Online Aggregation over Trees

C. Greg Plaxton, Mitul Tiwari Praveen Yalagandula
University of Texas at Austin HP Labs
Abstract against any offline algorithm that provides strict

consistency. Our online lease-based aggregation
a?_lgorithm is presented in the form of a fully dis-

Consider a distributed network with nodes ar-

ranged in a tree, and each node having a fg_buted protocol, and the aforementioned con-

cal value. We formulate an aggregation proS'—Stem.:y and P erformance re;ults are formally
lem as the problem of aggregating values (e. stablished with respect to this protocol. Thus,

summing values) from all nodes to the reque e provide a positive answer to the central ques-

ing nodes in the presence of writes. The goaltlgn posed above.

to minimize the total number of messages ex-

changed. The key challenges are to define a .

notion of “acceptable” aggregate values, and b Introduction

design algorithms with good performance that

are guaranteed to produce such values. We ftsformation aggregation is a basic building
malize the acceptability of aggregate values ock in many large-scale distributed applica-
terms of certain consistency guarantees sirfiBns such as system management [10, 22], ser-
lar to traditional consistency models defined ice placement [9, 23], file location [5], grid re-
the distributed shared memory literature. Tis®urce monitoring [7], network monitoring [13],
aggregation problem admits a spectrum of saad collecting readings from sensors [14]. Cer-
lutions that trade off between consistency ait@in generic aggregation frameworks [7, 18, 24]
performance. The central question is whethpfoposed for building such distributed applica-
there exists an algorithm in this spectrum thtions allow scalable information aggregation by
provides strong performance and good consferming tree like structures with machines as
tency guarantees. We propose a lease-basednagles, and by using an aggregation function at
gregation mechanism, and evaluate algorith®gch node to summarize the information from
based on this mechanism in terms of conske nodes in the associated subtree.

tency and performance. With regard to consis-Some of the existing aggregation frameworks
tency, we generalize the definitions of strict andgse strategies optimized for certain workloads.
causal consistency for the aggregation probleRar example, in MDS-2 [7], the information is
We show that any lease-based aggregation ajjgregated only on reads, and no aggregation
gorithm provides strict consistency in sequers performed on writes. This kind of strategy
tial executions, and causal consistency in coperforms well for write-dominated workloads,
current executions. With regard to performandaut suffers from unnecessary latency or impreci-
we propose an online lease-based aggregatsion on read-dominated workloads. On the other
algorithm, and show that, for sequential exé&and, Astrolabe [18] employs the other extreme
cutions, the algorithm is constant-competitiierm of strategy in which, on a write at a node



