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Abstract load require changes in processor allocation. For instance
shared data center dynamically adjusts the allocationaf pr
Certain emerging network applications involve dynam- cessors to independent services as the composition of the
ically allocating shared resources to a variety of services workload changes [4, 5]. Similarly, a multi-service router
to provide QoS guarantees for each service. Motivated bybased on multi-core network processors adjusts the alloca-
such applications, we address the following online schedul tion of processors to different packet categories as tfffctra
ing problem belonging to the recently introduced class of load fluctuates [16, 17, 18]. In these systems, reallocating
reconfigurable resource scheduling problems: unit jobs of a processor from one category to another tends to incur a
different categories arrive over time and need to be com- nonnegligible overhead. For instance, on Intel’s IXP2400
pleted within category-specific delay bounds, or else theynetwork processor, loading the instruction store of a ppoce
are dropped at a unit drop cost; processors can be reconfig- sor core with the code for a new category incurs a context
ured to process jobs of a certain category at a fixed recon- switch time, which is much (two or three orders of magni-
figuration cost; the goal is to minimize the total cost. We tude) greater than the time to process a packet [8]. In certai
study this problem in the framework of competitive anal- applications involving QoS guarantees, jobs are requived t
ysis. Through a novel combination of the EDF and LRU be processed within a delay tolerance, where the delay tol-
scheduling principles, we obtain an online algorithm theti erance is a function of the job category [9].
constant competitive when given a constant factor resource  Problem Statement. Motivated by the aforementioned
advantage over an optimal offline algorithm. applications, we have recently introduced reconfiguraible r
source scheduling [14], a class of scheduling problems with
the following salient features: there are jobs of differeatt
1. Introduction egories; resources can be reconfigured to process jobs of a
certain category at an overhead, in terms of cost or time.
In this paper, we solve a specific problem in this class.
The following is an informal description of this problem;
a formal definition is given in Section 2. Each request is
set of unit jobs. Each job has a category, and needs to
e executed within a category-specific delay bound from its
arrival, or else it is dropped at a unit drop cost. A job of a

Multi-core and multi-processor environments are in-
creasingly used to support a wide range of high-throughput
applications, such as web services, network applications,
and database servers. These environments host multipl
services simultaneously (e.g., a router supporting variou

packet processing services). : i
given category can only be executed on a resource config-

To isolate —with respect to security and performance — || '« ihar category. A resource can be reconfigured at
services from one another, these environments often config- : ategory. A ) oniigure
ny time at a fixed reconfiguration cost. The objective is to

ure processors to support only one service ata time. The Seminimize the total cost. We refer to this problem as recon
of processors configured to support a particular service de- ' P

pends upon the associated workload: fluctuations in Work_flgurable-resource scheduling with va.mable dglay bounds.
The high level goal of our work in reconfigurable re-
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petitive analysis, where the performance of an online algo-
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maximum ratio between the cost incurred by the online al- therefore fail to yield a resource competitive solutionr-Fu
gorithm and that incurred by an optimal offline algorithm, thermore, itis not hard to argue that similar scheduling-pri
over all request sequences. (See [1] for a comprehensive in€iples, such as Least Slack First, also suffer from thraghin
troduction to competitive analysis.) In this paper, we @dop  Though EDF alone or LRU alone seems insufficient to
a standard technique in competitive analysis, sometimes re solve our problem, each maintains a dynamic ordering that
ferred to asesource augmentatidi7, 13], in whichtheon-  addresses a key aspect of the request sequence. EDF ad-
line algorithm is given extra resources in order to compen- gresses the urgency aspect and tends to reduce the drop cost.
sate f0r |tS |aCk Of future il’lformation. We refer to an Online LRU addresses the recency aspect and tends to reduce the
algorithm that achieves a constant Competitive ratio when reconfiguration cost. Moreover, each dynamic ordering is
given a constant factor resource advantage assaurce  efficiently maintainable. It is natural to ask whether we
competitivealgorithm. The specific objective of the present can efficiently combine these two orderings, and thereby
work is to provide a resource competitive online algorithm zddress both key aspects of the request sequence. In this
for reconfigurable resource scheduling with variable delay paper, we answer the question in the affirmative. We pro-
bounds. pose a natural and efficient combination of EDF and LRU.

Our Contribution. To appreciate some of the difficul- The main idea is to keep two sets of categories configured:
ties associated with variable delay bounds, consider a sceone set picked by the EDF principle and the other picked
nario in which we are scheduling two categories of jobs on by the LRU principle. (See Section 3.4 for a formal defini-
a single resource: “background” jobs and “short-term” jobs tion of this combination.) We prove that this combination
Background jobs have deadlines far in the future, and short-yields a resource competitive algorithm for reconfigurable
term jobs have smaller delay bounds and arrive intermit- resource scheduling with variable delay bounds. The com-
tently. We need to decide whether to use idle cycles to ex-bining mechanism that we use to combine EDF and LRU
ecute background jobs. If we allow background jobs to useis general in nature, and can be used to combine multiple
idle cycles whenever available, we may incur a large num- scheduling principles, each of which maintains a dynamic
ber of reconfigurations, or drop a lot of short-term jobselat  ordering of the jobs. The present work suggests that, for
on, we may regret incurring these costs if we encounter aproblems which cannot be solved by a single dynamic or-
lengthy interval during which no short-term jobs arrivedan  dering, it is worthwhile to explore algorithms based on a
during which all of the background jobs could have been ex- combination of dynamic orderings.
ecuted Using a Single reconfiguration. On the other hand, if We use a |ayered approach to solve reconfigurabie re-
we do not allow background jobs to use small chunks of idle source scheduling with variable delay bounds. First, we use
cycles, and instead wait for a long idle interval, then later  patching subroutine to reduce the problem to the special
on, we may regret doing so if we never encounter a long idle case in which jobs of a given category arrive at integral mul-
interval. In summary, these two basic approaches lead to eitip|es of the category-specific delay bound. Second, we re-
ther thrashing(i.e., excessively high reconfiguration cost) duyce the batched problem to a rate-limited problem in which
or underutilization(i.e., excessively high drop cost). at mostp jobs with delay boung arrive at each integral

A natural way to try to overcome these difficulties is multiple of p. Third, we solve the rate-limited problem us-
to consider algorithms based on the Least Recently Usedng the aforementioned combination of EDF and LRU.

