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Abstract

Certain emerging network applications involve dynam-
ically allocating shared resources to a variety of services
to provide QoS guarantees for each service. Motivated by
such applications, we address the following online schedul-
ing problem belonging to the recently introduced class of
reconfigurable resource scheduling problems: unit jobs of
different categories arrive over time and need to be com-
pleted within category-specific delay bounds, or else they
are dropped at a unit drop cost; processors can be reconfig-
ured to process jobs of a certain category at a fixed recon-
figuration cost; the goal is to minimize the total cost. We
study this problem in the framework of competitive anal-
ysis. Through a novel combination of the EDF and LRU
scheduling principles, we obtain an online algorithm that is
constant competitive when given a constant factor resource
advantage over an optimal offline algorithm.

1. Introduction

Multi-core and multi-processor environments are in-
creasingly used to support a wide range of high-throughput
applications, such as web services, network applications,
and database servers. These environments host multiple
services simultaneously (e.g., a router supporting various
packet processing services).

To isolate — with respect to security and performance —
services from one another, these environments often config-
ure processors to support only one service at a time. The set
of processors configured to support a particular service de-
pends upon the associated workload; fluctuations in work-
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load require changes in processor allocation. For instance, a
shared data center dynamically adjusts the allocation of pro-
cessors to independent services as the composition of the
workload changes [4, 5]. Similarly, a multi-service router
based on multi-core network processors adjusts the alloca-
tion of processors to different packet categories as the traffic
load fluctuates [16, 17, 18]. In these systems, reallocating
a processor from one category to another tends to incur a
nonnegligible overhead. For instance, on Intel’s IXP2400
network processor, loading the instruction store of a proces-
sor core with the code for a new category incurs a context
switch time, which is much (two or three orders of magni-
tude) greater than the time to process a packet [8]. In certain
applications involving QoS guarantees, jobs are required to
be processed within a delay tolerance, where the delay tol-
erance is a function of the job category [9].

Problem Statement. Motivated by the aforementioned
applications, we have recently introduced reconfigurable re-
source scheduling [14], a class of scheduling problems with
the following salient features: there are jobs of differentcat-
egories; resources can be reconfigured to process jobs of a
certain category at an overhead, in terms of cost or time.

In this paper, we solve a specific problem in this class.
The following is an informal description of this problem;
a formal definition is given in Section 2. Each request is
a set of unit jobs. Each job has a category, and needs to
be executed within a category-specific delay bound from its
arrival, or else it is dropped at a unit drop cost. A job of a
given category can only be executed on a resource config-
ured for that category. A resource can be reconfigured at
any time at a fixed reconfiguration cost. The objective is to
minimize the total cost. We refer to this problem as recon-
figurable resource scheduling with variable delay bounds.

The high level goal of our work in reconfigurable re-
source scheduling is to design online algorithms that pro-
vide good performance under all possible operating condi-
tions. This motivates us to adopt the framework of com-
petitive analysis, where the performance of an online algo-
rithm is measured by the competitive ratio [15], that is, the



maximum ratio between the cost incurred by the online al-
gorithm and that incurred by an optimal offline algorithm,
over all request sequences. (See [1] for a comprehensive in-
troduction to competitive analysis.) In this paper, we adopt
a standard technique in competitive analysis, sometimes re-
ferred to asresource augmentation[7, 13], in which the on-
line algorithm is given extra resources in order to compen-
sate for its lack of future information. We refer to an online
algorithm that achieves a constant competitive ratio when
given a constant factor resource advantage as aresource
competitivealgorithm. The specific objective of the present
work is to provide a resource competitive online algorithm
for reconfigurable resource scheduling with variable delay
bounds.

Our Contribution. To appreciate some of the difficul-
ties associated with variable delay bounds, consider a sce-
nario in which we are scheduling two categories of jobs on
a single resource: “background” jobs and “short-term” jobs.
Background jobs have deadlines far in the future, and short-
term jobs have smaller delay bounds and arrive intermit-
tently. We need to decide whether to use idle cycles to ex-
ecute background jobs. If we allow background jobs to use
idle cycles whenever available, we may incur a large num-
ber of reconfigurations, or drop a lot of short-term jobs; later
on, we may regret incurring these costs if we encounter a
lengthy interval during which no short-term jobs arrive, and
during which all of the background jobs could have been ex-
ecuted using a single reconfiguration. On the other hand, if
we do not allow background jobs to use small chunks of idle
cycles, and instead wait for a long idle interval, then later
on, we may regret doing so if we never encounter a long idle
interval. In summary, these two basic approaches lead to ei-
ther thrashing(i.e., excessively high reconfiguration cost)
or underutilization(i.e., excessively high drop cost).

