i > 0 and (p[u] = p[v] ∨ u = ε)}
if p[u] = p[v]

then c(v′) := u′

else c(v′) := ε
endif ;
v := v′

endwhile

A concrete program for the core computation

We systematically transform the abstract program given above to obtain a con-
crete program that can be directly implemented. Since u and v are prefixes of
p, we represent them using indices into p, i and j, respectively. That is,

u = p[0..i] and v = p[0..j], so, since p[0..i] does not include p[i],
u = i and v = j, and
u′ = i + 1 and v′ = j + 1.
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We store c(v), for all v, v 6= ε, in an array d, where d[k] is the length of the
core of p[0..k]. Therefore,

d[j] = c(v), since v = p[0..j], and
d[i] = c(u) and d[j + 1] = c(v′)

The resulting program is given below.

j := 1; d[1] := 0;
while j < p do

i := d[j];
while p[i] 6= p[j] ∧ i 6= 0 do

i := d[i]
endwhile ;
{ p[i] = p[j] ∨ i = 0 }
if p[i] = p[j]

then d[j + 1] := i + 1
else d[j + 1] := 0

endif ;
j := j + 1

endwhile

Analysis of the running time of the core computation

We show that the program of Section 7.3.3 runs in linear time in the length of
the pattern p. We transform the program to a loop consisting of three guarded
commands, as shown below, which is more easily analyzed. We have labeled the
guarded commands S1, S2 and S3, for easy reference.

j := 1; d[1] := 0; i := d[j];
loop

S1:: j < p ∧ p[i] 6= p[j] ∧ i 6= 0 → i := d[i]
S2:: j < p ∧ p[i] = p[j] → d[j + 1] := i + 1; j := j + 1; i := d[j]
S3:: j < p ∧ p[i] 6= p[j] ∧ i = 0 → d[j + 1] := 0; j := j + 1; i := d[j]

endloop

We show below that execution of each guarded command increases 2j −
i. Since j ≤ p and i ≥ 0 (prove these as invariants), 2j − i never exceeds
2p. Initially, 2j − i = 2. Therefore, the number of executions of all guarded
commands is O(p).

Now, we consider the right side of each guarded command Sk, 1 ≤ k ≤ 3,
and show that each one strictly increases 2j − i, i.e.,

{2j − i = n} right side of Sk {2j − i > n}
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• Proof for S1:

{2j − i = n} i := d[i] {2j − i > n}
, goal

2j − i = n ⇒ 2j − d[i] > n , axiom of assignment
2j − i < 2j − d[i] , arithmetic
d[i] < i , arithmetic
true , i = u and d[i] = c(u) 2

• Proof for S2:

{2j − i = n} d[j + 1] := i + 1; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := i + 1; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := i + 1 {2(j + 1)− d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1)− (i + 1) > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1)− (i + 1) > n
, simplify

true , arithmetic 2

• Proof for S3:

{2j − i = n} d[j + 1] := 0; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := 0; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := 0 {2(j + 1)− d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1)− 0 > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1) > n , simplify
true , arithmetic and i ≥ 0 (invariant) 2

Exercise 78

1. Show that you can match pattern p against text t by computing the cores
of all prefixes of pt (pt is the concatenation of p and t).

2. Define u to be the k-core of string v, k ≥ 0, v 6= ε, if u is the longest string
below v whose length is at most k. Show that the k-core is well-defined.
Devise an algorithm to compute the k-core of a string for a given k. 2
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7.4 Boyer-Moore Algorithm

The next string matching algorithm we study is due to Boyer and Moore. It has
the best performance, on the average, of all known algorithms for this problem.
In many cases, it runs in sublinear time, because it may not even scan all
the symbols of the text. Its worst case behavior could be as bad as the naive
matching algorithm.

At any moment, imagine that the pattern is aligned with a portion of the
text of the same length, though only a part of the aligned text may have been
matched with the pattern. Henceforth, alignment refers to the substring of t
that is aligned with p and l is the index of the left end of the alignment; i.e.,
p[0] is aligned with t[l] and, in general, p[i], 0 ≤ i < m, with t[l + i]. Whenever
there is a mismatch, the pattern is shifted to the right, i.e., l is increased, as
explained in the following sections.

7.4.1 Algorithm Outline

The overall structure of the program is a loop that has the invariant:

Q1: Every occurrence of p in t that starts before l has been recorded.

The following loop records every occurrence of p in t eventually.

l := 0;
{ Q1 }
loop

{ Q1 }
“increase l while preserving Q1”
{ Q1 }

endloop

Next, we show how to increase l while preserving Q1. To do so, we need to
match certain symbols of the pattern against the text. We introduce variable j,
0 ≤ j < m, with the meaning that the suffix of p starting at position j matches
the corresponding portion of the alignment; i.e.,

Q2: 0 ≤ j ≤ m, p[j..m] = t[l + j..l + m]

Thus, the whole pattern is matched when j = 0, and no part has been matched
when j = m.

We establish Q2 by setting j to m. Then, we match the symbols from right
to left of the pattern (against the corresponding symbols in the alignment) until
we find a mismatch or the whole pattern is matched.

j := m;
{ Q2 }
while j > 0 ∧ p[j − 1] = t[l + j − 1] do j := j − 1 endwhile
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{ Q1 ∧ Q2 ∧ (j = 0 ∨ p[j − 1] 6= t[l + j − 1]) }
if j = 0

then { Q1 ∧ Q2 ∧ j = 0 } record a match at l; l := l′ { Q1 }
else { Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1] } l := l′′{ Q1 }

endif

{ Q1 }

Next, we show how to compute l and l′, l′ > l and l′′ > l, so that Q1 is
satisfied. For better performance, l should be increased as much as possible in
each case. We take up the computation of l′′ next; computation of l′ is a special
case of this.

The precondition for the computation of l′′ is,

Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1].

We consider two heuristics, each of which can be used to calculate a value
of l′′; the greater value is assigned to l. The first heuristic, called the bad
symbol heuristic, exploits the fact that we have a mismatch at position j − 1
of the pattern. The second heuristic, called the good suffix heuristic, uses the
fact that we have matched a suffix of p with the suffix of the alignment, i.e.,
p[j..m] = t[l + j..l + m] (though the suffix may be empty).

7.4.2 The Bad Symbol Heuristic

Suppose we have the pattern “attendance” that we have aligned against a por-
tion of the text whose suffix is “hce”, as shown in Table 7.4.

text - - - - - - - h c e
pattern a t t e n d a n c e
align a t t e n d a n c e

Table 7.4: The bad symbol heuristic

The suffix “ce” has been matched; the symbols ’h’ and ’n’ do not match.
We now reason as follows. If symbol ’h’ of the text is part of a full match,
that symbol has to be aligned with an ’h’ of the pattern. There is no ’h’ in
the pattern; so, no match can include this ’h’ of the text. Hence, the pattern
may be shifted to the symbol following ’h’ in the text, as shown under align
in Table 7.4. Since the index of ’h’ in the text is l + j − 1 (that is where the
mismatch occurred), we have to align p[0] with t[l+j], i.e., l should be increased
to l + j. Observe that we have shifted the alignment several positions to the
right without scanning the text symbols shown by dashes, ’-’, in the text; this
is how the algorithm achieves sublinear running time in many cases.

Next, suppose the mismatched symbol in the text is ’t’, as shown in Table 7.5.
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text - - - - - - - t c e
pattern a t t e n d a n c e

Table 7.5: The bad symbol heuristic

Unlike ’h’, symbol ’t’ appears in the pattern. We align some occurrence of ’t’
in the pattern with that in the text. There are two possible alignments, which
we show in Table 7.6.

text - - t c e - - - - - -
align1 a t t e n d a n c e
align2 a t t e n d a n c e

Table 7.6: New alignment in the bad symbol heuristic

Which alignment should we choose? The same question also comes up in
the good suffix heuristic. We have several possible shifts each of which matches
a portion of the alignment. We adopt the following rule for shift:

Minimum shift rule: Shift the pattern by the minimum allowable amount.

According to this rule, in Table 7.7 we would shift the pattern to get align1 .

Justification for the rule: This rule preserves Q1; we never skip over a possible
match following this rule, because no smaller shift yields a match at the given
position, and, hence no full match.

Conversely, consider the situation shown in Table 7.7. The first pattern line
shows an alignment where there is a mismatch at the rightmost symbol in the
alignment. The next two lines show two possible alignments that correct the
mismatch. Since the only text symbol we have examined is ’x’, each dash in
Table 7.7 could be any symbol at all; so, in particular, the text could be such
that the pattern matches against the first alignment, align1 . Then, we will
violate invariant Q1 if we shift the pattern as shown in align2 . 2

text - - x - -
pattern x x y
align1 x x y
align2 x x y

Table 7.7: Realignment in the good suffix heuristic

For each symbol in the alphabet, we precalculate its rightmost position in
the pattern. The rightmost ’t’ in “attendance” is at position 2. To align the
mismatched ’t’ in the text in Table 7.6 that is at position t[l+j−1], we align p[2]
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with t[l + j − 1], that is, p[0] with t[l− 2 + j − 1]. In general, if the mismatched
symbol’s rightmost occurrence in the pattern is at p[k], then p[0] is aligned with
t[l− k + j − 1], or l is increased by −k + j − 1. For a nonexistent symbol in the
pattern, like ’h’, we set its rightmost occurrence to −1 so that l is increased to
l + j, as required.

The quantity −k + j − 1 is negative if k > j − 1. That is, the rightmost
occurrence of the mismatched symbol in the pattern is to the right of the mis-
match. Fortunately, the good suffix heuristic, which we discuss in Section 7.4.3,
always yields a positive increment for l; so, we ignore this heuristic if it yields a
negative increment.

Computing the rightmost positions of the symbols in the pattern
For a given alphabet, we compute an array rt, indexed by the symbols of the
alphabet, so that for any symbol ’a’,

rt(’a’) =
{

position of the rightmost ’a’ in p, if ’a’ is in p
−1 otherwise

The following simple loop computes rt.

let rt[’a’] := −1, for every symbol ’a’ in the alphabet;
for j = 0 to m− 1 do

rt[p[j]] := j
endfor

7.4.3 The Good Suffix Heuristic

Suppose we have a pattern “abxabyab” of which we have already matched the
suffix “ab”, but there is a mismatch with the preceding symbol ’y’, as shown in
Table 7.8.

text - - - - - z a b - -
pattern a b x a b y a b

Table 7.8: A good suffix heuristic scenario

Then, we shift the pattern to the right so that the matched part is occupied
by the same symbols, “ab”; this is possible only if there is another occurrence
of “ab” in the pattern. For the pattern of Table 7.8, we can form the new
alignment in two possible ways, as shown in Table 7.9.