(LRU) principle. To pursue this approach, we need to define  Related Work. In recent work, we introduce the class of
an appropriate notion of an LRU timestamp in the current reconfigurable resource scheduling problems, and use a lay-
Setting. We have inVeStigated various natural alternsitive ered approach to Soive avariant with uniform deiay bounds
(See Section 3.3 for an example.) For all of these alter- and variable drop costs [14]. First, we use a batching sub-
natives, we encounter the following basic difficulty, even routine to reduce to the special case in which jobs arrive at
with resource augmentation: If we configure the categoriesintegra| multiples of a fixed delay bound. Second, we use a
with the most recent LRU timestamps without consider- reshaping technique to reduce to the special case in which
ing whether these categories have jobs to execute, then Wenhe delay bound i$. Third, we use a serialization technique
are vulnerable to Underutilization; if we Conﬁgure the eate to reduce to a file Caching probiem_ Fourth’ we solve the
gories with the most recent LRU timestamps and with jobs fjle caching problem by modifying Young’s Landlord algo-
to execute, then we are vulnerable to thrashing. rithm [19]. There are some high level similarities between
Another natural approach is to consider algorithms basedthe present paper and [14]. The first layer in the present
on the Earliest Deadline First (EDF) principle. As with paper is analogous to the first layer in [14], but is more in-
LRU, there are different ways that we can formulate a spe-volved. In [14], the Landlord algorithm can be viewed as a
cific algorithm based on the EDF principle. (See Section 3.2 generalization of LRU, which handles the recency aspect of
for an example.) However, even with resource augmenta-the request sequence, but there is no component analogous
tion, all EDF variants seem to suffer from thrashing, and to EDF, which addresses the urgency aspect. In summary,



in order to handle variable delay bounds, the present workour combination of EDF and LRU captures the urgency and
introduces substantially different techniques than thpoee recency aspects of the request sequence.
sented in [14]. On the other hand, since we do not handle Due to space limitations, proof sketches are provided for
variable drop costs in the present paper, these two works arsome of the results claimed in this paper. Complete proof
incomparable. It remains to be seen whether the approactdetails will be provided in the full version of the paper.
used in the present paper can be extended to handle other
problem dimensions such as variable drop costs. 2. Preliminaries

Brucker [2, Chapter 9] surveys a class of offline schedul-
ing problems with changeover time (i.e., context switch

time). Resu_lts for smgl_e and multiple machine pro_blems ing problems considered in this paper, we first make some
are summarized. In this class of problems, each job be-

lonas to a certain aroun. and between the executions of an)})reliminary definitions. We define r@questas a (possibly
9 A certain group, W Xecut .~ ’empty) set of unifobs, where each job is characterized by a
two jobs in different groups on the same machine, there is a

hanaeover time during which the machin nnot o non-blackcolor, a nonnegative integerrival time, a pos-
changeove € during which th€ machine cannot processy; integerdelay boundand a positive integetrop cost
any job. For a variant with identical machines, equal sized

q | . d ch i Bruck The deadlineof a job is defined as the arrival time plus the
groups, and equai processing and changeover time, bruc eEielay bound minus one. There is a finite setesfourceson
et al. [3] give a polynomial time offline algorithm that de-

cides whether there exists a schedule in which all jobs areWhiCh jobs are executed. Each resource has an associated
wecuted within mmon delav bound J color, which is initially black. There is a cost to reconfigur
execute acommon defay bound. aresource, i.e., to change the color of a resource.

S'rinivasan et al. [17] discuss schedulipg problems .for The processing of a given request sequengeoceeds
multi-core network processors, and consider the applica-j, 1ounds numbered from to lo| — 1. At the beginning of

tion of existing multiprocessor scheduling algorithmghist roundi, we have a set gbendingjobs, each of which has
domain. Various challenges are identified and some ini- oy 4rival time smaller thai and a deadline at leastEach

tial ideas are presented. Kokku et al. [8] give a schedul- 4 nq; consists of four phases: (1) in the first phase, the
ing algorithm, called Everest, for multi-core network pro- ..\ phase the next request is received: (2) in the sec-
cessors. The parameters considered are per-service delay,q phase, theeconfiguration phasesach resource can be
bounds, per-service execution requirements, and a fixedgconfigured to a different color; (3) in the third phase, the
context switch time. Everest is shown to perform well i oy o tion phaseeach resource configured with cotocan
experiments _in _terms Qf maximi;ing the number of packets oy qcjte up to one pending job of coler(4) in the fourth
processed within service-specific delay bounds. phase, thelrop phasejobs with deadling are dropped.