A natural way to try to overcome these difficulties is
to consider algorithms based on the Least Recently Used
(LRU) principle. To pursue this approach, we need to define
an appropriate notion of an LRU timestamp in the current
setting. We have investigated various natural alternatives.
(See Section 3.3 for an example.) For all of these alter-
natives, we encounter the following basic difficulty, even
with resource augmentation: If we configure the categories
with the most recent LRU timestamps without consider-
ing whether these categories have jobs to execute, then we
are vulnerable to underutilization; if we configure the cate-
gories with the most recent LRU timestamps and with jobs
to execute, then we are vulnerable to thrashing.

Another natural approach is to consider algorithms based
on the Earliest Deadline First (EDF) principle. As with
LRU, there are different ways that we can formulate a spe-
cific algorithm based on the EDF principle. (See Section 3.2
for an example.) However, even with resource augmenta-
tion, all EDF variants seem to suffer from thrashing, and

therefore fail to yield a resource competitive solution. Fur-
thermore, it is not hard to argue that similar scheduling prin-
ciples, such as Least Slack First, also suffer from thrashing.

Though EDF alone or LRU alone seems insufficient to
solve our problem, each maintains a dynamic ordering that
addresses a key aspect of the request sequence. EDF ad-
dresses the urgency aspect and tends to reduce the drop cost.
LRU addresses the recency aspect and tends to reduce the
reconfiguration cost. Moreover, each dynamic ordering is
efficiently maintainable. It is natural to ask whether we
can efficiently combine these two orderings, and thereby
address both key aspects of the request sequence. In this
paper, we answer the question in the affirmative. We pro-
pose a natural and efficient combination of EDF and LRU.
The main idea is to keep two sets of categories configured:
one set picked by the EDF principle and the other picked
by the LRU principle. (See Section 3.4 for a formal defini-
tion of this combination.) We prove that this combination
yields a resource competitive algorithm for reconfigurable
resource scheduling with variable delay bounds. The com-
bining mechanism that we use to combine EDF and LRU
is general in nature, and can be used to combine multiple
scheduling principles, each of which maintains a dynamic
ordering of the jobs. The present work suggests that, for
problems which cannot be solved by a single dynamic or-
dering, it is worthwhile to explore algorithms based on a
combination of dynamic orderings.

We use a layered approach to solve reconfigurable re-
source scheduling with variable delay bounds. First, we use
a batching subroutine to reduce the problem to the special
case in which jobs of a given category arrive at integral mul-
tiples of the category-specific delay bound. Second, we re-
duce the batched problem to a rate-limited problem in which
at mostp jobs with delay boundp arrive at each integral
multiple of p. Third, we solve the rate-limited problem us-
ing the aforementioned combination of EDF and LRU.

Related Work. In recent work, we introduce the class of
reconfigurable resource scheduling problems, and use a lay-
ered approach to solve a variant with uniform delay bounds
and variable drop costs [14]. First, we use a batching sub-
routine to reduce to the special case in which jobs arrive at
integral multiples of a fixed delay bound. Second, we use a
reshaping technique to reduce to the special case in which
the delay bound is1. Third, we use a serialization technique
to reduce to a file caching problem. Fourth, we solve the
file caching problem by modifying Young’s Landlord algo-
rithm [19]. There are some high level similarities between
the present paper and [14]. The first layer in the present
paper is analogous to the first layer in [14], but is more in-
volved. In [14], the Landlord algorithm can be viewed as a
generalization of LRU, which handles the recency aspect of
the request sequence, but there is no component analogous
to EDF, which addresses the urgency aspect. In summary,



in order to handle variable delay bounds, the present work
introduces substantially different techniques than thosepre-
sented in [14]. On the other hand, since we do not handle
variable drop costs in the present paper, these two works are
incomparable. It remains to be seen whether the approach
used in the present paper can be extended to handle other
problem dimensions such as variable drop costs.

Brucker [2, Chapter 9] surveys a class of offline schedul-
ing problems with changeover time (i.e., context switch
time). Results for single and multiple machine problems
are summarized. In this class of problems, each job be-
longs to a certain group, and between the executions of any
two jobs in different groups on the same machine, there is a
changeover time during which the machine cannot process
any job. For a variant with identical machines, equal sized
groups, and equal processing and changeover time, Brucker
et al. [3] give a polynomial time offline algorithm that de-
cides whether there exists a schedule in which all jobs are
executed within a common delay bound.

Srinivasan et al. [17] discuss scheduling problems for
multi-core network processors, and consider the applica-
tion of existing multiprocessor scheduling algorithms in this
domain. Various challenges are identified and some ini-
tial ideas are presented. Kokku et al. [8] give a schedul-
ing algorithm, called Everest, for multi-core network pro-
cessors. The parameters considered are per-service delay
bounds, per-service execution requirements, and a fixed
context switch time. Everest is shown to perform well in
experiments in terms of maximizing the number of packets
processed within service-specific delay bounds.