No complete match of the suffix s is possible if s does not occur elsewhere
in p. This possibility is shown in Table 7.10, where s is “xab”. In this case, the
best that can be done is to match with a suffix of “xab”, as shown in Table 7.10.
Note that the matching portion “ab” is a prefix of p. Also, it is a suffix of p,
being a suffix of “xab”, that is a suffix of p.
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text - - z a b - - - - - -
align1 a b x a b y a b
align2 a b x a b y a b

Table 7.9: Realignment in the good suffix heuristic

text - - x a b - - -
pattern a b x a b
align a b x a b

Table 7.10: The matched suffix is nowhere else in p

As shown in the preceding examples, in all cases we shift the pattern to align
the right end of a proper prefix r with the right end of the previous alignment.
Also, r is a suffix of s or s is a suffix of r. In the example in Table 7.9, s is
“ab” and there are two possible r, “abxab” and “ab”, for which s is a suffix.
Additionally, ε is a suffix of s. In Table 7.10, s is “xab” and there is exactly one
nonempty r, “ab”, which is a suffix of s. Let

R = {r is a proper prefix of p ∧
(r is a suffix of s ∨ s is a suffix of r)}

The good suffix heuristic aligns an r in R with the end of the previous
alignment, i.e., the pattern is shifted to the right by m − r. Let b(s) be the
amount by which the pattern should be shifted for a suffix s. According to the
minimum shift rule,

b(s) = min{m− r | r ∈ R}

In the rest of this section, we develop an efficient algorithm for computing b(s).

Shifting the pattern in the algorithm of Section 7.4.1

In the algorithm outlined in Section 7.4.1, we have two assignments to l, the
assignment

l := l′, when the whole pattern has matched, and
l := l′′, when p[j..m] = t[l + j..l + m] and p[j − 1] 6= t[l + j − 1]

l := l′ is implemented by
l := l + b(p), and

l := l′′ is implemented by
l := l + max(b(s), j − 1− rt(h)),

where s = p[j..m] and h = t[l + j − 1]
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Properties of b(s), the shift amount for suffix s

We repeat the definition of b(s).

b(s) = min{m− r | r ∈ R}

Notation We abbreviate min{m− r | r ∈ R} to min(m− R). In general, let
S be a set of strings and e(S) an expression that includes S as a term. Then,
min(e(S)) = min{e(i) | i ∈ S}, where e(i) is obtained from e by replacing S by
i. 2

Rewrite R as R′ ∪R′′, where

R′ = {r is a proper prefix of p ∧ r is a suffix of s}
R′′ = {r is a proper prefix of p ∧ s is a suffix of r}

Then,

b(s) = min(min(m−R′), min(m−R′′))

where minimum over empty set is ∞.

P1: R is nonempty and b(s) is well-defined.
Proof: Note that ε ∈ R′ and R = R′ ∪ R′′. Then, from its definition, b(s) is
well-defined. 2

P2: c(p) ∈ R
Proof: From the definition of core, c(p) ≺ p. Hence, c(p) is a proper prefix of p.
Also, c(p) is a suffix of p, and, since s is a suffix of p, they are totally ordered.
So, either c(p) is a suffix of s or s is a suffix of c(p). Hence, c(p) ∈ R. 2

P3: min(m−R′) ≥ m− c(p)
Proof: Consider any r in R′. Since r is a suffix of s and s is a suffix of p, r is
a suffix of p. Also, r is a proper prefix of p. So, r ≺ p. From the definition of
core, r ¹ c(p). Hence, m− r ≥ m− c(p) for every r in R′. 2

P4: Let V = {v | v is a suffix of p ∧ c(v) = s}.
Then, min(m−R′′) = min(V − s)
Proof: Note that R′′ may be empty. In that case, V will be empty too and both
will have the same minimum, ∞. This causes no problem in computing b(s)
because, from (P1), R is nonempty.

Consider any r in R′′. Note that r is a prefix of p and has s as a suffix; so
p = xsy, for some x and y, where r = xs and y is the remaining portion of p.
Also, y 6= ε because r is a proper prefix. Let u stand for sy; then u is a suffix
of p. And, u 6= ε because y 6= ε, though u may be equal to p, because x could
be empty. Also, s is a prefix of u (u = sy) and a suffix of u (s and u are both
suffixes of p and u is longer than s). Therefore, s ≺ u. Define

U = {u | u is a suffix of p ∧ s ≺ u}
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We have thus shown that there is a one-to-one correspondence between the
elements of R′′ and U . Given that p = xsy, r = xs, and u = sy, we have
m− r = y = u− s. Hence,

min(m−R′′) = min(U − s).

For a fixed s, the minimum value of u− s over all u in U is achieved for the
shortest string v of U . We show that c(v) = s. This proves the result in (P4).

v is the shortest string in U

⇒ {c(v) < v}
v ∈ U ∧ c(v) 6∈ U

⇒ {definition of U}
s ≺ v ∧ (c(v) is not a suffix of p ∨ ¬(s ≺ c(v))

⇒ {c(v) is a suffix of v and v is a suffix of p; so, c(v) is a suffix of p}
s ≺ v ∧ ¬(s ≺ c(v))

⇒ {definition of core}
(s = c(v) ∨ s ≺ c(v)) ∧ (¬(s ≺ c(v)))

⇒ {predicate calculus}
s = c(v) 2

Note: The converse of this result is not true. There may be several u in U for
which c(u) = s. For example, consider “sxs” and “sxyx”, where the symbols ’x’
and ’y’ do not appear in “s”. Cores for both of these strings are “s”. 2

An abstract program for computing b(s)

We derive a formula for b(s), and use that to develop an abstract program.

b(s)
= {definition of b(s) from Section 7.4.3}

min(m−R)
= {from (P2): c(p) ∈ R}

min(m− c(p), min(m−R))
= {R = R′ ∪R′′, from Section 7.4.3}

min(m− c(p), min(m−R′), min(m−R′′))
= {from (P3): min(m−R′) ≥ m− c(p)}

min(m− c(p), min(m−R′′))
= {from (P4): min(m−R′′) = min(V − s)}

min(m− c(p), min(V − s))

Recall that

V = {v | v is a suffix of p ∧ c(v) = s}
Now, we propose an abstract program to compute b(s), for all suffixes s of p.

We employ an array b where b[s] ultimately holds the value of b(s), though it is
assigned different values during the computation. Initially, set b[s] to m− c(p).
Next, scan the suffixes v of p: let s = c(v); update b[s] to v − s provided this
value is lower than the current value of b[s].
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The program

assign m− c(p) to all elements of b;
for all suffixes v of p do

s := c(v);
if b[s] > v − s then b[s] := v − s endif

endfor

A concrete program for computing b(s)

The goal of the concrete program is to compute an array e, where e[j] is the
amount by which the pattern is to be shifted when the matched suffix is p[j..m],
0 ≤ j ≤ m. That is,

e[j] = b[s], where j + s = m, or
e[m− s] = b[s], for any suffix s of p

We have no need to keep explicit prefixes and suffixes; instead, we keep their
lengths, s in i and v in j. Let array f hold the lengths of the cores of all suffixes
of p. Summarizing, for suffixes s and v of p,

i = s,
j = v,
e[m− i] = b[s], using i = s,
f [v] = c(v), i.e., f [j] = c(v)

The abstract program, given earlier, is transformed to the following concrete
program.

assign m− c(p) to all elements of e;
for j, 0 ≤ j ≤ m, do

i := f [j];
if e[m− i] > j − i then e[m− i] := j − i endif

endfor

Computation of f The given program is complete except for the computa-
tion of f , the lengths of the cores of the suffixes of p. We have already developed
a program to compute the cores of the prefixes of a string; we employ that pro-
gram to compute f , as described next.

For any string r, let r̂ be its reverse. Now, v is a suffix of p iff v̂ is a prefix
of p̂. Moreover for any r (see exercise below)

c(r̂) = ĉ(r)

Therefore, for any suffix v of p and u = v̂,

c(u) = ĉ(v), replace r by v, above; note: r̂ = v̂ = u

c(v) = ĉ(v), r = r̂, for any r; let r = c(v)
c(u) = c(v), from the above two
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Since our goal is to compute the lengths of the cores, c(v), we compute c(u)
instead, i.e., the lengths of the cores of the prefixes of p̂, and store them in f .

Exercise 79

Show that

1. r ¹ s ≡ r̂ ¹ ŝ

2. r ≺ s ≡ r̂ ≺ ŝ

3. c(r̂) = ĉ(r)

Solution

1. r ¹ s
≡ {definition of ¹}

r is a prefix of s and r is a suffix of s
≡ {properties of prefix, suffix and reverse}

r̂ is a suffix of ŝ and r̂ is a prefix of ŝ
≡ {definition of ¹}

r̂ ¹ ŝ

2. Similarly.

3. Indirect proof of equality is a powerful method for proving equality. This
can be applied to elements in a set which has a reflexive and antisymmetric
relation like ¹. To prove y = z for specific elements y and z, show that
for every element x,

x ¹ y ≡ x ¹ z.

Then, set x to y to get y ¹ y ≡ y ¹ z, or y ¹ z since ¹ is reflexive.
Similarly, get z ¹ y. Next, use antisymmetry of ¹ to get y = z.

We apply this method to prove the given equality: we show that for any
s, s ¹ c(r̂) ≡ s ¹ ĉ(r).

s ¹ c(r̂)
≡ {definition of core}

s ≺ r̂
≡ {second part of this exercise}

ŝ ≺ r
≡ {definition of core}

ŝ ¹ c(r)
≡ {first part of this exercise}

s ¹ ĉ(r) 2
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Execution time for the computation of b The computation of b(s), for
all suffixes s of p, requires (1) computing c(p), (2) computing array f , and (3)
executing the concrete program of this section. Note that (1) can be computed
from array f ; so, the steps (1,2) can be combined. The execution times of
(1), (2) and (3) are linear in m, the length of p, from the text of the concrete
program. So, array b can be computed in time that is linear in the length of the
pattern.