u in the tree, each node on the path fromu work we design a distributed protocol for ag-
to the root node recomputes the aggregate vagiregation that provides good performance guar-
for the subtree rooted at nodeand the new ag-antees under any operating conditions. Our fo-
gregate values are propagated to all the nodess on tree networks is not limiting since many
This kind of strategy performs well for readlarge-scale distributed applications tend to be hi-
dominated workloads, but consumes high barelarchical (tree-like) in nature for scalability. If
width when applied to write-dominated workthe network is not a tree, one can use standard
loads. Furthermore, instead of these two etechniques to build a spanning tree. For ex-
treme forms of workloads, the workload magmple, in SDIMS [24], nodes are arranged in
fluctuate and different nodes may exhibit actie distributed hash table (DHT), and trees em-
ity at different times. Therefore, a natural quebedded in the DHT are used for the aggrega-
tion to ask is whether one can design an aggtmn; these trees are automatically repaired in
gation strategy that is adaptive and works wele face of failures. The present work can be
for varying workloads. viewed as a case study within the broader re-
SDIMS [24] proposes a hierarchical aggregaearch agenda alluded to above. The techniques
tion framework with a flexible API that allowsdeveloped here may find application in the de-
applications to control the update propagatiosign of self-tuning modules for other primitives.
and hence, the aggregation aggressiveness of theroblem Formulation. In order to describe
system. Though SDIMS exposes such flexibilityur results we next present a brief description
to applications, it requires applications to knowf the problem formulation; see Section 2 for
the read and write access patterns a priori daletailed description. We consider a distributed
choose an appropriate strategy (see our discnetwork with nodes arranged in an unrooted tree
sion on related work for further details). Thusnd each node having a local value. We formu-
SDIMS leaves an open question of how to addpte the aggregation problem as the problem of
the aggregation strategy in an online manner aggregating values (e.g., computing min, max,
the workload fluctuates. sum, or average) from all the nodes to the re-
In this work, we design an online aggregajuesting nodes in the presence of writes. The
tion algorithm, and show that the total nungoal is to minimize the total number of messages
ber of messages required to execute a given eethanged.
of requests is within a constant factor of the The main challenges are to define acceptable
minimum number of messages required to eaggregate values in presence of concurrent re-
ecute the requests. We give the complete algpests, and to design algorithms with good per-
rithm description in the abstract protocol notdermance that produce the acceptable aggregate
tion [11], and also believe that our algorithm igalues. We define the acceptability of the ag-
practical. gregate values in terms of certain consistency
Broader Perspective The ever increasingguarantees. There is a spectrum of solutions that
complexity of developing large-scale distributetlade off between consistency and performance.
applications motivates a research agenda ba¥é¢glintroduce a mechanism that uses the concept
on the identification of key distributed primi-of leases for aggregation algorithms. Any ag-
tives, and the design of reusable modules fgregation algorithm that uses this mechanism is
such primitives. To promote reuse, these mochlled lease-based aggregation algorithm. The
ules should be “self-tuning”, that is, should praiotion of a lease used in our mechanism is a gen-
vide near optimal performance under wide rangealization of that used in SDIMS [24].
of operating conditions. As indicated earlier, ag- Results We evaluate the lease-based aggre-
gregation is useful in many applications. In thigation algorithms in terms of consistency and
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performance. In terms of consistency, we genéectively reduces the analysis to reasoning about
alize the notions of strict and causal consisteneypair of neighboring nodes. This reduction al-
traditionally defined for distributed shared mentews us to formulate a linear program of small
ory [21, Chapter 6], for the aggregation protsize, independent of tree size, for the analysis.
lem. We show that any lease-based aggregaRelated Work. Various aggregation frame-
tion algorithm provides strict consistency for savorks have been proposed in the literature such
guential executions, and causal consistency & SDIMS [24], Astrolabe [18], and MDS [7].
concurrent executions. SDIMS is a hierarchical aggregation frame-
In terms of performance, we analyze theork that utilizes DHT trees to aggregate val-
lease-based algorithms in the competitive analyes. SDIMS provides a flexible API that al-
sis framework [20]. In this framework, we comlows applications to decide how far the updates
pare the cost of an online algorithm with respett the aggregate value due to the writes should
to an optimal offline algorithm. An online agbe propagated. In particular, SDIMS supports
gregation algorithm executes each request withpdate-loca) Update-all andUpdate-upstrate-
out any knowledge of the future requests. On thgees. In Update-local strategy, a write affects
other hand, an offline aggregation algorithm hasly the local value. In Update-all strategy, on
knowledge of all the requests in advance. Amwrite, the new aggregate value is propagated
online algorithm isc-competitivelf, for any re- to all the nodes. In Update-up strategy, on a
guest sequencee the costincurred by the onlinewrite, the new aggregate value is propagated to
algorithm in executing is at mostc times that the root node of the hierarchy. Astrolabe is an
incurred by an optimal offline algorithm. information management system that builds a
As is typical in the competitive analysis osingle logical aggregation tree over a given set
distributed algorithms [2, 3], we focus on sesf nodes. Astrolabe propagates all updates to
guential executions. In this paper we presethie aggregate value due to the writes to all the
an online lease-based aggregation algorithmades, hence, allows all the reads to be satisfied
RWW which, for sequential executions, @ locally. MDS-2 also forms a spanning tree over
competitive against an optimal offline lease&ll the nodes. MDS-2 does not propagate up-
based aggregation algorithm. We use a paates on the writes, and each request for an ag-
tential function argument to show this resulgregate value requires all nodes to be contacted.
We also show that the result is tight by pro- There are some similarities between our
viding a matching lower bound. Further, wiease-based aggregation algorithm and prior
show that, for sequential executio®8YW is5- caching work. Due to the space limitations,
competitive against an optimal offline algorithrhere we are describing the most relevant work.
that provides strict consistency. In CUP [19], Roussopoulos and Baker propose
The three main contributions of the work ara second-chancealgorithm for caching objects
as follows. First, we design an online aggredong the routing path. The algorithm removes
gation algorithm and show that our algorithra cached object after two consecutive updates
achieves good competitive ratio for sequentiale propagated to the remote locations due to
executions. Second, we define the notion tife writes on that object at the source. The
causal consistency for the aggregation problesecond-chance algorithm has been evaluated ex-
Third, we show that our algorithm satisfies thgerimentally, and shown to provide good per-
definition of causal consistency for concurrefidormance. In the distributed file allocation [3],
executions. Awerbuch et al. consider replication algorithm
An interesting highlight of the techniques ifor a general network. In their algorithm, on
the design of the aggregation algorithm that ed-read, the requested object is replicated along
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the path from the destination to the requestifige the notion of a causally consistent aggre-
node. On a write, all copies are deleted excagdtion algorithm, and establish that any lease-
the one at the writing node. Awerbuch et ahased algorithm, includin@WW, is causally
showed that their distributed algorithm has polgonsistent.

logarithmic competitive ratio for the distributed Due to space limitations, this submission fo-
caching problem against an optimal centralizedises on conveying the main ideas underlying
offline algorithm. our results, and some proofs are omitted. The 5-

The concept of time-based leases has besmyge appendix alluded to below provides some
proposed in literature to maintain consisten@dditional proof details, along with a complete
between the cached copy and the source. THescription of algorithmRWW. A complete
kind of leases has been applied in many digersion of our work, which includes all proofs,
tributed applications such as replicated file syis-available online [17].
tems [12] and web caching [8]. An appendix has been submitted to the

Ahamad et al. [1] gave the formal definition oprogram chair.
causal consistency for distributed message pass-
ing system. The key difference between their
setup and ours is in reading one value compaigd Preliminaries
to aggregating values from all the nodes.

There are several efforts to deal with numeiGonsider a finite set of nodes (i.e., machines) ar-
cal error in the aggregate value such as [4, 16lnged in a tree network with reliable FIFO
However, in our knowledge, none of these wodommunication channels between neighboring
give a competitive online algorithm for the agrodes. We are also given an aggregation op-
gregation problem, and neither of them addreggtor @ that is commutative, associative, and
the issue of ordering semantics in concurrent éxas an identity elemeit For convenience, we
ecutions. In [4], Bawa et al. defined semantigwite, :dydz asd(z, y, z). For the sake of con-
for various scenarios such as approximate ageteness in this paper, we assume that the local
gregation in a faulty environment callegiprox- value associated with each node is a real value,
imate single-site validity They designed algo-and the domain of is also real.
rithms that provide such semantics, and evalu-The aggregate valueover a set of nodes is
ated their algorithms experimentally. In [16)defined as® computed over the local values
Olston and Widom consider one level hierarctof all the nodes in the set. That is, the aggre-
and propose a new class of replication systaate value over a set of nod¢s,, ..., v} is
TRAPP that allows user to control the tradeof(v;.val, . . ., v;.val), wherev;.val is the local
between precision (numerical error) and perforalue of the node;. Theglobal aggregate value
mance in terms of communication overhead. is defined as the aggregate value over the set of