The EDF scheduling algorithm is shown [6, 10] to be an e refer to the sequence of rounds in the processing a
optimal preemptive uniprocessor scheduling algorithm for given request sequence aschedule The number of re-
problems that do not involve reconfiguration overhead, in soyrces used by a schedule is the number of resources that
terms of the number of jobs executed. In this paper, we dis-are reconfigured at least once. The cost of a schedule is the
Cuss the draWba.CkS aSSOCiated W|th USing EDF to Solve thesum of a” reconfiguration and drop costs incurred_
problem of reconfigurable resource scheduling with vari-  For the reconfigurable resource scheduling problems
able delay bounds, and propose a combination of EDF andcgnsidered in this paper, the input is a p@aitm), where
LRU to address these drawbacks. o is a request sequence, amdis a positive integer. Given

The classic disk paging problem studied by Sleator and an instancéc, m), an algorithm produces a schedule dor
Tarjan [15] can be viewed as a special case of reconfigurablean algorithm is said to befflineif it knows all the requests
resource scheduling with unit delay bounds, unit reconfigu- in advance, and it is said to mmlineif does not know the
ration cost, infinite drop cost, and where each request con<future requests. An algorithi is b-feasibleif for any in-
sists of a single job. In this seminal work, the competitive stance(o,m), A produces a schedule that uses at nbost
ratio of any deterministic online paging algorithm is shown resources. An algorithm ieasibleif it is 1-feasible. For
to be at least the cache size, and certain algorithms, such agny instancéc, m) and any algorithmd, the cost ofA on
LRU, are shown to be resource competitive. (o, m), denotedCos{ 4, o, m), is the cost ofS, whereS

O'Neil et al. [12] consider a variation of LRU called is the schedule produced byon (o, m). An algorithm A
LRU-K, which keeps track of the time of each of the last is (a, b)-competitiveif A is b-feasible and for any instance
K references to a given page. Megiddo et al. [11] con- (o, m), Cos{A, o, m) is at most-Cos{OPT, o, m), where
sider a self-tuning cache replacement policy called Adap- OPT is an optimal feasible offline algorithm. An algorithm
tive Replacement Cache, which captures the recency and4 is resource competitivié A is (a, b)-competitive for some
frequency aspects of the request sequence by maintainingpositive constant realsandb.

a separate ordering for each aspect. As indicated earlier, For the sake of brevity, we use theconfig | drop |

Before we define the reconfigurable resource schedul-



delay | batcH notation introduced in [14]. Theeconfig
field describes the details of the reconfiguration cost. i th

timestamps. (For the formal definition of the timestamp of
a color, see Section 3.3.) AlgorithMdLRU addresses the

paper, there is only one possible value for this field, a fixed recency aspect of the request sequence. However, since it

reconfiguration cost denotefi. The drop field describes

does not consider whether colors have jobs to execute or

the details of the drop cost. In this paper, there is only one not, ALRU suffers from underutilization. See Section 3.3

possible value for this field, a unit drop cost denctedhe
delayfield contains the details of the delay bound. In this

for a detailed discussion afLRU.
Algorithm ALRU-EDF is a combination ofeDF and

paper, there is only one possible value for this field, per- ALRU. The EDF component ensures that the resources

color delay bounds denotdd,. Thebatchfield constrains
that the requests of coldrcan only arrive at integral multi-
ples of the specified value. In this paper, the possible galue
for this field arel andD,.
With this notation, our main problem is denotH | 1 |
D, | 1]. The special case in which jobs of colbmarrive
at integral multiples ofD, is denotedA | 1 | D, | Dy].
We use the terminology “rate-limiteld\ | 1 | D, | D,]"
to denote the special case[df | 1 | D, | D,] in which at
most D, color ¢ jobs arrive at each integral multiple &f,.
In this paper, we assum& is a positive integer (it is not
hard to generalize our results to an arbitrary
Roadmap. The rest of the paper is organized as follows.
Section 3 solves rate-limite\ | 1 | Dy, | D], where
eachD, is a power oR2. Section 4 solvefA | 1 | Dy | Dy,
where eactD, is a power o, by a reduction to rate-limited
[A| 1| Dy | Dg]. Section 5 solves our main problem
[A|1]| Dy | 1] byareductiontdA | 1| Dy | Dy].

3. Rate-Limited Batched Arrivals

In this section, we solve rate-limitdeh | 1 | D, | Dy],
where eachD, is a power of2. This problem is charac-
terized by a fixed reconfiguration cao&t, a unit drop cost,
per-color delay bound®,, batched arrivals (jobs of color
¢ arrive at integral multiples oD,), and rate-limited input
(at mostDy jobs of color/ arrive at each integral multiple
of D;). As mentioned in Section 1, this problem is a key
building block to solve our main problefih | 1| D, | 1].

In this section, we introduce three online algorithms:
EDF, ALRU, and ALRU-EDF. In Section 3.1, we first

present the common aspects of the three algorithms. For
instance, due to the difference between the reconfiguration

and drop costs, we do not configure a color until it has
enough job arrivals.
Algorithm EDF is based on the EDF scheduling princi-

ple. The main idea is that, among the colors with enough

are well utilized. TheALRU component reduces thrash-
ing by allowing colors with recent timestamps to remain
configured. See Section 3.4 for a detailed discussion of
ALRU-EDF, and Section 3.5 for the proof that shows
ALRU-EDFis resource competitive.

3.1. Common Aspects

For convenience of presentation, we consider the set of
resources as a cache, where resolifiseviewed as location
k. We view reconfiguring resourdewith color ¢ as caching
color ¢ at locationk. We use a counting scheme to ensure
that only colors with a sufficient number of job arrivals can
be brought into the cache.

In the following, we formally present the common as-
pects of the three algorithms. Given an instafieen) of
rate-limited[A | 1 | Dy | D], we allow the online al-
gorithms to usen resources, where > m. Each color
is eithereligible or ineligible. Only eligible colors can
be brought into the cache. For each color, we maintain a
counter and a deadline. Initially, the cache is empty, dl co
ors are ineligible, and the counter and deadline associated
with any color are zero. In each rouridthe actions per-
formed in the four phases are described as follows.