Chapter 8

Parallel Recursion

8.1 Parallelism and Recursion

Many important synchronous parallel algorithms—Fast Fourier Transform, rout-
ing and permutation, Batcher sorting schemes, solving tridiagonal linear systems
by odd-even reduction, prefix-sum algorithms—are conveniently formulated in a
recursive fashion. The network structures on which parallel algorithms are typ-
ically implemented—butterfly, sorting networks, hypercube, complete binary
tree—are, also, recursive in nature. However, parallel recursive algorithms are
typically described iteratively, one parallel step at a time1. Similarly, the con-
nection structures are often explained pictorially, by displaying the connections
between one “level” and the next. The mathematical properties of the algo-
rithms and connection structures are rarely evident from these descriptions.

A data structure, powerlist, is proposed in this paper that highlights the role
of both parallelism and recursion. Many of the known parallel algorithms—
FFT, Batcher Merge, prefix sum, embedding arrays in hypercubes, etc.—have
surprisingly concise descriptions using powerlists. Simple algebraic properties of
powerlists permit us to deduce properties of these algorithms employing struc-
tural induction.

8.2 Powerlist

The basic data structure on which recursion is employed (in LISP[34] or ML[35])
is a list. A list is either empty or it is constructed by concatenating an element
to a list. (We restrict ourselves to finite lists throughout this paper.) We call
such a list linear (because the list length grows by 1 as a result of applying
the basic constructor). Such a list structure seems unsuitable for expressing
parallel algorithms succinctly; an algorithm that processes the list elements has
to describe how successive elements of the list are processed.

1A notable exception is the recursive description of a prefix sum algorithm in [23].

181
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We propose powerlist as a data structure that is more suitable for describing
parallel algorithms. The base—corresponding to the empty list for the linear
case—is a list of one element. A longer powerlist is constructed from the ele-
ments of two powerlists of the same length, as described below. Thus, a powerlist
is multiplicative in nature; its length doubles by applying the basic constructor.

There are two different ways in which powerlists are joined to create a longer
powerlist. If p, q are powerlists of the same length then

p | q is the powerlist formed by concatenating p and q, and

p ./ q is the powerlist formed by successively taking alternate items
from p and q, starting with p.

Further, we restrict p, q to contain similar elements (defined in Section 8.2.1).
In the following examples the sequence of elements of a powerlist are enclosed

within angular brackets.

〈0〉 | 〈1〉 = 〈0 1〉
〈0〉 ./ 〈1〉 = 〈0 1〉
〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉
〈0 1〉 ./ 〈2 3〉 = 〈0 2 1 3〉

The operation | is called tie and ./ is zip.

8.2.1 Definitions

A data item from the linear list theory will be called a scalar. (Typical scalars
are the items of base types—integer, boolean, etc.—tuples of scalars, functions
from scalars to scalars and linear lists of scalars.) Scalars are uninterpreted in
our theory. We merely assume that scalars can be checked for type compatibility.
We will use several standard operations on scalars for purposes of illustration.

Notational Convention : Linear lists will be enclosed within square brackets,
[ ].

A powerlist is a list of length 2n, for some n, n ≥ 0, all of whose elements
are similar. We enclose powerlists within angular brackets, 〈 〉.

Two scalars are similar if they are of the same type. Two powerlists are
similar if they have the same length and any element of one is similar to any
element of the other. (Observe that similar is an equivalence relation.)

Let S denote an arbitrary scalar, P a powerlist and u, v similar powerlists.
A recursive definition of a powerlist is

〈S〉 or 〈P 〉 or u | v or u ./ v

Examples
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〈〈c〉 〈d〉〉

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉

〈〈a〉 〈b〉〉

〈d〉〈c〉〈b〉〈a〉
Figure 8.1: Representation of a complete binary tree where the data are at the
leaves. For leaf nodes, the powerlist has one element. For non-leaf nodes, the
powerlist has two elements, namely, the powerlists for the left and right subtrees.

〈2〉 powerlist of length 1 containing a scalar
〈〈2〉〉 powerlist of length 1 containing a powerlist of length 1 of scalar
〈 〉 not a powerlist
〈[ ]〉 powerlist of length 1 containing the empty linear list
〈 〈[2] [3 4 7]〉 〈[4] [ ]〉 〉

powerlist of length 2, each element of which is a powerlist of length
2, whose elements are linear lists of numbers

〈 〈0 4〉 〈1 5〉 〈2 6〉 〈3 7〉 〉
a representation of the matrix

[
0 1 2 3
4 5 6 7

]
where each column is

an element of the outer powerlist.
〈 〈0 1 2 3〉 〈4 5 6 7〉 〉

another representation of the above matrix where each row is an
element of the outer powerlist.

〈〈〈a〉 〈b〉〉 〈〈c〉 〈d〉〉〉
a representation of the tree in Figure 8.1. The powerlist contains
two elements, one each for the left and right subtrees.

8.2.2 Functions over Powerlists

Convention : We write function application without parantheses where no
confusion is possible. Thus, we write “f x” instead of “f(x)” and “g x y”
instead of “g(x, y)”. The constructors | and ./ have the same binding power
and their binding power is lower than that of function application. Throughout
this paper, S denotes a scalar, P a powerlist and x, y either scalar or powerlist.
Typical names for powerlist variables are p, q, r, s, t, u, v. 2

Functions over linear lists are typically defined by case analysis—a function
is defined over the empty list and, recursively, over non-empty lists. Functions
over powerlists are defined analogously. For instance, the following function,
rev, reverses the order of the elements of the argument powerlist.

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)
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The case analysis, as for linear lists, is based on the length of the argument
powerlist. We adopt the pattern matching scheme of ML[35] and Miranda[49]2

to deconstruct the argument list into its components, p and q, in the recursive
case. Deconstruction, in general, uses the operators | and ./ ; see Section 8.3.
In the definition of rev, we have used | for deconstruction; we could have used
./ instead and defined rev in the recursive case by

rev(p ./ q) = (rev q) ./ (rev p)

It can be shown, using the laws in Section 8.3, that the two proposed definitions
of rev are equivalent and that

rev(rev P ) = P

for any powerlist P .

Scalar Functions
Operations on scalars are outside our theory. Some of the examples in this

paper, however, use scalar functions, particularly, addition and multiplication
(over complex numbers) and cons over linear lists. A scalar function, f , has zero
or more scalars as arguments and its value is a scalar. We coerce the application
of f to a powerlist by applying f “pointwise” to the elements of the powerlist.
For a scalar function f of one argument we define

f〈x〉 = 〈f x〉
f(p | q) = (f p) | (f q)

It can be shown that

f(p ./ q) = (f p) ./ (f q)

A scalar function that operates on two arguments will often be written as an
infix operator. For any such function ⊕ and similar powerlists p, q, u, v, we have

〈x〉 ⊕ 〈y〉 = 〈x ⊕ y〉
(p | q) ⊕ (u | v) = (p ⊕ u) | (q ⊕ v)
(p ./ q) ⊕ (u ./ v) = (p ⊕ u) ./ (q ⊕ v)

Thus, scalar functions commute with both | and ./ .

Note : Since a scalar function is applied recursively to each element of a pow-
erlist, its effect propagates through all “levels”. Thus, + applied to matrices
forms their elementwise sum. 2

2Miranda is a trademark of Research Software Ltd.
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8.2.3 Discussion

The base case of a powerlist is a singleton list, not an empty list. Empty lists (or,
equivalent data structures) do not arise in the applications we have considered.
For instance, in matrix algorithms the base case is a 1×1 matrix rather than an
empty matrix, Fourier transform is defined for a singleton list (not the empty
list) and the smallest hypercube has one node.

The recursive definition of a powerlist says that a powerlist is either of the
form u ./ v or u | v. In fact, every non-singleton powerlist can be written in
either form in a unique manner (see Laws in Section 8.3). A simple way to view
p | q = L is that if the elements of L are indexed by n-bit strings in increasing
numerical order (where the length of L is 2n) then p is the sublist of elements
whose highest bit of the index is 0 and q is the sublist with 1 in the highest bit
of the index. Similarly, if u ./ v = L then u is the sublist of elements whose
lowest bit of the index is 0 and v’s elements have 1 as the lowest bit of the index.

At first, it may seem strange to allow two different ways for constructing the
same list—using tie or zip. As we see in this paper this causes no difficulty, and
further, this flexibility is essential because many parallel algorithms—the Fast
Fourier Transform being the most prominent—exploit both forms of construc-
tion.

We have restricted u, v in u | v and u ./ v to be similar. This restriction
allows us to process a powerlist by recursive divide and conquer, where each
division yields two halves that can be processed in parallel, by employing the
same algorithm. (Square matrices, for instance, are often processed by quarter-
ing them. We will show how quartering, or quadrupling, can be expressed in
our theory.) The similarity restriction allows us to define complete binary trees,
hypercubes and square matrices that are not “free” structures.

The length of a powerlist is a power of 2. This restricts our theory somewhat.
It is possible to design a more general theory eliminating this constraint; we
sketch an outline in Section 8.6.

8.3 Laws

L0. For singleton powerlists, 〈x〉, 〈y〉
〈x〉 | 〈y〉 = 〈x〉 ./ 〈y〉

L1. (Dual Deconstruction)
For any non-singleton powerlist, P , there exist similar powerlists
r, s, u, v such that
P = r | s and P = u ./ v

L2. (Unique Deconstruction)
(〈x〉 = 〈y〉) ≡ (x = y)
(p | q = u | v) ≡ (p = u ∧ q = v)
(p ./ q = u ./ v) ≡ (p = u ∧ q = v)
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L3. (Commutativity of | and ./ )
(p | q) ./ (u | v) = (p ./ u) | (q ./ v)

These laws can be derived by suitably defining tie and zip, using the standard
functions from the linear list theory. One possible strategy is to define tie as
the concatenation of two equal length lists and then, use the Laws L0 and L3
as the definition of zip; Laws L1, L2 can be derived next. Alternatively, these
laws may be regarded as axioms relating tie and zip.

Law L0 is often used in proving base cases of algebraic identities. Laws
L1, L2 allow us to uniquely deconstruct a non-singleton powerlist using either
| or ./ . Law L3 is crucial. It is the only law relating the two construction

operators, | and ./ , in the general case. Hence, it is invariably applied in
proofs by structural induction where both constructors play a role.