Organization. In Section 2 we introduce def-all the nodes in the treg.
initions and aggregation problem statements. InA request is a tuplenode, op, arg, retval),
Section 3 we give an informal description of ouwhere node is the node where the request is
algorithm and analysis. In Section 4 we defingitiated, op is the type of the request, either
the class of lease-based aggregation algorithmsnbine or write, arg is the argument of the
and establish certain properties of such algequest (if any), andetval is the return value of
rithms. In Section 5 we present our online leastiie request (if any). To executeuaite request,
based aggregation algorithRWW, and estab- an aggregation algorithm takes the argument of
lish bounds on the competitive ratio ®&WW the request and updates the local value at the re-
for sequential executions. In Section 6 we dquesting node. To executecambine request,
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an aggregation algorithm returns a value. Notees strict consistencyin executingo if any
that this definition admits the trivial algorithmecombine requestg in o returnsf(A(o,q)) as
that return9) on anycombine request. We de-the global aggregate value @ode. Note that
fine certain correctness criteria for aggregatiomis definition of strict consistency for an aggre-
algorithms later in the paper. Roughly speakingation algorithm is a generalization of the tra-
the returned value on ewmbine request corre- ditional definition of strict consistency for dis-
sponds to the global aggregate value. tributed shared memory systems (for further de-
Theaggregation problens to execute a giventails, see [21, Chapter 6]). We define an ag-
sequence of requests with the goal of minimigregation algorithm to baeice if the algorithm
ing the total number of messages exchangeabvides strict consistency for sequential execu-
among nodes. For any aggregation algoritAmtions.
and any request sequencewe defineC'4(c) as  The set of all nodes in tre€ is represented
the total number of messages exchanged amdygnodes(T'). For any edg€u, v), removal of
nodes in executing by .A. An online aggrega- (u, v) yields two treessubtree(u, v) is defined
tion algorithm A is c-competitive if for all re- to be one of the trees that contains
quest sequencesand an optimal offline aggre- For any request sequengeand any ordered
gation algorithmB, C 4(0) < c¢-Cg(0) [6, Chap- pair of neighboring nodegu,v), we define
ter 1]. o(u,v) as follows: (1)o(u,v) is a subsequence
We sayT is in quiescent state if (1) there i®f o; (2) for any write requesty in o such that
no pending request at any node; (2) there is R@ode is in subtree(u, v), ¢isino(u, v); and (3)
message in transit across any edge; and (3)fopany combine requesy in o such thay.node
message is sent until the next request is initiatéslin subtree(v, u), g is in o (u, v).
In short,T" is in quiescent state if there is no
activity in 7" until the next request is initiated.
In a sequential execution of a request, tt® INnformal Overview
request is initiated in a quiescent state and is
completed wherl" reaches another quiescenn this section we present an informal overview
state. In a sequential execution of a request séour algorithm and analysis.
guenceo, every request in o is executed se- Recall that on a combine request at a nade
guentially. In a concurrent execution of a res returns a value. Roughly speaking, the value
guest sequence, a new request can be initiatedresponds to the global aggregate value. In
and executed while another request is being @xder to do thaty contacts other nodes and col-
ecuted. We refer to the aggregation problem liects the local values from all the other nodes.
which the given request sequence is executed Nete that we can minimize the number of mes-
guentially assequential aggregation problem sages by performing aggregation at intermediate
The aggregation functiofi is defined over anodes, also referred as in-network aggregation.
set of real values or over a set of write requests.However, for a combine-dominated work-
For a setA of real valuesry, ..., z,, f(A) is load, one may wish to propagate an updated
defined asp(zy,...,z,). For a setd of write local value on a write request to minimize the
requestsy, . . ., qm, f(A) is defined ag (A) = number of messages exchanged on a combine.
®(q1.arg, ..., qm.arg). On the other hand, for a write-dominated work-
For any requesj in a request sequeneg let load, such propagation tend to be wasteful. In
A(o, q) be the set of the most recent writes prerder to facilitate adaptation of how many mes-
cedingq in o corresponding to each of the nodesages to send on a combine request versus a
in T'. We say that an aggregation algorithm prevrite request, we propose a lease mechanism.
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g all the other neighboring nodes. Second invari-
-, ant ensures that the lease froero « can not be

(a) / (b) broken ifu has given a lease to any other neigh-
. boring node, say node in Figure 1(b).
Figure 1: An example tree network. Given this lease mechanism, an aggregation

algorithm can adapt how far an updated value
should be propagated on a write request by set-

Here, we illustrate our lease mechanism for 'uﬂr‘[]g and breaking leases appropriately. The next
’ JU§liestion is how to set and break the leases dy-
two nodesu andv connected by an edge, an

- ) . ._.namically in an optimal manner. We answer
a scenario in which combine requests are ini

: S his guestion by providing an online lease-based
ated atv and write requests are initiatedat It aggregation algorithmRWW (see Section 5).

e e oo Ry wonsas ol Fora e
the mechanism.) _?u,v), RWW sets the lease _from to v dur-
' ing the execution of a combine request at any

If the lease fromu to v is present, then ONpode insubtree(v, u), and breaks the lease af-
a write request at, u propagates the new loter two consecutive write requests at any node
cal value tov by sending an update messaggy sybtree(u, v). Using a potential function ar-
Hence, in the presence of this lease, a Combﬁlﬂnent, we show thaBWW is g-competitive
request at is executed locally. On the othepgainst any offline lease-based algorithm for se-
hand, if the lease from to v is not present, thenquential executions. We also show that this
on a combine request af a probe message i$ound is tight by providing lower bound ar-
sent fromv to w. As a result, a response Mefuments. Further, we show thBRWW is 5-
sage containing the local valuewats sent from competitive against any offline algorithm that
u to v. Further, in this case, a write request fovides strict consistency for sequential execu-
u is executed locally. Note that on a combingypns.
dominated scenario, presence of the lease is benyjith respect to consistency guarantees, we
eficial. However, on a write-dominated sce&how that any lease-based aggregation algo-
nario,v may receive many updates whilés not rithm provides strict consistency for sequential
initiating any request. In that casecan break executions. For concurrent executions, it is dif-
the lease by sending a release message to  ficult to provide strict or sequential consistency.