Arrival phase We receive a request. For any coloif j is
an integral multiple ofD,, we perform the following
steps.

1. We increase the counter 6fby the number of

color/ jobs received in this phase.

If the counter of is at least\, we set/ to eligible
and reset the counter 6f

3. We set the deadline éfto j + D, — 1.

Reconfiguration phaseWe update the contents of the
cache; the method used depends on the algorithm, see
Sections 3.2 through 3.4.

job arrivals, we configure the colors with the earliest dead- Execution phase For any colo, each resource configured

lines and with jobs to execute. AlgorithBDF addresses

with color ¢ executes one pending job of color

the urgency aspect of the request sequence. However, sincBrop phase For any color/, if j mod D, is D, — 1, we

it favors colors that have jobs to execu)F suffers from
thrashing. See Section 3.2 for a detailed discussi&D.
Algorithm ALRU is based on the LRU scheduling prin-

ciple. The main idea is that, among the colors with enough

job arrivals, we configure the colors with the most recent

perform the following steps.

1. We drop all pending jobs of coldr

2. If color £ is eligible and not in the cache, we set
color/ to ineligible.



3.2. EDF 3.5. Analysis of ALRU-EDF

We say a colot is idle if there are no pending jobs of In this section, we show that\LRU-EDF is resource

color ¢, al_nd nonidle otherwise. We rank n_omdlg colors competitive. The analysis is organized as follows. First,
ahead of idle colors. The rank of idle colors is arbitrary. We Lemmas 3.1 through 3.4 argue that, on any instance such
rank nonidle color; in ascendlng order of deadlines. T|esthat each color appearing in the request sequence hastat leas
are broken according to ascending order of delay bounds.A jobs, the cost incurred bydLRU-EDF is within a con-
Further ties are broken according to a fixed order of colors. stant factor of that incurred by an optimal feasible offlibe a

We urﬁ)date the ca_\ghe asfforlllows. klf a r_10md|e; e“r?'ble Cﬁlor gorithm. For convenience of analysis, we partition the drop
£ in the topn positions of the ranking is not in the cache, costs incurred by\LRU-EDF into “eligible” and “ineligi-

we bring/ into the cache, evicting the color with the lowest ble” drop costs (the formal definitions are provided later in

rank if there the cachg is full. ) this section). Lemma 3.1 bounds the eligible drop cost in-

Consider a colof with a short delay bound that receives ..o by ALRU-EDF. Our proof of Lemma 3.1 uses the
a small number.ofjobs every, rounds. The'prlorlty Oﬂ_ EDF properties ofALRU-EDF, and three intermediate al-
changes from high to low, and then low to high, from time gorithms: “parallel’EDF, denotedPar-EDF, “sequential”
to time, which may lead to thrashing. We refer the reader g5 denotedseq-EDF and “double-speed3eq-EDF de-
to Appendix A for. an example establishing theDF is not notea 2X-Seq-EDF (Sée the proof of Lemma 3.1 %or the
resource competitive. formal definitions of the three algorithms.)

To bound the other costs incurred B\_.RU-EDF, for
each color, we partition the sequence of rounds into subse-
guences, denoted-epochs” (the formal definition is given
Initially, the timestamp of is zero. In the arrival phase of Iater In _th_'s section). Le_mma 3.2 gives an upper bound on
any round;, if the counter of is reset, we set the timestamp tr]ler']ne“g't:le drobp CO?t mcu;]red MLRIlIJ'EIIDF' in tﬁrms .
of ¢ to j immediately after the counter is reset. In each 8 . It_e?ntr(r)\?;zug s(tarraio h?f%or\i/asr;j O\If)'; :n Corcc))i)sl'er;: ir?stparr?c?e
reconfiguration phase, we cache theligible colors with b th ' h col 9 o h yp h
the most recent timestamps, breaking ties as in EDF. such that each color appearing in the request sequence has

Due to the difference between the reconfiguration and a_\t leastA _jObS’ Lemma 3.3 upper bounds the reconfigura-
drop costs, we require at leastjob of color¢ to arrive in 10N cost incurred byALRU-EDF, and Lemma 3.4 lower

order to update the timestampfofAlgorithm ALRUfavors ~ Pounds the total cost incurred by an optimal feasible of-
idle colors with recent timestamps over nonidle colors that fllneflgcf)nthm, In terms o;the totalknumberfof epog:hsa OurI
do not have recent timestamps, which may result in low uti- P'99'S © Lemfrna;sL3.3 an 33"14 n;a € usio Lall?ncjortlze anal-
lization. We refer the reader to Appendix B for an example ysis; our proof of Lemma 3.4 relies on the properties

establishing tha\LRU is not resource competitive. of ALRU-EDF. ] N
Second, Theorem 1 establishes the resource competitive-