Inductive Proofs

Most proofs on powerlists are by induction on the length, depth or shape of the
list. The length, len, of a powerlist is the number of elements in it. Since the
length of a powerlist is a power of 2, the logarithmic length, lgl, is a more useful
measure. Formally,

lgl〈x〉 = 0
lgl(u | v) = 1 + (lgl u)

The depth of a powerlist is the number of “levels” in it.

depth 〈S〉 = 0
depth 〈P 〉 = 1 + (depth P )
depth (u | v) = depth u

(In the last case, since u, v are similar powerlists they have the same depth.)
Most inductive proofs on powerlists order them lexicographically on the pair
(depth, logarithmic length). For instance, to prove that a property Π holds for
all powerlists, it is sufficient to prove

Π〈S〉, and
Π P ⇒ Π〈P 〉, and
(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u | v)

The last proof step could be replaced by

(Π u) ∧ (Π v) ∧ (u, v) similar ⇒ Π(u ./ v)

The shape of a powerlist P is a sequence of natural numbers n0, n1, . . . , nd where
d is the depth of P and

n0 is the logarithmic length of P ,
n1 is the logarithmic length of (any) element of P , say r
n2 is the logarithmic length of any element of r, . . .
...
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A formal definition of shape is similar to that of depth. The shape is a linear
sequence because all elements, at any level, are similar. The shape and the
type of the scalar elements define the structure of a powerlist completely. For
inductive proofs, the powerlists may be ordered lexicographically by the pair
(depth, shape), where the shapes are compared lexicographically.

Example : The len, lgl and depth of 〈 〈0 1 2 3〉 〈4 5 6 7〉 〉 are, 2, 1, 1,
respectively. The shape of this powerlist is the sequence, 1 2, because there are
2 elements at the outer level and 4 elements at the inner level.

8.4 Examples

We show a few small algorithms on powerlists. These include such well-known
examples as the Fast Fourier Transform and Batcher sorting schemes. We re-
strict the discussion in this section to simple (unnested) powerlists (where the
depth is 0); higher dimensional lists (and algorithms for matrices and hyper-
cubes) are taken up in a later section. Since the powerlists are unnested, induc-
tion based on length is sufficient to prove properties of these algorithms.

8.4.1 Permutations

We define a few functions that permute the elements of powerlists. The function
rev, defined in Section 8.2.2, is a permutation function. These functions appear
as components of many parallel algorithms.

Rotate
Function rr rotates a powerlist to the right by one; thus, rr〈a b c d〉 =

〈d a b c〉. Function rl rotates to the left: rl〈a b c d〉 = 〈b c d a〉.

rr〈x〉 = 〈x〉 , rl〈x〉 = 〈x〉
rr(u ./ v) = (rr v) ./ u , rl(u ./ v) = v ./ (rl u)

There does not seem to be any simple definition of rr or rl using | as the
deconstruction operator. It is easy to show, using structural induction, that rr,
rl are inverses. An amusing identity is rev(rr(rev(rr P ))) = P .

A powerlist may be rotated through an arbitrary amount, k, by applying
k successive rotations. A better scheme for rotating (u ./ v) by k is to rotate
both u, v by about k/2. More precisely, the function grr (given below) rotates
a powerlist to the right by k, where k ≥ 0. It is straightforward to show that for
all k, k ≥ 0, and all p, (grr k p) = (rr(k) p), where rr(k) is the k-fold application
of rr.

grr k 〈x〉 = 〈x〉
grr (2× k) (u ./ v) = (grr k u) ./ (grr k v)
grr (2× k + 1) (u ./ v) = (grr (k + 1) v) ./ (grr k u)
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P ’s indices = (000 001 010 011 100 101 110 111)
List P = 〈a b c d e f g h〉

P ’s indices rotated right = (000 100 001 101 010 110 011 111)
rs P = 〈a c e g b d f h〉

P ’s indices rotated left = (000 010 100 110 001 011 101 111)
ls P = 〈a e b f c g d h〉

Figure 8.2: Permutation functions rs, ls defined in Section 8.4.1.

Rotate Index
A class of permutation functions can be defined by the transformations

on the element indices. For a powerlist of 2n elements we associate an n-bit
index with each element, where the indices are the binary representations of
0, 1, .., 2n − 1 in sequence. (For a powerlist u | v, indices for the elements in
u have “0” as the highest bit and in v have “1” as the highest bit. In u ./ v,
similar remarks apply for the lowest bit.) Any bijection, h, mapping indices
to indices defines a permutation of the powerlist: The element with index i is
moved to the position where it has index (h i). Below, we consider two simple
index mapping functions; the corresponding permutations of powerlists are use-
ful in describing the shuffle-exchange network. Note that indices are not part
of our theory.

A function that rotates an index to the right (by one position) has the
permutation function rs (for right shuffle) associated with it. The definition
of rs may be understood as follows. The effect of rotating an index to the
right is that the lowest bit of an index becomes the highest bit; therefore, if
rs is applied to u ./ v, the elements of u—those having 0 as the lowest bit—
will occupy the first half of the resulting powerlist (because their indices have
“0” as the highest bit, after rotation); similarly, v will occupy the second half.
Analogously, the function that rotates an index to the left (by one position)
induces the permutation defined by ls (for left shuffle), below. Figure 8.2 shows
the effects of index rotations on an 8-element list.

rs〈x〉 = 〈x〉 , ls〈x〉 = 〈x〉
rs(u ./ v) = u | v , ls(u | v) = u ./ v

It is trivial to see that rs, ls are inverses.

Inversion
The function inv is defined by the following function on indices. An element

with index b in P has index b′ in (inv P ), where b′ is the reversal of the bit
string b. Thus,
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000 001 010 011 100 101 110 111

inv〈 a b c d e f g h 〉 =
〈 a e c g b f d h 〉

The definition of inv is

inv〈x〉 = 〈x〉
inv(p | q) = (inv p) ./ (inv q)

This function arises in a variety of contexts. In particular, inv is used to permute
the output of a Fast Fourier Transform network into the correct order.

The following proof shows a typical application of structural induction.

INV1. inv(p ./ q) = (inv p) | (inv q)

Proof is by structural induction on p and q.
Base : inv(〈x〉 ./ 〈y〉)

= {From Law L0 : 〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}
inv(〈x〉 | 〈y〉)

= {definition of inv}
inv〈x〉 ./ inv〈y〉

= {inv〈x〉 = 〈x〉, inv〈y〉 = 〈y〉. Thus, they are singletons. Applying Law L0}
inv〈x〉 | inv〈y〉

Induction :
inv((r | s) ./ (u | v))

= {commutativity of | , ./ }
inv((r ./ u) | (s ./ v))

= {definition of inv}
inv(r ./ u) ./ inv(s ./ v)

= {induction}
(inv r | inv u) ./ (inv s | inv v)

= { | , ./ commute}
(inv r ./ inv s) | (inv u ./ inv v)

= {apply definition of inv to both sides of | }
inv(r | s) | inv(u | v) 2

Using INV1 and structural induction, it is easy to establish

inv(inv P ) = P ,

inv(rev P ) = rev(inv P )
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n = 0 〈[ ]〉
n = 1 〈[0] [1]〉
n = 2 〈[00] [01] [11] [10]〉
n = 3 〈[000] [001] [011] [010] [110] [111] [101] [100]〉

Figure 8.3: Standard Gray code sequence for n, n = 0, 1, 2, 3

and for any scalar operator ⊕

inv(P ⊕Q) = (inv P )⊕ (inv Q)

The last result holds for any permutation function in place of inv.

8.4.2 Reduction

In the linear list theory [5], reduction is a higher order function of two argu-
ments, an associative binary operator and a list. Reduction applied to ⊕ and
[a0a1 . . . an] yields (a0 ⊕ a1 ⊕ . . .⊕ an). This function over powerlists is defined
by

red⊕ 〈x〉 = x
red⊕ (p | q) = (red⊕ p) ⊕ (red⊕ q)

8.4.3 Gray Code

Gray code sequence [17] for n, n ≥ 0, is a sequence of 2n n-bit strings where
the consecutive strings in the sequence differ in exactly one bit position. (The
last and the first strings in the sequence are considered consecutive.) Standard
Gray code sequences for n = 0, 1, 2, 3 are shown in Figure 8.3. We represent the
n-bit strings by linear lists of length n and a Gray code sequence by a powerlist
whose elements are these linear lists. The standard Gray code sequence may be
computed by function G, for any n.

G 0 = 〈[ ]〉
G (n + 1) = (0 : P ) | (1 : (rev P ))

where P = (G n)

Here, (0 :) is a scalar function that takes a linear list as an argument and
appends 0 as its prefix. According to the coercion rule, (0 : P ) is the powerlist
obtained by prefixing every element of P by 0. Similarly, (1 : (rev P )) is defined,
where the function rev is from Section 8.2.2.
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8.4.4 Polynomial

A polynomial with coefficients pj , 0 ≤ j < 2n, where n ≥ 0, may be represented
by a powerlist p whose jth element is pj . The polynomial value at some point
ω is

∑

0≤j<2n

pj × ωj . For n > 0 this quantity is

∑

0≤j<2n−1

p2j × ω2j +
∑

0≤j<2n−1

p2j+1 × ω2j+1.

The following function, ep, evaluates a polynomial p using this strategy.
In anticipation of the Fast Fourier Transform, we generalize ep to accept an
arbitrary powerlist as its second argument. For powerlists p, w (of, possibly,
unequal lengths) let (p ep w) be a powerlist of the same length as w, obtained
by evaluating p at each element of w.

〈x〉 ep w = 〈x〉
(p ./ q) ep w = (p ep w2) + (w × (q ep w2))

Note that w2 is the pointwise squaring of w. Also, note that ep is a pointwise
function in its second argument, i.e.,

p ep (u | v) = (p ep u) | (p ep v)

8.4.5 Fast Fourier Transform

For a polynomial p with complex coefficients, its Fourier transform is obtained
by evaluating p at a sequence (i.e., powerlist) of points, (W p). Here, (W p)
is the powerlist 〈ω0, ω1, .. , ωn−1〉, where n is the length of p and ω is the nth

principal root of 1. Note that (W p) depends only on the length of p but not
its elements; hence, for similar powerlists p, q, (W p) = (W q). It is easy to
define the function W in a manner similar to ep.