In order to make the lease mechanism wo@kausal consistency is considered to be the next
for a tree network in a desirable way, we enveaker consistency model for the distributed
force two lease invariants. Consider the tree netkared memory environment [21, Chapter 6]. At
work in Figure 1 as an example. The presenfiest, it is not clear how to generalize the causal
of a lease on an edge is denoted by a dotted linensistency definitions for the aggregation prob-
To illustrate the first invariant, consider a cormem.
bine request at nodew with leases as in Figure We define the causal consistency for the ag-
1(a). During the execution of, w sends mes-gregation problem and show that any lease-
sages and collects the local values from all thased algorithm provides causal consistency for
other nodes. If the lease frotrto « is present, concurrent executions (see Section 6). First, we
thenu need not send any messagettoHow- introduce a new type of ghost requegisher to
ever, this would work only it has leases from associate a combine request with a set of write
ands. Our first invariant ensures that the leasequests. The concept of gather requests is sim-
from t to u is not set unless has leases fromilar to the way of associating a read request
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with a unique write request in analyzing disaodew to its neighboring node works as fol-
tributed shared memory [1, 15]. Second, we dews. If u.granted|v] holds then, on awrite
fine causal ordering among gather and write neequest at any node isubtree(u,v), v propa-
guests. Third, we extend the lease-based meghtes the new aggregate value oy sending an
anism by adding ghost variables and ghost agdate message. To break the lease (that is, to
tions. Finally, we use an invariant style prodalsify u.granted|v]), arelease() message is sent
technique to show that any lease-based aldmm v to w. On the other hand, ii.granted|v]
rithm provides causal consistency in two stepdoes not hold then, on@mbine request at any

In the first step, we show that a ghost log mainede insubtree(v, ), a probe() message is sent
tained at each node, containing gather and writem v to . As a result, aresponse message is
requests, respects causal ordering among sent fromu to v.

guests. In the second step, we show that there is
one-tq-one correspondgnce between gather . Properties of any Lease-Based
combine requests, that s, for each gather reques . .

there is a combine request and vice-versa, such Algorithm for Sequential Execu-
that the return value of the combine request is  tions

same as aggregation function computed over
set of write requests returned by the gather
quest.

SP\)_% define alease graphG(Q) in a quiescent
setateQ, as a directed graph with nodes as the
nodes inT', and for any edgeu( v) in T" such
thatu.granted[v] holds, there is a directed edge
4 |lLease-Based Algorithms (u,v)in Q(Q). For any two distinct nodesand

v, we define the:-parent ofv as the parent of
In Section 3 we gave a high level description o treeT" rooted atu.

an aggregation mechanism based on the conqiaé)rtn

of leases. See Figure 2 for the formal descriptign ma 4.1 Consider a sequential execution of
. ' . g. : Scrp request sequeneeby a lease-based algorithm
of this mechanism; the underlined function calls

represent stubs for policy decisions of lease sg{ld any two neighboring nodesando.

ting and breaking. Throughout the remainder ofl_ Let acombine requesy in o(u, v) be initi-
this paper, any aggregation algorithm that uses ated in a quiescent stat@. If z;.granted[v]
this mechanism and defines the policy functions does not hold inQ, then in execution of
is said to bdease-based

The status of the leases for an edge| is
given by two boolean variablestaken|[v] and
u.granted|[v]. Nodewu believes that the lease
from v to u is set if and only ifu.taken[v] holds.
Also, u believes that the lease fromto v is
set if and only ifu.granted[v] holds. The local
value atu is stored inu.val. For each neighbor
v; of u, u.aval|v;] represents the aggregate value
computed over the set of nodessigbtree(v;, u). 2. Letawrite requesty in o(u, v) be initiated
The following kinds of messages are sent by a in a quiescent stat€. If u.granted[v] does
lease-based algorithmrobe, response, update, not hold in@, then in execution of, no
andrelease. messages are exchanged betweemd v.

Informally, for any nodeu, a lease from a Otherwise, ifu.granted[v] holds inQ, then

q, () a probe message is sent from to
u; (i) a response message is sent from
to v; (iii) w.granted[v] can be set t@drue
while sending theesponse message from
v to u; and (iv) noupdate or release mes-
sages are sent. Otherwise,ufgranted|v]
holds, then in execution @f no messages
are exchanged betweermandwv.
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d
node u procedure sendprobes(node w)

var taken[| : array(vi,...,v;] of boolean; do — prda U ’
granted[] : array[vi,...,vi] of boolean; pndg := pndg U {w};
aval[] : array[vs,...,v5] of real; wval : real; foreach v € nbrs() \ {tkn() U sntprobes() U {w}} do
uaw : set {int}; pndg : set {node}; sendprobe() to v; od
snt[] : array[vi,...,vg] of set {node};

procedure forwardupdates(node w, int id)
foreach v € grntd() \ {w} do
sendupdate (subval(v), id) to v; od

upentr : int; sntupdates : set {{node,int,int}};
init val := 0; vaw := 0; pndg := 0; upcntr := 0;
sntupdates := 0; Vv € nbrs(), taken[v] := false;

:= false; = 0; =0
bé];?:ted[v} alse; aval{v] := 0; snt[v] == 0; procedure sendresponse(node w)
true — {combine} if (nbrs() \ {thn() U {w}} = 0) —
oncombine (u); granted[w] := setlease(w); fi
foreachv € ;fkn() do sendresponse (subval(w), granted w]) to w;
uaw[v] := 0; od

boolean isgoodforrelease(node w)

ifu ¢ pndg — return (grntd() \ {w} = 0);

if nbrs() \ tkn() =0 —
return gval();
procedure onrelease(node w,set S)
Dszl;lrélg)m\bzl:?é;.;é b= Let id is the smallest id irf;
sntfu] := nbrs’() \ thn(); fi fi foreach v € tkn() \ {w} do