3.4. ALRU-EDF ness ofALRU-EDF by a reduction to a problem instance in
which each color appearing in the request sequence has at
In this section, we formally define algorithm leastA jobs, and by using Lemmas 3.1 through 3.4.
ALRU-EDF. We give ALRU-EDF a factor of8 resource Now we give the formal definitions for the analysis. Let
advantage over an optimal feasible offline algorithm, that (¢, m) be any instance of rate-limit§d | 1 | D, | Dy].
is,n = 8m. We use the first half of the cache capacity to Let A be any algorithm. LeOFF be an optimal feasible
keep distinct colors and the remaining half to replicate the offline algorithm for (o,m). Let Cos{(A,o,m) (resp.,
cache contents of the first half. We use the replication to ReconfigCost, o, m), DropCostA,o,m)) denote the
give half of the resources a factor @6peedup. Below we  cost (resp., reconfiguration cost, drop cost) incurreddby
describe how we update the first half of the cache. on (o, m). A job z of color/ is considered to bmeligible
Let X be theZ eligible colors with the most recent (resp.eligible) if color ¢ is ineligible (resp., eligible) at the
timestamps, where ties are broken asdhRU. We rank end of the arrival phase in whicharrives. We define the in-
eligible colors not inX as inEDF (see Section 3.2 for de-  eligible (resp., eligible) drop cost incurred By RU-EDF,
tails). LetY be the set of nonidle eligible colors in the top denoted IneligibleDropCostALRU-EDF, o, m) (resp.,
% positions of the ranking. For any coléthat is inX UY EligibleDropCost ALRU-EDF, o, m)), to be the drop cost
but not in the cache, we bringinto the cache, replacing an incurred by ALRU-EDF on ineligible (resp., eligible) jobs
arbitrary color’ that is in the cache but not iKUY, if nec- ino.
essary. SinceX UY| < Z, such a colo¥’ is guaranteed to For each color/, we partition the sequence of rounds
exist if the first half of the cache is full. into /-epochs as follows. We defirfeepoch0 to start with

3.3. ALRU

For each color, we maintain aimestampas follows.



round0 and end with the first round in whichhbecomes
ineligible. For everyi > 1, ¢-epochi starts wher/-epoch
i — 1 ends, and ends with the first round followifiggpoch
1 — 1 in which £ becomes ineligible. For convenience, we
use the termepochto refer to anf-epoch, for somé. We

Let 1’ be the longest prefix ot throughout whiclY is
ineligible. LetC’ be the drop cost incurred kL RU-EDF
on color/ jobs ink/. Sincel does not become eligible in
k', the number of colof jobs that arrive inh’ is less than
A. Hence,C’' < A. By the definition of an epoch, once

usenumEpoch&r) to denote the total number of epochs as- ¢ becomes eligible irh, it remains eligible untilz ends.

sociated witho.

Lemma 3.1 For any instance(o, m) of rate-limited [A |
1 | D¢ | Dy, EligibleDropCostALRU-EDF, o, m) is at
most DropCogiOFF, o, m).

Proof sketch.To show the lemma, we find it convenient to
define the following three algorithm®&ar-EDF, Seq-EDRK
and2X-Seq-EDF Each of the three algorithms is allowed to
usem resources. AlgorithrPar-EDF is defined as follows.

By the definition of ineligible jobs and ineligible drop cost
C = C'. ThereforeC' < A. |

Lemma 3.3 For any instance(o, m) of rate-limited[A |
1 | Dy | Dy] such that each color appearing im
has at leastA jobs, ReconfigCo&A\LRU-EDF, o, m) <
O(Cos{OFF, 0, m) + numEpoch&r) - A).

Proof sketch.In order to establish this result, it is useful to
label each eviction as either an “LRU eviction” or an “EDF

In each reconfiguration phase, we reconfigure the resourcegviction” in our analysis ofALRU-EDF. We say that an

in such a way that we can executepending jobs with the

best ranks in the immediately following execution phase,

LRU eviction occurs whenever a color is evicted in a given
round and that color was kept by the LRU principle in the

where jobs are ranked in ascending order of deadlines, angreceding round. All other evictions are EDF evictions.

ties are broken as iBDF. Algorithm Seq-EDFis defined
as follows. In each reconfiguration phase, we configure

We proceed in three stages. In the first stage, we are
able to show the following claim. For any instan@e m)

nonidle colors with the best ranks, where colors are rankedof rate-limited[A | 1 | D, | D,] such that each color ap-

as inEDF. We define adouble-speedschedule to be a

pearing inc has at leasi\ jobs, the total number of LRU

schedule in which the reconfiguration and execution phasesevictions timesA is O(Cos{OFF, o, m)).

are performed twice in each round. We @ Seqg-EDF
to denote double-spe&kg-EDF Note that the three algo-

In the second stage, we are able to show the following
claim. For any colo¥, any/-epochh, and any two rounds

rithms defined in this paragraph do not require a color to be; and;j in k such that < j and ALRU-EDF brings/ into

eligible to in order to be configured on the resources.

the cache in roundandj, the following conditions hold in

By a standard EDF-type swapping argument, one canroundj: (1) color/ is brought into the cache by the EDF

easily show the following inequality.
DropCostPar-EDF, o, m) < DropCostOFF, o, m) (1)

It is more challenging to show the follow two inequalities,
which are needed to obtain the lemma.

DropCost2X-Seq-EDFo, m)

< DropCostPar-EDF, o, m) (2)
EligibleDropCost ALRU-EDF, o, m)
< DropCost2X-Seq-EDFo, m) 3)

We omit the proof for Inequalities (2) and (3) due to
space limitations. The lemma follows from Inequalities (1)
through (3). [

Lemma 3.2 For any instance(o, m) of rate-limited [A |
1 | D¢ | D], IneligibleDropCostALRU-EDF, o, m) <
numEpoch&r) - A.

Proof. Consider any colof. Let h be any/-epoch. Let”
be the ineligible drop cost incurred k. RU-EDF on color
£ jobs inh. Itis sufficient to show thaf’ is less than\.

principle, and (2) if bringing into the cache results in an
EDF eviction, then the evicted color is idle. Due to space
limitations, we omit the proofs of the claims associatedwit
the first two stages.

In the third stage, we prove the lemma using the above
claims and amortized analysis as follows. We associate
4A units of credit with each epoch2A units of “first-
time” credit and2A units of “end-of-epoch” credit. We
also associat®A units of credit with each LRU evic-
tion. From the claim of the first stage, the total credit
is O(Cos{OFF, o, m) + numEpoch&r) - A). It is suffi-
cient to show that the total reconfiguration cost incurred by
ALRU-EDF can be paid for by the total credit.