We need the following properties of W for the derivation of FFT . Equation
(1) follows from the definition of W and the fact that ω2×N = 1, where N is the
length of p (and q). The second equation says that the right half of W (p ./ q)
is the negation of its left half. This is because each element in the right half is
the same as the corresponding element in the left half multiplied by ωN ; since
ω is the (2×N)th root of 1, ωN = −1.

W 2(p ./ q) = (W p) | (W q) (8.1)
W (p ./ q) = u | (−u), for some u (8.2)

The Fourier transform, FT , of a powerlist p is a powerlist of the same length
as p, given by

FT p = p ep (W p)

where ep is the function defined in Section 8.4.4.
The straightforward computation of (p ep v) for any p, v consists of eval-

uating p at each element of v; this takes time O(N2) where p, v have length
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N . Since (W p) is of a special form the Fourier transform can be computed in
O(N log N) steps, using the the Fast Fourier Transform algorithm [12]. This
algorithm also admits an efficient parallel implementation, requiring O(log N)
steps on O(N) processors. We derive the FFT algorithm next.

FT 〈x〉
= {definition of FT}

x ep (W 〈x〉)
= {Since W 〈x〉 is a singleton, from the definition of ep}
〈x〉

For the general case,
FT (p ./ q)

= {From the definition of FT}
(p ./ q) ep W (p ./ q)

= {from the definition of ep}
p ep W 2(p ./ q) + W (p ./ q)× (q ep W 2(p ./ q))

= {from the property of W ; see equation (1)}
p ep ((W p) | (W q)) + W (p ./ q)× (q ep ((W p) | (W q)))

= {distribute each ep over its second argument}
((p ep (W p)) | (p ep (W q))) + W (p ./ q)× ((q ep (W p)) | (q ep (W q)))

= {(W p) = (W q), p ep (W p) = FT p, q ep (W q) = FT q }
((FT p) | (FT p)) + W (p ./ q)× ((FT q) | (FT q))

= {using P, Q for FT p, FT q, and u | (−u) for W (p ./ q); see equation (2)}
(P | P ) + (u | − u)× (Q | Q)

= { | and × in the second term commute}
(P | P ) + ((u×Q) | (−u×Q))

= { | and + commute}
(P + u×Q) | (P − u×Q)

We collect the two equations for FT to define FFT , the Fast Fourier Trans-
form. In the following, (powers p) is the powerlist 〈ω0, ω1, .. , ωN−1〉 where N
is the length of p and ω is the (2×N)th principal root of 1. This was the value
of u in the previous paragraph. The function powers can be defined similarly
to ep.

FFT 〈x〉 = 〈x〉
FFT (p ./ q) = (P + u×Q) | (P − u×Q)

where P = FFT p
Q = FFT q
u = powers p

It is clear that FFT (p ./ q) can be computed from (FFT p) and (FFT q) in
O(N) sequential steps or O(1) parallel steps using O(N) processors (u can be
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computed in parallel), where N is the length of p. Therefore, FFT (p ./ q) can
be computed in O(N log N) sequential steps or, O(log N) parallel steps using
O(N) processors.

The compactness of this description of FFT is in striking contrast to the
usual descriptions; for instance, see [10, Section 6.13]. The compactness can be
attributed to the use of recursion and the avoidance of explicit indexing of the
elements by employing | and ./ . FFT illustrates the need for including both
| and ./ as constructors for powerlists. (Another function that employs both
| and ./ is inv of Section 8.4.1.)

Inverse Fourier Transform
The inverse of the Fourier Transform, IFT, can be defined similarly to the

FFT. We derive the definition of IFT from that of the FFT by pattern matching.
For a singleton powerlist, 〈x〉, we compute

IFT 〈x〉
= {〈x〉 = FFT 〈x〉}

IFT (FFT 〈x〉)
= {IFT, FFT are inverses}
〈x〉

For the general case, we have to compute IFT (r | s) given r, s. Let

IFT (r | s) = p ./ q

in the unknowns p, q. This form of deconstruction is chosen so that we can
easily solve the equations we generate, next. Taking FFT of both sides,

FFT (IFT (r | s)) = FFT (p ./ q)

The left side is (r | s) because IFT, FFT are inverses. Replacing the right
side by the definition of FFT (p ./ q) yields the following equations.

r | s = (P + u×Q) | (P − u×Q)
P = FFT p
Q = FFT q
u = powers p

These equations are easily solved for the unknowns P, Q, u, p, q. (The law of
unique deconstruction, L2, can be used to deduce from the first equation that
r = P +u×Q and s = P −u×Q. Also, since p and r are of the same length we
may define u using r instead of p.) The solutions of these equations yield the
following definition for IFT. Here, /2 divides each element of the given powerlist
by 2.

IFT 〈x〉 = 〈x〉
IFT (r | s) = p ./ q

where P = (r + s)/2
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u = powers r
Q = ((r − s)/2)/u
p = IFT P
q = IFT Q

As in the FFT, the definition of IFT includes both constructors, | and ./ .
It can be implemented efficiently on a butterfly network. The complexity of
IFT is same as that of the FFT.

8.4.6 Batcher Sort

In this section, we develop some elementary results about sorting and discuss
two remarkable sorting methods due to Batcher[4]. We find it interesting that
./ (not | ) is the preferred operator in discussing the principles of parallel

sorting. Henceforth, a list is sorted means that its elements are arranged in
non-decreasing order.

A general method of sorting is given by

sort〈x〉 = 〈x〉
sort(p ./ q) = (sort p) merge (sort q)

where merge (written as a binary infix operator) creates a single sorted powerlist
out of the elements of its two argument powerlists each of which is sorted. In
this section, we show two different methods for implementing merge. One
scheme is Batcher merge, given by the operator bm. Another scheme is given
by bitonic sort where the sorted lists u, v are merged by applying the function
bi to (u | (rev v)).

A comparison operator, l, is used in these algorithms. The operator is
applied to a pair of equal length powerlists, p, q; it creates a single powerlist out
of the elements of p, q by

p l q = (p min q) ./ (p max q)

That is, the 2ith and (2i + 1)th items of p l q are (pi min qi) and (pi max qi),
respectively. The powerlist p l q can be computed in constant time using
O(len p) processors.

Bitonic Sort
A sequence of numbers, x0, x1, .., xi, .., xN , is bitonic if there is an index

i, 0 ≤ i ≤ N , such that x0, x1, .., xi is monotonic (ascending or descending)
and xi, .., xN is monotonic. The function bi, given below, applied to a bitonic
powerlist returns a sorted powerlist of the original items.

bi〈x〉 = 〈x〉
bi(p ./ q) = (bi p) l (bi q)
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For sorted powerlists u, v, the powerlist (u | (rev v)) is bitonic; thus u, v can
be merged by applying bi to (u | (rev v)). The form of the recursive definition
suggests that bi can be implemented on O(N) processors in O(log N) parallel
steps, where N is the length of the argument powerlist.

Batcher Merge
Batcher has also proposed a scheme for merging two sorted lists. We define

this scheme, bm, as an infix operator below.

〈x〉 bm 〈y〉 = 〈x〉 l 〈y〉
(r ./ s) bm (u ./ v) = (r bm v) l (s bm u)

The function bm is well-suited for parallel implementation. The recursive form
suggests that (r bm v) and (s bm u) can be computed in parallel. Since l can be
applied in O(1) parallel steps using O(N) processors, where N is the length of
the argument powerlists, the function bm can be evaluated in O(log N) parallel
steps. In the rest of this section, we develop certain elementary facts about
sorting and prove the correctness of bi and bm.

Elementary Facts about Sorting

We consider only “compare and swap” type sorting methods. It is known (see
[26]) that such a sorting scheme is correct if and only if it sorts lists containing
0’s and 1’s only. Therefore, we restrict our discussion to powerlists containing
0’s and 1’s, only.

For a powerlist p, let (z p) be the number of 0’s in it. To simplify notation,
we omit the space and write zp. Clearly,

A0. z(p ./ q) = zp + zq and z〈x〉 is either 0 or 1.

Powerlists containing only 0’s and 1’s have the following properties.

A1. 〈x〉 sorted and 〈x〉 bitonic.
A2. (p ./ q) sorted ≡ p sorted ∧ q sorted ∧ 0 ≤ zp− zq ≤ 1
A3. (p ./ q) bitonic ⇒ p bitonic ∧ q bitonic ∧ |zp− zq| ≤ 1

Note : The condition analogous to (A2) under which p | q is sorted is,

A2′. (p | q) sorted ≡ p sorted ∧ q sorted ∧ (zp < (len p) ⇒ zq = 0)

The simplicity of (A2), compared with (A2′), may suggest why ./ is the pri-
mary operator in parallel sorting. 2

The following results, (B1, B2), are easy to prove. We prove (B3).

B1. p sorted, q sorted, zp ≥ zq ⇒ (p min q) = p ∧ (p max q) = q 2

B2. z(p l q) = zp + zq 2
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B3. p sorted, q sorted, |zp− zq| ≤ 1 ⇒ (p l q) sorted

Proof: Since the statement of B3 is symmetric in p, q, assume zp ≥ zq.

p sorted, q sorted, |zp− zq| ≤ 1
⇒ {assumption: zp ≥ zq}

p sorted, q sorted, 0 ≤ zp− zq ≤ 1
⇒ {A2 and B1}

p ./ q sorted, (p min q) = p, (p max q) = q

⇒ {replace p, q in p ./ q by (p min q), (p max q)}
(p min q) ./ (p max q) sorted

⇒ {definition of p l q}
p l q sorted

Correctness of Bitonic Sort

We show that the function bi applied to a bitonic powerlist returns a sorted
powerlist of the original elements: (B4) states that bi preserves the number
of zeroes of its argument list (i.e., it loses no data) and (B5) states that the
resulting list is sorted.

B4. z(bi p) = zp

Proof: By structural induction, using B2. 2

B5. L bitonic ⇒ (bi L) sorted

Proof: By structural induction.

Base: Straightforward.

Induction: Let L = p ./ q
p ./ q bitonic

⇒ {A3}
p bitonic, q bitonic, |zp− zq| ≤ 1

⇒ {induction on p and q}
(bi p) sorted, (bi q) sorted, |zp− zq| ≤ 1

⇒ {from B4: z(bi p) = zp, z(bi q) = zq}
(bi p) sorted, (bi q) sorted, |z(bi p)− z(bi q)| ≤ 1

⇒ {apply B3 with (bi p), (bi q) for p, q}
(bi p) l (bi q) sorted

⇒ {definition of bi}
bi(p ./ q) sorted
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Correctness of Batcher Merge

We can show that bm merges two sorted powerlists in a manner similar to the
proof of bi. Instead, we establish a simple relationship between the functions
bm and bi from which the correctness of the former is obvious. We show that

B6. p bm q = bi(p | (rev q)), where rev reverses a powerlist (Section 8.2.2).