Let A be the set of tuple& in sntupdates
such thatx.node = v anda.sntid > id;
Let3 be a tuple inA
such that3.rcvid < a.rcvid, for all ain A;
Let S’ be the set of ids inaw[v] with ids > B.rcvid;
vawv] := S';
if isgoodforrelease (v) —

true — {write ¢}
val := q.arg;
if grntd() #0 —
id := newid();
forwardupdates (u, id); i
Orev probe() fromw —

probercvd (w); : :
foreachv € tkn() \ {w} do releasepolicy(v); fi od
uvaw[v] := 0; od forwardrelease();
ifw ¢ pndg —
i dure forwardrelease ()
if nbrs tkn() U{w}} =0 — proce
sendfgzs;j:nse ((1)0){ 1 foreach v € tkn() d(o)
Y if isgoodforrelease (v) —
DSZZTCZS)N,\I,SI(CZ()) D{wir A0 if taken[v] A breaklease(v) —
snt[w] := nbrs() \ {tkn() U {w}}; fifi taken|[v] := false;

sendrelease (uaw(v]) to v;

O f
rcv response(z, flag) fromw — wawlv] = 0; i fi od

responsercvd(flag, w);
aval[w] := @;
taken|w] := flag;
foreach v € pndg do
snt[v] := snt[v] \ {w};
if sntfv] =0 —
pndg := pndg \ {v};

int newid()
upcentr = upcntr + 1;
return upcnir;

real gval()
T := val;

lf:et:uzn%val()' foreach v € nbrs() do
9 ’ z := f(e, aval[v]); od
Ov#u—

t .
sendresponse(v); fi fi od returna;

Orev update(z, id) fromw — real subval(node w)

updatercvd(w); v val:
aval[w] := x; )
! ] foreach v € nbrs w} do

.uaw[w] = uaw[w] U id; o = f(z, aval[v]()gc\)c{l: }
if grntd() \ {w} # 0 — return o:

nid = newid(); !

sntupdates := sntupdates U {w, id, nid}; set nbrs()

forwardupdates (w, nid); return the set of neighboring nodges
Ogrntd() \ {w} =0 — set thn()

forwardrelease(); fi
O rev release(S) fromw —
releasercvd (w);
granted|w] := false;
onrelease(w, S);
end

return {v | v € nbrs() A taken[v] = true};
set grntd()

return {v | v € nbrs() A granted[v] = true};
set sntprobes()

return {snt[vi] U --- U snt[vg]};

= Nere ! ~ | !
WNRFTOONOUTRAWNRPT RPOORNODURWNRPMODNODURWNRPSRWNRPY OONOURWN R

Figure 2: Mechanism for any lease-based algorithm. For tuen, {vy,..., v} is the set of
neighboring nodes.



in execution ofy, (i) an update message isProof. See Appendix A. O

sentfromu tov; (i) a re.l.?ase mess‘?‘ge from From Lemma 4.3 and the definition of a nice
v to u can be sent; (iii) on receiving the

. aggregation algorithm, we have that any lease-
release message at, u.granted[v] is set to 99rey g y

false: and (iv) noprob based aggregation algorithm provides strict con-
alse, prode OF response MES- gistancy in a sequential execution.
sages are sent.

3. Let awrite requestq in o(v,u) be initi- " .
ated in a quiescent stat@. If u.granted|v] ° Competltlve AnaIySIS Re-

holds in @, then in execution of, a sults for Sequential Execu-
release message can be sent framo wu, tions

and on receiving theelease message at,

u.granted|v] is set tofalse. _ _
We defineERWW as an online lease-based ag-

4. In the execution of aombine request in 9regation algorithm that follows the policy de-

o(v, u), w.granted[v] is not affected. cisions shown in Figure 5 (see Appendix B) for

setting or breaking a lease.

Informally, RWW works as follows. For any
edge(u,v), RWW sets the lease from to v

Lemma 4.1 is summarized in Figure 4 (seduring the execution of aombine request at
Appendix A). A release message sent duringany node in thesubtree(v, ), and breaks the
the execution of avrite request ino(v, u) is as- lease after two consecutive-ite requests at any
sociated with aeoop (N) request in this figure. nodes insubtree(u, v).

For any nodeu, we definel;(u), I,(u), and  For positive integera andb, an online lease-
I3(u) as follows. (1)I;(u): For the most re- based algorithmA is in the class of(a,b)-
cent write requestg at u, u.val = q.arg; (2) algorithmsif, in a sequential execution of any
I,(u): For anyupdate or response messagen request sequence by A, for any edge(u, v),
from any neighboring nodeto u, m.z = f(A), A satisfies the following condition: (1) if
whereA is the set of most recent write requests granted|v] is false, then it is set tadrue after
at each of the nodes isubtree(v,u); and (3) a consecutivecombine requests i (u, v); and
I3(u): For any quiescent statg and any node (2) if u.granted[v] is true, then itis set tfalse
in w.tkn(), u.avallv] = f(A(v)), where A(v) afterb consecutivevrite requests i (u, v).
is the set of the most recenirite request at

each of the nodes isubtree(v,u). LetI(u) b€ | emma 5.1 The algorithmRWW is a (1,2)-
I (u) A Ip(u) A Is(uw). algorithm.

Proof. See Appendix A.

Lemma 4.2 Consider a sequential execution gbroof, See Appendix B. 0
a request sequence by a lease-based algo-
rithm. For any nodey, I(u) is an invariant.

5.1 Competitive Ratio of RWW

Proof. See [17]. O _ ' '
In this section we show thaRWW is g

competitive against an optimal offline lease-
Lemma 4.3 Any lease-based aggregation algdsased algorithnOPT for the sequential aggre-
rithm is nice. gation problem (see Theorem 1). We also show



thatRWW is 5-competitive against a nice opti-
mal offline algorithm for the sequential aggre-
gation problem (see Theorem 2). Further, we
show that, for any lease-based aggregation algo-
rithm A, there exist a request sequencand an
offline algorithm such that, in a sequential exe-
cution ofc, the cost of4 is at least times that
of the offline algorithm (see Theorem 3).