Consider any colof and any¢-epochh. If ALRU-EDF
does not bring into the cache irh, then it does not incur
any reconfiguration cost ih. Otherwise, let roundg <
.-+ < i be the rounds ik in which ALRU-EDF brings#
into the cache. For everysuch thad < j < k, let R; be
the reconfiguration operation performed 4y RU-EDFto
bring inZ in roundi;. Since each cached color is replicated
in ALRU-EDF, the cost of operatioi®; is 2A. We use the
2A units of “first-time” credit associated with to pay for
operationRy. In the following, we show that the remaining
R;’s can also be paid for.



Fix j arbitrarily, where0 < j < k. Itis not hard to
see that, when colof is brought into the cache in round
ij, some color?’ is evicted. If the eviction of colof’ is
an LRU eviction, operatio?; can be paid for by theA
units of credit associated with the LRU eviction. If the evic
tion of color ¢’ is an EDF eviction, then the claim of the
second stage implies that coléris evicted idle in round
i;. Since jobs of colot’ arrive only at integral multiples of
Dy, ¢’ remains idle until the next integral multiple &f,,
at which point?” becomes ineligible and its currefiepoch
h' ends. Hence, we can use the “end-of-epoch” credit as-
sociated withk’ to pay for operatiorR;. It is not difficult
to argue that each unit of credit is used at most once. This
completes the proof. ]

Hence,Cos{OFF, o) equalsCos{OFF, «) plus the total
number of light jobs. Since there are are less than
jobs of any light color, no light color ever becomes eli-
gible. Thus,ALRU-EDF never caches a light color, and
drops all light jobs. Hence& os{ ALRU-EDF, o, m) equals
Cos{ ALRU-EDF, a, m) plus the total number of light jobs.
From Lemmas 3.1 through 3.80s{ ALRU-EDF, o, m) =
O(Cos{OFF, «, m)). Hence, the lemma follows. ]

4. Batched Arrivals

In this section, we solv@A | 1 | D, | D,], where each
D, is a power oR. This problem is characterized by a fixed
reconfiguration cost\, a unit drop cost, per-color delay
boundsD,, and batched arrivals (jobs of colérarrive at
integral multiples ofDy).

As mentioned in Section 1A | 1 | D, | D] is a build-
ing block to solve our main problefd\ | 1 | D, | 1]. To
Proof sketch.To get a lower bound on the cost 6fFF, solve[A | 1| D | D,], we use a reduction to rate-limited
we find it convenient to partition the sequence of rounds [A | 1 | D, | D], which is solved in Section 3. Sections
into super-epoch. Super-epoch is the minimum sequence 4.1 and 4.2 give the reduction algorithm and analysis, re-
of rounds, beginning with round, during which at least  spectively.
2m colors have their counters reset. For every> 1,
super-epochi is the minimum sequence of rounds follow- 4.1. Algorithm
ing super-epoch — 1 during which at leas2m colors have
their counters reset. Note that the last super-epoch may be  Given any instancéo, m) of [A | 1| D, | D], where

incomplete. We say that a coléiis activein super-epoch D, is a power of2, algorithmRecolorproceeds in the fol-
i if the counter ofl is reset in super-epoch We parti-  |owing three steps. In the first step, we construct a request
tion the epochs into two setspecialepochs, the epochs sequence’ for rate-limited[A | 1 | D, | D] as follows.
that are not active in any complete super-epoch ragdlar Let o, be request of o, where0 < i < |o|. For any color
epochs, the epochs that are not special. We handle special, we rank color’ jobs in; in an arbitrary order. For any
and regular epochs separately. For special epochs, we showolor ¢ and color? job z in o;, we construct a joly that
that,C;osT(I?FF, o, TL) is Q(Ah) timesdthfc_a nurrT]]ber of SI_Oe(ijiEﬂ is the same as except tha& the color of is given by the
epochs. For regular epochs, we define the amortized cost. _ . ) .| rank) -
of OFF in such a way that the total amortized cosiGffF baw @"7)’ wher/e] o { Dy J andrank(x) is the rank
is within a constant factor of the actual cost@EF, and ~ ©f Z in oi. Leta; be the union of all Sl/JC'Q'S that are con-
show that the total amortized cost OFF is Q(A) times st/r,uc_:te.d over all colorg. We obtains” by concatenating
the number of regular epochs. m CiSinincreasing order of. _

In the second step, we use algorithti RU-EDF on
(¢’,3m) to obtain a schedul®’ for ¢’. In the third step,
from S’ we construct a schedulg for o as follows. For
any color, any integersi andk, wheneverS’ configures
color (¢, ) on resourcé, S configures colo¥ on resource
k; wheneverS’ executes a job of colgl, j) on resource,
S executes a job of coldron resourcé:. Note thatRecolor
is an online algorithm.

Lemma 3.4 For any instance(o, m) of rate-limited[A |
1| Dy | D] such that each color appearing in has at
leastA jobs, CostOFF, o, m) = Q(numEpoch&r) - A).

Theorem 1 Algorithm ALRU-EDF is resource competitive
for rate-limited[A | 1| Dy | D], where eactD, is a power
of 2.

Proof. Let (o, m) be an arbitrary instance of rate-limited
[A|1] D | Ds]. We say a colo¥ is heavy(resp.,light)

if there are at least (resp., less thak)jobs of color/ in

o. Any job of a heavy (resp., light) color is a heavy (resp.,
light) job. We break each request into two requests, one4.2. Analysis
consisting of the light jobs and the other consisting of the

heavy jobs. Letv (resp.,3) denote the resulting sequence
of requests involving heavy (resp., light) jobs.