If p, q are sorted then p | (rev q) is bitonic (a fact that we don’t prove here).
Then, from the correctness of bi it follows that bi(p | (rev q)) and, hence, p bm q
is sorted (and it contains the elements of p and q).

Proof of B6: By structural induction.

Base: Let p, q = 〈x〉, 〈y〉

bi(〈x〉 | rev〈y〉)
= {definition of rev}

bi(〈x〉 | 〈y〉)
= {(〈x〉 | 〈y〉) = (〈x〉 ./ 〈y〉)}

bi(〈x〉 ./ 〈y〉)
= {definition of bi}
〈x〉 l 〈y〉

= {definition of bm}
〈x〉 bm 〈y〉

Induction: Let p, q = r ./ s, u ./ v

bi(p | (rev q))
= {expanding p, q}

bi((r ./ s) | rev(u ./ v))
= {definition of rev}

bi((r ./ s) | (rev v ./ rev u))
= { | , ./ commute}

bi((r | rev v) ./ (s | rev u))
= {definition of bi}

bi(r | rev v) l bi(s | rev u)
= {induction}

(r bm v) l (s bm u)
= {definition of bm}

(r ./ s) bm (u ./ v)
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= {using the definitions of p, q}
p bm q 2

The compactness of the description of Batcher’s sorting schemes and the
simplicity of their correctness proofs demonstrate the importance of treating
recursion and parallelism simultaneously.

8.4.7 Prefix Sum

Let L be a powerlist of scalars and ⊕ be a binary, associative operator on that
scalar type. The prefix sum of L with respect to ⊕, (ps L), is a list of the same
length as L given by

ps 〈x0, x1, .., xi, .., xN 〉 = 〈x0, x0 ⊕ x1, .., x0 ⊕ x1 ⊕ ..xi, .., x0 ⊕ x1 ⊕ ..⊕ xN 〉,
that is, in (ps L) the element with index i, i > 0, is obtained by applying ⊕ to
the first (i+1) elements of L in order. We will give a formal definition of prefix
sum later in this section.

Prefix sum is of fundamental importance in parallel computing. We show
that two known algorithms for this problem can be concisely represented and
proved in our theory. Again, zip turns out to be the primary operator for
describing these algorithms.

A particularly simple scheme for prefix sum of 8 elements is shown in Fig-
ure 8.4. In that figure, the numbered nodes represent processors, though the
same 8 physical processors are used at all levels. Initially, processor i holds the
list element Li, for all i. The connections among the processors at different
levels depict data transmissions. In level 0, each processor, from 0 through 6,
sends its data to its right neighbor. In the ith level, processor i sends its data
to (i + 2i), if such a processor exists (this means that for j < 2i, processor j
receives no data in level i data transmission). Each processor updates its own
data, d, to r⊕d where r is the data it receives; if it receives no data in some level
then d is unchanged. It can be shown that after completion of the computation
at level (log2(len L)), processor i holds the ith element of (ps L).

Another scheme, due to Ladner and Fischer[29], first applies ⊕ to adjacent
elements x2i, x2i+1 to compute the list 〈x0 ⊕ x1, .. x2i ⊕ x2i+1, ..〉. This list
has half as many elements as the original list; its prefix sum is then computed
recursively. The resulting list is 〈x0 ⊕ x1, .., x0 ⊕ x1 ⊕ .. ⊕ x2i ⊕ x2i+1, . . .〉.
This list contains half of the elements of the final list; the missing elements are
x0, x0 ⊕ x1 ⊕ x2, .., x0 ⊕ x1 ⊕ .. ⊕ x2i, ... These elements can be computed by
“adding” x2, x4, .., appropriately to the elements of the already computed list.

Both schemes for prefix computation are inherently recursive. Our formula-
tions will highlight both parallelism and recursion.

Specification

As we did for the sorting schemes (Section 8.4.6), we introduce an operator
in terms of which the prefix sum problem can be defined. First, we postulate
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•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

•7•6•5•4•3•2•1

level 3

level 2

level 1

level 0

•0

•0

•0

•0

Figure 8.4: A network to compute the prefix sum of 8 elements.

that 0 is the left identity element of ⊕, i.e., 0 ⊕ x = x. For a powerlist p, let
p∗ be the powerlist obtained by shifting p to the right by one. The effect of
shifting is to append a 0 to the left and discard the rightmost element of p;
thus, 〈a b c d〉∗ = 〈0 a b c〉. Formally,

〈x〉∗ = 〈0〉
(p ./ q)∗ = q∗ ./ p

It is easy to show

S1.(r ⊕ s)∗ = r∗ ⊕ s∗

S2.(p ./ q)∗∗ = p∗ ./ q∗

Consider the following equation in the powerlist variable z.

z = z∗ ⊕ L (DE)

where L is some given powerlist. This equation has a unique solution in z,
because

z0 = (z∗)0 ⊕ L0

= 0⊕ L0

= L0 , and
zi+1 = zi ⊕ Li+1 , 0 ≤ i < (len L)− 1

For L = 〈a b c d〉, z = 〈a a ⊕ b a ⊕ b ⊕ c a ⊕ b ⊕ c ⊕ d〉 which is exactly
(ps L). We define (ps L) to be the unique solution of (DE), and we call (DE)
the defining equation for (ps L).

Notes

1. The operator ⊕ is not necessarily commutative. Therefore, the rhs of (DE)
may not be the same as L⊕ z∗.
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2. The operator ⊕ is scalar; so, it commutes with ./ .

3. The uniqueness of the solution of (DE) can be proved entirely within the
powerlist algebra, similar to the derivation of Ladner-Fischer scheme given
later in this section.

4. Adams[1] has specified the prefix-sum problem without postulating an
explicit “0” element. For any ⊕, he introduces a binary operator ~⊕ over
two similar powerlists such that p~⊕ q = p∗ ⊕ q. The operator ~⊕ can be
defined without introducing a “0”.

Computation of the Prefix Sum

The function sps (simple prefix sum) defines the scheme of Figure 8.4.

sps 〈x〉 = 〈x〉
sps L = (sps u) ./ (sps v)

where u ./ v = L∗ ⊕ L

In the first level in Figure 8.4, L∗ ⊕ L is computed. If L = 〈x0, x1, .., xi, . . .〉
then this is 〈x0, x0 ⊕ x1, .., xi ⊕ xi+1..〉. This is the zip of the two sublists
〈x0, x1 ⊕ x2, .., x2i−1 ⊕ x2i, ..〉 and 〈x0 ⊕ x1, .., x2i ⊕ x2i+1, ..〉. Next, prefix sums
of these two lists are computed (independently) and then zipped.

The Ladner-Fischer scheme is defined by the function 〈∀.
〈∀〈x〉 = 〈x〉
〈∀(p ./ q) = (t∗ ⊕ p) ./ t

where t = 〈∀(p⊕ q)

Correctness

We can prove the correctness of sps and 〈∀ by showing that the function ps
satisfies the equations defining each of these functions. It is more instructive to
see that both sps and 〈∀ can be derived easily from the specification (DE). We
carry out this derivation for the Fischer-Ladner scheme as an illustration of the
power of algebraic manipulations. First, we note, ps〈x〉 = 〈x〉.

ps〈x〉
= {from the defining equation DE for ps〈x〉}

(ps〈x〉)∗ ⊕ 〈x〉
= {definition of ∗}

〈0〉 ⊕ 〈x〉
= {⊕ is a scalar operation}

〈0⊕ x〉
= {0 is the identity of ⊕}

〈x〉
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Derivation of Ladner-Fischer Scheme

Given a powerlist p ./ q, we derive an expression for ps(p ./ q). Let r ./ t, in
unknowns r, t, be ps(p ./ q). We solve for r, t.

r ./ t

= {r ./ t = ps (p ./ q). Using (DE)}
(r ./ t)∗ ⊕ (p ./ q)

= {(r ./ t)∗ = t∗ ./ r}
(t∗ ./ r)⊕ (p ./ q)

= {⊕, ./ commute}
(t∗ ⊕ p) ./ (r ⊕ q)

Applying law L2 (unique deconstruction) to the equation r ./ t = (t∗⊕p) ./ (r⊕
q), we conclude that

LF1. r = t∗ ⊕ p , and

LF2. t = r ⊕ q

Now, we eliminate r from (LF2) using (LF1) to get t = t∗ ⊕ p ⊕ q. Using
(DE) and this equation we obtain

LF3. t = ps(p⊕ q)

We summarize the derivation of ps(p ./ q).

ps(p ./ q)
= {by definition}

r ./ t

= { Using (LF1) for r}
(t∗ ⊕ p) ./ t

where t is defined by LF3. This is exactly the definition of the function 〈∀ for
a non-singleton powerlist. We also note that

r

= {by eliminating t from (LF1) using (LF2) }
(r ⊕ q)∗ ⊕ p

= { definition of *}
r∗ ⊕ q∗ ⊕ p
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Using (DE) and this equation we obtain LF4 that is used in proving the cor-
rectness of sps, next.

LF4. r = ps(q∗ ⊕ p)

Correctness of sps

We show that for a non-singleton powerlist L,

ps L = (ps u) ./ (ps v), where u ./ v = L∗ ⊕ L.