For any ordered pair of neighboring nodes
andv, we definetype(u, v) messages as the fol-

lowing kinds of messages exchanged betwe'é'r?ure 3: States and state transitions for any

w andov: (1) probe messages from to u: (2) p:';ur of nodgs(u,fg) in executing requests from
, o'(u,v) (defined in Lemma 5.2).

response messages fromto v; (3) update mes-

sages fromu to v; and (4) release messages

from v to u. For a lease-based algorithimand

a request sequenee we defineC 4(o, u, v), as thenOPT executes;. We construct a new re-

the number ofype(u, v) messages in executioguest sequence (u, v) from o (u, v) as follows:

of o by A. Note that the total number of mestl) insert anoop request in the beginning and

sages exchanged betweeandw is the sum of at the end ob(u, v); and (2) insert awoop re-

Ca(o,u,v) andCy(o, v, u). quest between every pair of successive requests
Consider a sequential execution of an arbir o(u,v).

trary request sequenee by RWW. For any In the rest of the proof, first, for both

guiescent staté), and for any ordered pair ofRWW andOPT, we argue that we can charge

neighboring nodegu,v), we define the con-each of the type(u,v) messages to a re-

figuration of RWW, denoted Frww (u,v), as quest ino’(u,v). Then, to prove the lemma,

follows: (1) if @ is the initial quiescent statewe use potential function arguments to show

then Frww (u, v) is 0; (2) if the last completedthat Crww(o'(u, v),u,v) is at mostg times

request ino(u,v) is a combine request, then Copr(o’(u,v),u,v).

Frww(u,v) is 2; (3) if the last two completed For RWW, we can show that

requests ino(u,v) are acombine request fol- Crww(o,u,v) = Crww(o(u,v),u,v) (see

lowed by awrite request, thedgyww (u,v) is1; LemmaB.3in Appendix B). FORWW, for any

(4) if the last two completed requestsdfiu, v) requesy in o(u, v), we charge all the messages

arewrite requests, thefigww (u, v) is 0. incurred in executingg by RWW to the same
For any quiescent stat§ and ordered pairrequest in o'(u, v). We do not charge any mes-

of neighboring nodes(u,v), we define the sage to anoop request ino’(u,v). Hence, we

configuration of OPT Fopr(u,v) to be 1 if have, Crww(o,u,v) = Crww(o'(u,v),u,v).

u.granted[v] holds; otherwise). For OPT, first, for any request in o(u,v),

. . : e charge allt messages incurred
Lemma 5.2 Consider a sequential execution of 9 ype(u, v) g

a request sequence by RWW and OPT. m_executingq by OPT to the same request
For any two neighboring nodes: and v, q in o'(u,v). Second, we can show that any

. 5 o type(u,v) message incurred in execution of
Croww (7, u, v) IS at most, imesCopr (o, u, v). U(U,(u) c;n be charged to someop request
Proof sketch. Once a requesj in ¢ is initi- in ¢'(u,v). Thus, for bothRWW and OPT,
ated in a quiescent state, without loss of gewe can charge alltype(u,v) messages to
erality, we assume th®WW executes;, and requests ino'(u,v) respectively. Therefore,

10



we can restrict our attention to messages séieorem 1 Algorithm RWW is g-competitive
in executing requests ia'(u,v) in comparing with respect to any lease-based algorithm for
Crww (0, u,v) andCopr (0, u, v). the sequential aggregation problem.

For the ordered paifu,v), in Figure 3, we
show a state diagram depicting possible chang@sof. From Lemma 5.2, in a sequential ex-
in Frww (u, v) andFopr(u, v) in executing a re- ecution of a request sequenge for any two
quest fromo’(u, v). In the state diagram, a stateeighboring nodes and v, Crww (o, u,v) is
labeled S(z,y) represent a state of the algaat mostg times Copr(o, u,v). By symmetry,
rithms in whichFopr(u, v) isz andFrww (v, v) Crww(o, v, u) is at mosL% timesCopr(0, v, u).
is y. Observe that the changeshaww (u, v) in - Hence, the total number of messages exchanged
executing a request is deterministic as specifiedtweenu andv in execution ofsr by RWW is
by the algorithm in Figure 5. On the other handj mostg times that ofOPT. Summing over
the changes ifopr(u, v) in executing a requestall the pairs of neighboring nodes, we get that
is not known in advance. Hence, more than oligww (o) is at mostS timesCopr(o). Hence,
possible changes ifiopr(u, v) in executing a the theorem follows. O
request are depicted by non-deterministic state

transitions. Recall that the cost of processinlq.'eorem 2 Algorithm RWW is 5-competitive
a request in a particular configuration for a ith respect to any nice algorithm for the se-

lease-based algorithm is given in Figure 4 (s ) .
Appendix A). ‘aﬁentlal aggregation problem.

We define a potential functiod(z, y) as a Proof sketch.Let OPTy be the optimal nice al-

mapping from a Statg(x’ y) to a positive _r(_-:'al orithm for the sequential aggregation problem.
number. The amortized cost of any transmon%

: . onsider any pair of neighboring nodés v).
oo o e v e compare e cost W and 0P
. o : ~_executing request sequeneds, v) and
tion. For any transition, we write that the amor: arate? a quences:, v) o(v,u)
tized cost is at most times the cost 0OPT in P: y- . .

" ) First, consider the execution of requests in
the transition, where is a constant factor. We .

: o ) . “o(u,v). We define arepochas follows. The

solve these inequalities by formulating a line

r .
: o : .. Tirst h starts at th inning of the re-
program with an objective function to minimize st epoch starts at the beg g of the Te

¢ (see Figure 6 in Appendix B). By soIvingqueSt. sequence. An epoch ends withrate to
. F combine transition ino(u, v), and a new epoch
the linear program, we get = 3, (0,0) =

oD D S s § e e s, e sl o
B(1,1) = 2, and®d(1,2) = L. J OreN P

. sistency for the sequential execution problem.
Hence, for any state transition due to the ex. .