Since there are less th@njobs of any light colorOFF,
as an optimal feasible offline algorithm, drops all lightgob

In this section, we show that algorithRecoloris re-
source competitive. The request sequencesds’, and
the schedules and.S” mentioned in the lemma statements
and proofs below are defined in Section 4.1.



Lemma 4.1 If there exists a schedulE for ¢ that usesn
resources and incurs coét, then there exists a scheddl&
for ¢’ that uses3m resources and incurs coé(C).

The main proof idea of Lemma 4.1 is to constrdét by
rearranging and recoloring the jobs executed'inDue to
space limitations, we omit the proof of Lemma 4.1.

Lemma 4.2 The cost ofS is at most that of5’.

Proof. Since the schedul§ replaces colof?, j) with color
£, the reconfiguration cost incurred Byis at most that in-
curred byS’. From the way we construet andsS’, it is not
hard to see that the number of colgobs executed by is
equal to the total number of col¢f, ;) jobs executed by’,
over allj. Since the number of coldrjobs associated with
o is equal to the total number of col¢f, j) jobs associated
with ¢’, over allj, the drop cost incurred by is equal to
that incurred bys’. ]

Theorem 2 Algorithm Recolor is resource competitive for
[A| 1| Dy | Dy], where eactD, is a power of2.

Proof. Let T be the schedule produced by an arbitrary fea-
sible offline algorithm or{c, m). By the definition of a fea-
sible algorithm;I" usesmn resources. Let’ be the cost of .
By Lemma 4.1, there exists a schedilefor ¢’ that uses
3m resources and incurs cot(C). By Theorem 1, the
schedules’ for o’ generated by algorithmLRU-EDF uses
O(m) resources and incurs ca9(C). By constructionS
uses the same number of resource$‘asBy Lemma 4.2,
the cost ofS is at most that ofS”. Hence,S usesO(m)
resources and incud(C') cost. SinceS is a schedule for
o, the theorem follows. ]

5. Main Result

In this section, we solve our main probldey | 1 | Dy |
1], which is characterized by a fixed reconfiguration ast
a unit drop cost, per-color delay bounflg, and nonbatched
arrivals (requests can arrive at any round).

5.1. Algorithm

For any delay boungh and any nonnegative integeér
we definehalfBlocKp, i) to be thef rounds starting from
roundi - §. Leto be an arbitrary request sequence|ityr|
1| Dy | 1]. We define theébatched versiorf o, denoted
o', as follows. We obtaim’ by moving the arrival of any
job z of color ¢ that arrives irhalfBlock Dy, i) in ¢ to the
beginning ofhalfBlock Dy, ¢ + 1), and changing the delay
bound ofz to %. Thus, the request sequeneecan be
viewed as a request sequencelfar| 1 | 2t | Be].

Algorithm VarBatch proceeds in the following three
steps. First, given an arbitrary instangem) of [A | 1 |
D, | 1], we construct an instange’, 7m) of [A | 1 | ¢ |
L], whereo' is the batched version of. Second, we ap-
ply algorithmRecolor(defined in Section 4.1) ofv’, 7m)
to obtain a schedulg’ for ¢’. Finally, we obtain a schedule
S for o from S’. The schedul€s is the same a$’ except
the request sequence associated Witho. Note that algo-
rithm VarBatchis an online algorithm.

5.2. Analysis

In this section, we show that algorithiarBatchis re-
source competitive. The request sequencesdos’, and
the schedules and.S” mentioned in the lemma statements
and proofs below are defined in Section 5.1.

Lemma 5.1 If there exists a schedulE for ¢ that usesn
resources and incurs coét, then there exists a scheddl&
for ¢’ that uses'm resources and incurs coé(C).

Proof sketch.For any color ¢ job x that arrives in
halfBlock Dy,7) in o, we say the execution ofr

in T is early (resp., punctual late) if = is exe-
cuted in halfBlock Dy,4) (resp., halfBlock Dg,i + 1),
halfBlock Dy, i + 2)) in T. We prove the lemma in two
stages as follows. First, we construct a scheduléor ¢’

that use§m resources by rearranging the job executions in
T. The main idea is to use extra resources to move the early
executions irl” forward, and the late executionsThback-
ward. Second, we use amortized analysis to show that the
cost of " is O(C). In the following, we give more details

To simplify the presentation, we focus on the special caseabout these two stages.

where eachD, is a power of2. The special case is solved
by a reduction tdA | 1 | D, | Dy, which is solved in
Section 4. For any colof such thatD, is equal tol, jobs

of color ¢ are already batched. For convenience, we fo-
cus on the case whei®, is greater thar, for all colors

We first describe how to construét. For convenience,
we number the resources frobn Consider any integer
such thatd < k < m. Let W, be the set of jobs that are
executed on resourdein T. Let X;, Y;, and Z, be the
jobs inW}, such that the corresponding executions are early,

¢. Sections 5.1 and 5.2 give the algorithm and analysis for punctual, and late if", respectively. All the jobs inXj

the reduction, respectively. Section 5.3 comments on how(resp.,Yx, Z) are rearranged to execute’iii on resources
to extend our solution to arbitrary delay bounds, that ie, th 7k through7k + 2 (resp.,7k + 3, 7k + 4 through7k + 6).
delay bounds are not necessarily power8.of The jobs inY}, are arranged to execute in the same round as



in T. Below we describe how to rearrange the jobsXip.
The jobs inZ;, can be rearranged in a similar manner.