Proof: Let L = p ./ q. Then

ps L

= {L = p ./ q}
ps(p ./ q)

= {ps(p ./ q) = r ./ t, where r, t are given by (LF4,LF3)}
ps(q∗ ⊕ p) ./ ps(p⊕ q)

= {Letting u = q∗ ⊕ p, v = p⊕ q}
(ps u) ./ (ps v)

Now, we show that u ./ v = L∗ ⊕ L.

u ./ v

= {u = q∗ ⊕ p, v = p⊕ q}
(q∗ ⊕ p) ./ (p⊕ q)

= {⊕, ./ commute}
(q∗ ./ p)⊕ (p ./ q)

= {Apply the definition of ∗ to the first term}
(p ./ q)∗ ⊕ (p ./ q)

= {L = p ./ q}
L∗ ⊕ L

Remarks. A more traditional way of describing a prefix sum algorithm, such
as the simple scheme of Figure 8.4, is to explicitly name the quantities that are
being computed, and establish relationships among them. Let yij be computed
by the ith processor at the jth level. Then, for all i, j, 0 ≤ i < 2n, 0 ≤ j < n,
where n is the logarithmic length of the list,

yi0 = xi, and

yi,j+1 =
{

yi−2j ,j , i ≥ 2j

0 , i < 2j

}
⊕ yij
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The correctness criterion is

yin = x0 ⊕ ..⊕ xi

This description is considerably more difficult to manipulate. The parallelism
in it is harder to see. The proof of correctness requires manipulations of indices:
for this example, we have to show that for all i, j

yij = xk ⊕ ..⊕ xi

where k = max(0, i− 2j + 1).

The Ladner-Fischer scheme is even more difficult to specify in this manner.
Algebraic methods are to be preferred for describing uniform operations on
aggregates of data.

8.5 Higher Dimensional Arrays

A major part of parallel computing involves arrays of one or more dimensions.
An array of m dimensions (dimensions are numbered 0 through m − 1) is rep-
resented by a powerlist of depth (m − 1). Conversely, since powerlist elements
are similar, a powerlist of depth (m − 1) may be regarded as an array of di-
mension m. For instance, a matrix of r rows and c columns may be represented
as a powerlist of c elements, each element being a powerlist of length r storing
the items of a column; conversely, the same matrix may be represented by a
powerlist of r elements, each element being a powerlist of c elements.

In manipulating higher dimensional arrays we prefer to think in terms of
array operations rather than operations on nested powerlists. Therefore, we
introduce construction operators, analogous to | and ./ , for tie and zip along
any specified dimension. We use |′, ./′ for the corresponding operators in di-
mension 1, |′′, ./′′ for the dimension 2, etc. The definitions of these operators
are in Section 8.5.2; for the moment it is sufficient to regard |′ as the point-
wise application of | to the argument powerlists (and similarly, ./′). Thus,
for similar (power) matrices A,B that are stored columnwise (i.e., each element
is a column), A | B is the concatenation of A,B by rows and A |′ B is their
concatenation by columns. Figure 8.5 shows applications of these operators on
specific matrices.

Given these constructors we may define a matrix to be either

a singleton matrix 〈〈x〉〉, or
p | q where p, q are (similar) matrices, or
u |′ v where u, v are (similar) matrices.

Analogous definitions can be given for n-dimensional arrays. Observe that the
length of each dimension is a power of 2. As we had in the case of a pow-
erlist, the same matrix can be constructed in several different ways, say, first
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A =

〈 ∧ ∧
2 4
3 5
∨ ∨

〉
B =

〈 ∧ ∧
0 1
6 7
∨ ∨

〉

A | B =

〈 ∧ ∧ ∧ ∧
2 4 0 1
3 5 6 7
∨ ∨ ∨ ∨

〉
A ./ B =

〈 ∧ ∧ ∧ ∧
2 0 4 1
3 6 5 7
∨ ∨ ∨ ∨

〉

A |′ B =

〈
∧ ∧
2 4
3 5
0 1
6 7
∨ ∨

〉
A ./′ B =

〈
∧ ∧
2 4
0 1
3 5
6 7
∨ ∨

〉

Figure 8.5: Applying | , ./ , |′, ./′ over matrices. Matrices are stored by
columns. Typical matrix format is used for display, though each matrix is
to be regarded as a powerlist of powerlists.

by constructing the rows and then the columns, or vice versa. We will show, in
Section 8.5.2, that

(p | q) |′ (u | v) = (p |′ u) | (q |′ v)

i.e., | , |′ commute.

Note : We could have defined a matrix using ./ and ./′ instead of | and
|′. As | and ./ are duals in the sense that either can be used to construct
(or uniquely deconstruct) a powerlist, |′ and ./′ are also duals, as we show in
Section 8.5.2. Therefore, we will freely use all four construction operators for
matrices. 2

Example : (Matrix Transposition)
Let τ be a function that transposes matrices. From the definition of a matrix,

we have to consider three cases in defining τ .

τ〈〈x〉〉 = 〈〈x〉〉
τ(p | q) = (τ p) |′ (τ q)
τ(u |′ v) = (τ u) | (τ v)

The description of function τ , though straightforward, has introduced the pos-
sibility of an inconsistent definition. For a 2 × 2 matrix, for instance, either of
the last two deconstructions apply, and it is not obvious that the same result
is obtained independent of the order in which the rules are applied. We show
that τ is a function.

We prove the result by structural induction. For a matrix of the form 〈〈x〉〉,
only the first deconstruction applies, and, hence, the claim holds. Next, consider
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σ q σ v

σ uσ p
=σ

vu

qp

Figure 8.6: Schematic of the transposition of a square powermatrix.

a matrix to which both of the last two deconstructions apply. Such a matrix is
of the form (p | q) |′ (u | v) which, as remarked above, is also (p |′ u) | (q |′ v).
Applying one step of each of the last two rules in different order, we get

τ((p | q) |′ (u | v))
= {applying the last rule}

(τ(p | q)) | (τ(u | v))
= {applying the middle rule}

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))
And,

τ((p |′ u) | (q |′ v))
= {applying first the middle rule, then the last rule}

((τ p) | (τ u)) |′ ((τ q) | (τ v))
= { | , |′ commute}

((τ p) |′ (τ q)) | ((τ u) |′ (τ v))

From the induction hypothesis, (τ p), (τ q), etc., are well defined. Hence,

τ((p | q) |′ (u | v)) = τ((p |′ u) | (q |′ v))

Crucial to the above proof is the fact that | and |′ commute; this is remi-
niscent of the “Church-Rosser Property” [11] in term rewriting systems. Com-
mutativity is so important that we discuss it further in the next subsection.

It is easy to show that

τ (p ./ q) = (τ p) ./′ (τ q) and
τ (u ./′ v) = (τ u) ./ (τ v)

Transposition of a square (power) matrix can be defined by deconstructing
the matrix into quarters, transposing them individually and rearranging them,
as shown in Figure 8.6. From the transposition function τ for general matrices,
we get a function σ for transpositions of square matrices

σ〈〈x〉〉 = 〈〈x〉〉
σ((p | q) |′ (u | v)) = ((σ p) |′ (σ q)) | ((σ u) |′ (σ v))

Note the effectiveness of pattern matching in this definition.
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8.5.1 Pointwise Application

Let g be a function mapping items of type α to type β. Then g′ maps a powerlist
of α-items to a powerlist of β-items.

g′〈x〉 = 〈g x〉
g′(r | s) = (g′ r) | (g′ s)

Similarly, for a binary operator op

〈x〉 op′ 〈y〉 = 〈x op y〉
(r | s) op′ (u | v) = (r op′ u) | (s op′ v)

We have defined these two forms explicitly because we use one or the other
in all our examples; f ′ for a function f of arbitrary arity is similarly defined.
Observe that f ′ applied to a powerlist of length N yields a powerlist of length N .
The number of primes over f determines the dimension at which f is applied
(the outermost dimension is numbered 0; therefore writing ./ , for instance,
without primes, simply zips two lists). The operator for pointwise application
also appears in [3] and in [46].

Common special cases for the binary operator, op, are | and ./ and their

pointwise application operators. In particular, writing ./m to denote ./

m︷ ︸︸ ︷
′′ . . .′ ,

we define, ./ 0 = ./ and for m > 0,

〈x〉 ./m 〈y〉 = 〈x ./ m−1 y〉
(r | s) ./m (u | v) = (r ./m u) | (s ./m v)

From the definition of f ′, we conclude that f ′ and | commute. Below, we
prove that f ′ commutes with ./ .

Theorem 1 f ′, ./ commute.

Proof: We prove the result for unary f ; the general case is similar. Proof is
by structural induction.

Base: f ′(〈x〉 ./ 〈y〉)
= {〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}

f ′(〈x〉 | 〈y〉)
= {definition of f ′}

f ′〈x〉 | f ′〈y〉
= {f ′〈x〉, f ′〈y〉 = 〈f x〉, 〈f y〉. These are singleton lists}

f ′〈x〉 ./ f ′〈y〉

Induction:
f ′((p | q) ./ (u | v))

= { | , ./ in the argument commute}
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f ′((p ./ u) | (q ./ v))
= {f ′, | commute}

f ′(p ./ u) | f ′(q ./ v)
= {induction}

((f ′ p) ./ (f ′ u)) | ((f ′ q) ./ (f ′ v))
= { | , ./ commute}

((f ′ p) | (f ′ q)) ./ ((f ′ u) | (f ′ v))
= {f ′, | commute}

(f ′(p | q)) ./ (f ′(u | v)) 2

Theorem 2 For a scalar function f , f ′ = f .

Proof: Proof by structural induction is straightforward. 2

Theorem 3 If f, g commute then so do f ′, g′.

Proof: By structural induction. 2

The following results about commutativity can be derived from Theorems
1,2,3. In the following, m,n are natural numbers.

C1. For any f and m > n, fm, |n commute, and fm, ./n commute.
C2. For m 6= n, |m, |n commute, and ./m, ./n commute.
C3. For all m, n, |m, ./n commute.
C4. For any scalar function f, f, |m commute, and f, ./n commute.

C1 follows by applying induction on Theorems 1 and 3 (and the fact that f ′, |
commute). C2 follows from C1; C3 from C1, Law L3 and Theorem 3; C4 from
C1 and Theorem 2.

8.5.2 Deconstruction

In this section we show that any powerlist that can be written as p |m q for
some p, q can also be written as u ./m v for some u, v and vice versa; this is
analogous to Law L1, for dual deconstruction. Analogous to Law L2, we show
that such deconstructions are unique.

Theorem 4 (dual deconstruction): For any p, q and m ≥ 0, if p |m q is defined
then there exist u, v such that

u ./m v = p |m q

Conversely, for any u, v and m ≥ 0, if u ./m v is defined then there exist some
p, q such that

p |m q = u ./m v 2

We do not prove this theorem; its proof is similar to the theorem given below.
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Theorem 5 (unique deconstruction): Let ⊗ be | or ./ . For any natural
number m,

(p⊗m q = u⊗m v) ≡ (p = u ∧ q = v)

Proof: Proof is by induction on m.

m = 0 : The result follows from Law L2.
m = n + 1 : Assume that ⊗ = | . The proof is similar for ⊗ = ./ . We prove

the result by structural induction on p.