. , ence, OPTy sends at least one message in
ecution of a request from o’'(u, v), the amor-

. . ) the any epoch. We are able to show that the
tized cost is at mosg times the cost oOPT ny €p .
. . : . algorithm RWW sends at mosi messages in
in the execution ofy. Recall that, in the ini-

. . any epoch (follows from Lemma B.2). Sum-
tial quiescent statdirww (u, v) andFopr(u,v) .
are 0, and the potential for any state is nonmlng over all the epochs, we get that the cost

’ P y of RWW in executings (u, v) is at most times

negative. Therefore, in execution®{u, v), the
total cost ofRWW is at most2 times that of Fhat OfOPTy. By symmetry, the cost dWW

OPT. That is,Crww (o, u, v) is at most times in executlnga(v,y) is at most5 times that .of
OPTy. By summing over all the pair of neigh-
COPT(O', u, ’U).

boring nodes, the desired result follows. [

11



Theorem 3 For any lease-based algorithtd, write; (3) arg is the argument of the request (if
there exist a request sequenceand an offline any); (4)retval is the return value of the request
algorithm such that the cost in executings is (if any); and (5)index is the number of requests
at Ieastg times that of the offline algorithm.  that are generated atnode and completed be-
fore ¢ is completed.
Proof sketch. We give an adversarial request An aggregation algorithm executes:te and
generating argument to sketch the desired resuttnbine requests as described in Section 2. To
Consider an example of a tree consisting of judecute agather request, an aggregation al-
two nodes: andv such that there is an edge begorithm returns a sel of pairs of the form
tweenu andv. The adversarial request generatrode, indez) such that (1) for each nodein
ing algorithmADV is as follows. The algorithmT’, there is a tupl€u, ) in A, wherei > —1,
ADV generates: combine requests av such (2) for any tuple(u, i) in A, if ¢ > 0, then there
that there is a lease fromto v after execution of is a write requesty such thatg.node = u and
a-th request. And themM\DV generate$ write g.index = i; and (3)|A| is equal to the number
requests at. such that there is no lease framm of nodes inZ".
to v after execution of-th request. Using poten- Miscellaneous For the convenience of anal-
tial function arguments, we can show that, forysis of this section, we extend the definition of
sufficient long request sequenegenerated by functionf from Section 2 as follows. In the ex-
ADV, the cost of4 in executings is at least tended definitionf can also take a set of pairs
times that of an optimal offline algorithm, whichd of the form(node, indez) as an argument, and
is tailored to the request sequence O f(A) = f(B), whereB is a set ofurite requests
such that for any tupléu, ) in A with ¢ > 0,
there is awrite requesy in B with g.node = u

6 Consistency Results forandg.indez =i.. |
A combine-writesequence (set) is a sequence

Concurrent Executions (set) of requests containing onbpmbine and
write requests. Agather-write sequence (set)
In this section we generalize the traditional defs 3 sequence (set) of requests containing only
inition of causal consistency [1] for the aggrejather and write requests. Letd be a set of
gation problem, and show that any lease-base@uests. Thenpruned(A,u) is a subset of

aggregation algorithm is causally consistent. A§ sych that, for any requesgtin A, ¢ is in
mentioned earlier, the key difference betwe%uned(Au) if and only if g.op = write or

the setup in [1] and ours is in reading one valyenode = .

compared to aggregating values from all the gqor any sequence of requesss and any
nodes. See Section 3 for an informal discussigfyuestq in S, we define recentwrites(S, q)

on this section. as a set of pairs such that the size of
recentwrites(S, q) is equal to the number of
6.1 Definitions nodes inT', and for any node: in T": (1) if ¢’

is the most recenbrite request at: precedingy
Request For the convenience of the analysis af S, then(u, ¢'.index) is in recentwrites(S, q);
this section, we extend the definition of arequg®) if there is no write request atu pre-
from Section 2 as follows. A requesgis a tuple cedingg¢ in S, in which case,(u,—1) is in
(node, op, arg, retval, index), where (Lnode is  recentwrites(S, q).
the node where the request is initiated; ¢2)is Let A be a gather-write set, angl be a lin-
the type of of the requestpmbine, gather, or ear sequence of all the requestsAn Then,

12



S is called aserializationof A if and only there exists a gather-write execution-hist@y
if, for any gather requestq in S, g.retval = such thatA and B are compatible and is
recentwrites(S, q). causally consistent.
For any two request sequeneeandr, o — 7
is defined to be the subsequengerarfontaining 6.2 Algorithm
all the requests in o such thayg is not present
in 7. For any two request sequeneeandr, 0.7 InFigure 7 (see appendix), we present the mech-
is defined to ber appended by. anism for any lease-based aggregation algorithm

Compatibility . Let ¢, be acombine or write With ghost actiong(in the curly braces). The
request andy, be agather or write request. ghost actions are presented for the convenience

Then, ¢; and ¢, are compatibleif and only of analysis.
if (1) gi.op = write andgq; = g¢»; or (2) Forany nodes, u.log is a ghost variable. For
g1.0p = combine, g».0p = gather, ¢,.retval = any nodeu, u.wlog is a subsequence af.log
f(gz.retval), and thenode, arg, andindez fields containing all thewrite requests inc.log.
are equal forg; and¢,. A combine-write se- Initially, for any node u, w.val := 0,
quences and a gather-write sequenceare w.uwaw := 0, u.pndg := 0, u.upcntr := 0
compatible if and only if (1 andr are of equal u.sntupdates := (. For each nodein u.nbrs(),
length; and (2) for all indices (i) andr (i) are u.taken[v] := false, u.granted[v] := false,
compatible. Letd be a combine-write set arfgl u.avallv] := 0, w.snt[v] := 0, andu.log is
be a gather-write set. Thed, and B are com- empty.
patible if and only if for any node in T, there ~ Functionrequest(combine) generates and re-
exists a linear sequenceof all the requests inturns acombine requesy’ as follows.q'.node =
pruned(A,u), and alinear sequen&éof all the u, ¢'-op = combine, ¢'.arg = 0, ¢'.retval =
requests ipruned (B, u) such thatS andS’ are gval(), and ¢'.indezr is 1 plus the num-
compatible. ber of completed requests at Function
Causal Consistency We definecausal or- request(write, ¢) generates and returnsuaite
dering (~) among any two requests andg, requesty’ as follows. ¢'.node = u, ¢'.op =

in a gather-write execution-historyas follows. write, ¢'.arg = gq.arg, ¢'.retval = 0, and
First, ¢, L ¢ if and only if (1) q1.node — q'.index is 1 plus the number of completed re-
guests at:.