A job z in X is defined to bek-specialif, in sched-
ule T', the color ofz, call it ¢, is configured on resourde
throughouthalfBlock Dy, ) andhalfBlock Dy, i + 1), and
x is executed on resourdein halfBlock Dy, ). Any job
in X that is notk-special is said to b&-regular. We use
resourcerk to executek-special jobs as follows. For any
color ¢ and anyk-special jobx of color ¢ that is executed
in roundj in T, we executer in roundj + %. We use
resource§k + 1 and7k + 2 to executek-regular jobs. To

[A| 1] Dy | 1], where eactD, is a power of2.

Proof. Let T' be the schedule produced by an arbitrary fea-
sible offline algorithm on(o, m). By the definition of a
feasible algorithm{" usesm resources. Le€' be the cost
of T. By Lemma 5.1, there exists an offline schedildor
o’ that useg'm resources and incurs cas{C').

Sincec’ can be viewed as a request sequencéof1 |
De | Be], and by Theorem 2, algorithRecoloris resource
competitive for[A | 1 | 2t | B¢], S’ usesO(m) resources
and incurs cosO(C). By definition, S is a schedule fos,

avoid collisions (i.e., different jobs executed on the same UsesO(m) resources, and incurs cas{C’). u

resource and in the same round), we proceed in the follow

manner. We rearrange-regular jobs in increasing order
of delay bounds. For any delay boupdnd any nonnega-
tive integeri, let R be the set ok-regular jobs with delay
boundp that are executed on resourkén halfBlockp, i)

in T. For any color/ with delay boundp, let R, be the
color/ jobs in R. To rearrange the jobs iR, we iteratively
consider each colof with delay boundp (in arbitrary or-
der), and rearrange the jobs iy. In the remaining of the
paragraph we describe how to rearrange the joliginVe

5.3. Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay bounds is
straightforward. The basic idea is as follows: for any delay
boundp such tha®’ < p < 29+, and any jobr with delay
boundp that arrives irhalfBlock 27, i), we delay the arrival
of = to the beginning ohalfBlock27,i + 1), and change
the delay bound of to 27~!. The proof that the extended
solution is resource competitive is similar to the proofegiv

define aslot to be a round on a resource. We say a slot is jn Section 5.2.

freeif no job is assigned to execute in the slot. We order the
slots in increasing order of resource indices, breaking tie

by increasing round indices. We arrange the job&jnn
the first| R,| free slots inhalfBlock(p,i + 1) on resources
Tk +1and7k + 2.

Itis not hard to see th&t’ is a schedule fos’, and that
all jobs executed by" are executed by”. It remains to
show that the reconfiguration cost incurred®yis O(C).
Fix k arbitrarily, whered < k& < m. LetC}, be the reconfig-
uration cost incurred on resouréen 7. It is sufficient to
show that the reconfiguration costii associated with the
jobs inW; (i.e., the jobs executed on resour@ésthrough
Tk + 6) is O(C}). It is straightforward to show that the re-
configuration cost i’ associated with the jobs i¥j; (i.e.,
the jobs executed on resourck + 3) is at mostC,. Be-
low we argue that the reconfiguration costlihassociated
with the jobs inXj, (i.e., the jobs executed on resour@eés
through7k + 2) is O(Cy). Similarly, one can argue that
the reconfiguration cost if” associated with the jobs i
(i.e., the jobs executed on resour@és+ 4 through7k + 6)
is O(Cy). Itis straightforward to show that the reconfigu-
ration cost inT” associated with thé-special jobs inX}
is at mostCy. Hence, it is sufficient to account for the re-
configuration cost irl” associated wittk-regular jobs in
X} To do this, we associate(A) units of credit with each
reconfiguration on resourdein 7', and show that the total
reconfiguration cost incurred by theregular jobs can be
paid for by the credit. ]

Theorem 3 Algorithm VarBatch is resource competitive for
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A. Analysis of EDF The request sequence proceed®'imounds as follows. We

receiveA jobs of each short-term color at each integral mul-

In this section, we show th&DF is not constant com- tiple of 27, and2* jobs of each long-term color at the very
petitive, even ifEDF is given an arbitrary constant factor peginning.
resource advantage, and an arbitrary constant replication |t is not hard to verify that, from the reconfiguration
factorr, that is, each color in the cache is replicated'in  phase of round’, the timestamp of any short-term color is
locations. more recent than that of any long-term color. Hence, in the
Consider an arbitrary instance, m) of rate-limited[A | reconfiguration phase of rourtd, ALRU caches all short-
1| D, | Dg]. Let OFF denote an arbitrary feasible offline  term colors, and evicts all long-term colors; from onwards,
algorithm. We assume that, the number of resources that  ALRU does not change the configuration. Thus, the drop
EDF can use, is equal tosm, wherer is the replication  costincurred byALRU is at leas(2* — 27)m. Sincek > 7,
factor, ands is an arbitrary positive constant. We consider the cost incurred byALRU is Q(2%m).

(s + 1)m colors as follows:m colors with a delay bound Suppose thaDFF caches the long-term colors through-
27, m colors with a delay boun?l’“, m colors with a delay  out. The reconfiguration cost incurred ®FF is mA. The
bound2+!, ..., andm colors with a delay boung"**~1, drop cost incurred bYDFF is 28=7smA. Hence the total

where2* > 27 > A. For convenience, we refer to each cost incurred byOFF is O(2¥~mA). Thus, the competi-
color with a delay bound’ as a short-term color and any e ratio of ALRU is o) 2k m ) = Q(%>, which can be

2k=imA

other color as a long-term color. The request sequence PrOurbitrarily large by setting andk appropriately.
ceeds in2k+s~1 rounds as follows. For each short-term