Base: p = 〈a〉 , q = 〈b〉 , u = 〈c〉 , v = 〈d〉
〈a〉 |n+1 〈b〉 = 〈c〉 |n+1 〈d〉

≡ {definition of |n+1}
〈a |n b〉 = 〈c |n d〉

≡ {unique deconstruction using Law L2}
a |n b = c |n d

≡ {induction on n}
(a = c) ∧ (b = d)

≡ {Law L2}
(〈a〉 = 〈c〉) ∧ (〈b〉 = 〈d〉)

Induction: p = p0 | p1 , q = q0 | q1 , u = u0 | u1 , v = v0 | v1

(p0 | p1) |n+1 (q0 | q1) = (u0 | u1) |n+1 (v0 | v1)
≡ {definition of |n+1}

(p0 |n+1 q0) | (p1 |n+1 q1) = (u0 |n+1 v0) | (u1 |n+1 v1)
≡ {unique deconstruction using Law L2}

(p0 |n+1 q0) = (u0 |n+1 v0) ∧ (p1 |n+1 q1) = (u1 |n+1 v1)
≡ {induction on the length of p0, q0, p1, q1}

(p0 = u0) ∧ (q0 = v0) ∧ (p1 = u1) ∧ (q1 = v1)
≡ {Law L2}

(p0 | p1) = (u0 | u1) ∧ (q0 | q1) = (v0 | v1)

Theorems 4 and 5 allow a richer variety of pattern matching in function
definitions, as we did for matrix transposition. We may employ |m, ./n for any
natural m,n to construct a pattern over which a function can be defined.

8.5.3 Embedding Arrays in Hypercubes

An n-dimensional hypercube is a graph of 2n nodes, n ≥ 0, where each node has
a unique n-bit label. Two nodes are neighbors, i.e., there is an edge between
them, exactly when their labels differ in a single bit. Therefore, every node
has n neighbors. We may represent a n-dimensional hypercube as a powerlist
of depth n; each level, except the innermost, consists of two powerlists. The
operators |m, ./n for natural m,n can be used to access the nodes in any one
(or any combination of) dimensions.
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We conclude with an example that shows how higher dimensional structures,
such as hypercubes, are easily handled in our theory. Given an array of size
2m0 × 2m1 × . . . 2md , we claim that its elements can be placed at the nodes of a
hypercube (of dimension m0+m1+..+md) such that two “adjacent” data items
in the array are placed at neighboring nodes in the hypercube. Here, two data
items of the array are adjacent if their indices differ in exactly one dimension,
and by 1 modulo N , where N is the size of that dimension. (This is called
“wrap around” adjacency.)

The following embedding algorithm is described in [31, Section 3.1.2]; it
works as follows. If the array has only one dimension with 2m elements, then
we create a gray code sequence, G m (see Section 8.4.3). Abbreviate G m by g.
We place the ith item of the array at the node with label gi. Adjacent items,
at positions i and i + 1 (+ is taken modulo 2m − 1), are placed at nodes gi and
gi+1 which differ in exactly one bit, by the construction.

This idea can be generalized to higher dimensional arrays as follows. Con-
struct gray code sequences for each dimension independently; store the item
with index (i0, i1, . . . , id) at the node (gi0 ; gi1 ; . . . ; gid

) where “;” denotes the
concatenations of the bit strings. By definition, adjacent items differ by 1 in
exactly one dimension, k. Then, their gray code indices are identical in all
dimensions except k and they differ in exactly one bit in dimension k.

We describe a function, em, that embeds an array in a hypercube. Given an
array of size 2m0×2m1×..2md it permutes its elements to an array 2× 2× . . .× 2︸ ︷︷ ︸

m

,

where m = m0 + .. + md, and the permutation preserves array adjacency as de-
scribed. The algorithm is inspired by the gray code function of Section 8.4.3.
In the following, S matches only with a scalar and P with a powerlist.

em〈S〉 = 〈S〉
em〈P 〉 = em P
em(u | v) = 〈em u〉 | 〈em (rev v)〉

The first line is the rule for embedding a single item in 0-dimensional hypercube.
The next line, simply, says that an array having length 1 in a dimension can be
embedded by ignoring that dimension. The last line says that a non-singleton
array can be embedded by embedding the left half of dimension 0 and the reverse
of the right half in the two component hypercubes of a larger hypercube.

8.6 Remarks

Related Work

Applying uniform operations on aggregates of data have proved to be extremely
powerful in APL [20]; see [3] and [5] for algebras of such operators. One of the
earliest attempts at representing data parallel algorithms is in [39]. In their
words, “an algorithm... performs a sequence of basic operations on pairs of
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data that are successively 2(k−1), 2(k−2), .., 20 = 1 locations apart”. An algo-
rithm operating on 2N pieces of data is described as a sequence of N parallel
steps of the above form where the kth step, 0 < k ≤ N , applies in parallel a
binary operation, OPER, on pairs of data that are 2(N−k) apart. They show
that this paradigm can be used to describe a large number of known parallel
algorithms, and any such algorithm can be efficiently implemented on the Cube
Connected Cycle connection structure. Their style of programming was imper-
ative. It is not easy to apply algebraic manipulations to such programs. Their
programming paradigm fits in well within our notation. Mou and Hudak[37]
and Mou[38] propose a functional notation to describe divide and conquer-type
parallel algorithms. Their notation is a vast improvement over Preparata and
Vuillemin’s in that changing from an imperative style to a functional style of
programming allows more succinct expressions and the possibility of algebraic
manipulations; the effectiveness of this programming style on a scientific prob-
lem may be seen in [50]. They have constructs similar to tie and zip, though
they allow unbalanced decompositions of lists. An effective method of pro-
gramming with vectors has been proposed in [7, 8]. He proposes a small set of
“vector-scan” instructions that may be used as primitives in describing parallel
algorithms. Unlike our method he is able to control the division of the list and
the number of iterations depending on the values of the data items, a necessary
ingredient in many scientific problems. Jones and Sheeran[21] have developed
a relational algebra for describing circuit components. A circuit component is
viewed as a relation and the operators for combining relations are given ap-
propriate interpretations in the circuit domain. Kapur and Subramaniam[22]
have implemented the powerlist notation for the purpose of automatic theorem
proving. They have proved many of the algorithms in this paper using an in-
ductive theorem prover, called RRL (Rewrite Rule Laboratory), that is based
on equality reasoning and rewrite rules. They are now extending their theorem
prover so that the similarity constraints on the powerlist constructors do not
have to be stated explicitly.

One of the fundamental problems with the powerlist notation is to devise
compilation strategies for mapping programs (written in the powerlist notation)
to specific architectures. The architecture that is the closest conceptually is the
hypercube. Kornerup[28] has developed certain strategies whereby each parallel
step in a program is mapped to a constant number of local operations and
communications at a hypercube node.

Combinational circuit verification is an area in which the powerlist nota-
tion may be fruitfully employed. Adams[1] has proved the correctness of adder
circuits using this notation. A ripple-carry adder is typically easy to describe
and prove, whereas a carry-lookahead adder is much more difficult. Adams has
described both circuits in our notation and proved their equivalence in a remark-
ably concise fashion. He obtains a succinct description of the carry-lookahead
circuit by employing the prefix-sum function (See Section 4.7).
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Powerlists of Arbitrary Length

The lengths of the powerlists have been restricted to be of the form 2n, n ≥ 0,
because we could then develop a simple theory. For handling arbitrary length
lists, Steele[45] suggests padding enough “dummy” elements to a list to make
its length a power of 2. This scheme has the advantage that we still retain the
simple algebraic laws of powerlist. Another approach is based on the observation
that any positive integer is either 1 or 2 × m or 2 × m + 1, for some positive
integer m; therefore, we deconstruct a non-singleton list of odd length into two
lists p, q and an element e, where e is either the first or the middle or the last
element. For instance, the following function, rev, reverses a list.

rev 〈x〉 = 〈x〉
rev (p | q) = (rev q) | (rev p)
rev (p | e | q) = (rev q | e | rev p)

The last line of this definition applies to a non-singleton list of odd length; the
list is deconstructed into two lists p, q of equal length and e, the middle element.
(We have abused the notation, applying | to three arguments). Similarly, the
function 〈∀ for prefix sum may be defined by

〈∀〈x〉 = 〈x〉
〈∀(p ./ q) = (t∗ ⊕ p) ./ t
〈∀(e ./ p ./ q) = e ./ (e⊕ (t∗ ⊕ p)) ./ (e⊕ t)

where t = 〈∀(p⊕ q)

In this definition, the singleton list and lists of even length are treated as
before. A list of odd length is deconstructed into e, p, q, where e is the first
element of the argument list and p ./ q constitutes the remaining portion of the
list. For this case, the prefix sum is obtained by appending the element e to
the list obtained by applying e⊕ to each element of 〈∀(p ./ q); we have used the
convention that (e ⊕ L) is the list obtained by applying e⊕ to each element of
list L.

The Interplay between Sequential and Parallel Computa-
tions.

The notation proposed in this paper addresses only a small aspect of parallel
computing. Powerlists have proved to be highly successful in expressing com-
putations that are independent of the specific data values; such is the case, for
instance, in the Fast Fourier Transform, Batcher merge and prefix sum. Typi-
cally, however, parallel and sequential computations are interleaved. While Fast
Fourier Transform and Batcher merge represent highly parallel computations,
binary search is inherently sequential (there are other parallel search strate-
gies). Gaussian elimination represents a mixture; the computation consists of
a sequence of pivoting steps where each step can be applied in parallel. Thus
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parallel computations may have to be performed in a certain sequence and the
sequence may depend on the data values during a computation. More general
methods, as in [7], are then required.

The powerlist notation can be integrated into a language that supports se-
quential computation. In particular, this notation blends well with ML [35] and
LISP[34, 46]. A mixture of linear lists and powerlists can exploit the various
combinations of sequential and parallel computing. A powerlist consisting of lin-
ear lists as components admits of parallel processing in which each component
is processed sequentially. A linear list whose elements are powerlists suggests a
sequential computation where each step can be applied in parallel. Powerlists
of powerlists allow multidimensional parallel computations, whereas a linear list
of linear lists may represent a hierarchy of sequential computations.
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