go.node and q;.index < qp.index; or (2) q; IS
a write requesty, is agather request, ang, re-
turns (g;.node, ¢;.indez) in go.retval. Second, 6.3  Analysis

i+1 . . .
@~ g2 if and only if there exists a requegt . .. .h node, in T, we construct a gather-

such thag, ~ ¢’ ~ .. Finally, ¢ ~ g ifand \yite sequenceu.gwlog from w.log as fol-
only if there exists ari such that; ~~ gs. lows: (1) if u.log(¢) is a write request then
The execution-history of an aggregation ale.gwlog(i) = w.log(i); (2) if w.log(i) is
gorithm is defined as the set of all requeséscombine ¢; then, u.gwlog(i) is a gather
executed by the algorithm. A gather-writg, such thatg,.node = gqi.node, g.op =
execution-histon is causally consistent and gather, ¢».index = qp.index, andgy.retval =
only if, for any nodeu in T', there exists a serial-recentwrites(u.log, g, ).
ization S of pruned(A,u) such thatS respects For each node: in T, we constructu.log’
the causal ordering~ among all the requestsand u.gwlog’ from w.log and u.gwlog as fol-
in pruned(A,u). A combine-write execution-lows. First, initialize u.log’" to w.log, and
history A is causally consistent if and only ifu.gwlog’ to u.gwlog. Then, for each node
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in T" exceptu repeat the following steps: (1)Proof. We prove this lemma by induction on
u.log" = w.log'.(v.wlog—u.log'); (2) u.gwlog' = the number of iterations in the construction of
u.gwlog'.(v.wlog — u.gwlog'). u.gwlog’. For the base case, by Lemma 6.2,
For any set of noded and a request sequence. gwlog respects the causal ordering among re-
o, recent(A, o) returns a set ofA| pairs such quests inu.gwlog. In each iteration in the con-
that, for any node: € A: (1) if ¢’ is the most struction, the additional requests are added at the
recentwrite request at in o, then(u, ¢'.index) end ofu.gwlog’. By Lemma 6.2 again, this step
is in recent (o, q); (2) if there is nowrite request preserves the causal ordering among requests in
atu in o, then(u, —1) is in recent (S, q). u.gwlog'. O
For a set of nodesA, a real value

z, and a request sequence, we define Llemma6.4 For any node u, wu.log’ and
corresponds(A, z, o) to betrue if and only if 4 gwiog’ are compatible.

x = f(recent(A,0)).
For any node u, (1)  I(u): Proof. We prove this lemma by induction on the
corresponds(A, u.gval(), u.log), whereA is the number of iterations in the constructionwfog’
set of all nodes ifT"; (2) I(u): for any update andu.gwlog’. For the base case, by Lemma 6.1,
or response messagem from u to any node u.log and u.gwlog are compatible. In each it-
v in u.nbrs(), corresponds(A, m.z, m.wlog), eration of the construction, by the base case and
whereA is the set of all nodes igubtree(u, v); the induction hypothesis, additional requests ap-
and (3) I3(u): for any nodewv in wu.nbrs(), pended to both the request sequences are mutu-
corresponds(A, u.avalv], u.log), where A is ally compatible. Hencey.log' andu.gwlog’ are
the set of all nodes igubtree(v, u). LetI(u) be compatible. O
See [17] for the proofs of the following twoTheorem 4 Let setA be the execution-history
lemmas. of any lease-based algorithtd. Then, A is
causally consistent.
Lemma 6.1 For any nodeu, I(u) is an invari-
ant. Proof. Consider any node in 7. By con-
struction, u.gwlog’ is a serialization of all the
For a request sequence and a requestrequests inu.gwlog’. From this observation
q, index(o,q) returns the index of; in ¢ if and Lemma 6.3y.gwlog’ is causally consistent.
present, otherwise, returnsl. For any re- By constructionu.log’ contains all the requests
guest sequence, and requests;, andg, in o, in pruned(A,u). By Lemma 6.4,u.log’ and
precedes(o, q1, q2) is defined to bearue if and u.gwlog’ are compatible. Hence, by definition,
only if indez(o, q1) < indez(o, ¢2). A is causally consistent. O

Lemma 6.2 For any nodex andi = 1,2, letg;

be a request such thég;.op = write)V(g.op= 7 DISCUSSION

gather A g;.node = wu). Further assume that

q1 ~ ¢o andg, belongs tas.gwlog. Theng, be- What we have done in this paper is a useful case

longs tou.gwlog and precedes(u.gwlog, q1,q2) study in the design and analysis of self-tuning

holds. distributed algorithm for an important key prim-
itive. Although we have focussed on fault-free

Lemma 6.3 For any nodeu, u.gwlog’ respects case, we can extend some of our results to faulty

the causal ordering among requestsudgwlog’. environment, especially with respect to causal
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consistency, by keeping track of time-stampg2] C. Gray and D. Cheriton. Leases: An efficient fault-

with writes.

An open problem for future research is to de-
sign a self-tuning algorithm for the approximate

aggregation problem, where one allows a cgf3

tain numerical error in the aggregate value, and
analyze the algorithm in competitive analysis

framework.
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