The EDF scheduling algorithm is shown [6, 10] to be an
optimal preemptive uniprocessor scheduling algorithm for
problems that do not involve reconfiguration overhead, in
terms of the number of jobs executed. In this paper, we dis-
cuss the drawbacks associated with using EDF to solve the
problem of reconfigurable resource scheduling with vari-
able delay bounds, and propose a combination of EDF and
LRU to address these drawbacks.

The classic disk paging problem studied by Sleator and
Tarjan [15] can be viewed as a special case of reconfigurable
resource scheduling with unit delay bounds, unit reconfigu-
ration cost, infinite drop cost, and where each request con-
sists of a single job. In this seminal work, the competitive
ratio of any deterministic online paging algorithm is shown
to be at least the cache size, and certain algorithms, such as
LRU, are shown to be resource competitive.

O’Neil et al. [12] consider a variation of LRU called
LRU-K, which keeps track of the time of each of the last
K references to a given page. Megiddo et al. [11] con-
sider a self-tuning cache replacement policy called Adap-
tive Replacement Cache, which captures the recency and
frequency aspects of the request sequence by maintaining
a separate ordering for each aspect. As indicated earlier,

our combination of EDF and LRU captures the urgency and
recency aspects of the request sequence.

Due to space limitations, proof sketches are provided for
some of the results claimed in this paper. Complete proof
details will be provided in the full version of the paper.

2. Preliminaries

Before we define the reconfigurable resource schedul-
ing problems considered in this paper, we first make some
preliminary definitions. We define arequestas a (possibly
empty) set of unitjobs, where each job is characterized by a
non-blackcolor, a nonnegative integerarrival time, a pos-
itive integerdelay bound, and a positive integerdrop cost.
Thedeadlineof a job is defined as the arrival time plus the
delay bound minus one. There is a finite set ofresourceson
which jobs are executed. Each resource has an associated
color, which is initially black. There is a cost to reconfigure
a resource, i.e., to change the color of a resource.

The processing of a given request sequenceσ proceeds
in rounds numbered from0 to |σ| − 1. At the beginning of
roundi, we have a set ofpendingjobs, each of which has
an arrival time smaller thani, and a deadline at leasti. Each
round i consists of four phases: (1) in the first phase, the
arrival phase, the next request is received; (2) in the sec-
ond phase, thereconfiguration phase, each resource can be
reconfigured to a different color; (3) in the third phase, the
execution phase, each resource configured with colorℓ can
execute up to one pending job of colorℓ; (4) in the fourth
phase, thedrop phase, jobs with deadlinei are dropped.

We refer to the sequence of rounds in the processing a
given request sequence as aschedule. The number of re-
sources used by a schedule is the number of resources that
are reconfigured at least once. The cost of a schedule is the
sum of all reconfiguration and drop costs incurred.

For the reconfigurable resource scheduling problems
considered in this paper, the input is a pair(σ,m), where
σ is a request sequence, andm is a positive integer. Given
an instance(σ,m), an algorithm produces a schedule forσ.
An algorithm is said to beoffline if it knows all the requests
in advance, and it is said to beonline if does not know the
future requests. An algorithmA is b-feasibleif for any in-
stance(σ,m), A produces a schedule that uses at mostbm

resources. An algorithm isfeasibleif it is 1-feasible. For
any instance(σ,m) and any algorithmA, the cost ofA on
(σ,m), denotedCost(A, σ,m), is the cost ofS, whereS

is the schedule produced byA on (σ,m). An algorithmA

is (a, b)-competitiveif A is b-feasible and for any instance
(σ,m), Cost(A, σ,m) is at mosta·Cost(OPT, σ,m), where
OPT is an optimal feasible offline algorithm. An algorithm
A is resource competitiveif A is (a, b)-competitive for some
positive constant realsa andb.

For the sake of brevity, we use the[reconfig | drop |



delay | batch] notation introduced in [14]. Thereconfig
field describes the details of the reconfiguration cost. In this
paper, there is only one possible value for this field, a fixed
reconfiguration cost denoted∆. The drop field describes
the details of the drop cost. In this paper, there is only one
possible value for this field, a unit drop cost denoted1. The
delayfield contains the details of the delay bound. In this
paper, there is only one possible value for this field, per-
color delay bounds denotedDℓ. Thebatchfield constrains
that the requests of colorℓ can only arrive at integral multi-
ples of the specified value. In this paper, the possible values
for this field are1 andDℓ.

With this notation, our main problem is denoted[∆ | 1 |
Dℓ | 1]. The special case in which jobs of colorℓ arrive
at integral multiples ofDℓ is denoted[∆ | 1 | Dℓ | Dℓ].
We use the terminology “rate-limited[∆ | 1 | Dℓ | Dℓ]”
to denote the special case of[∆ | 1 | Dℓ | Dℓ] in which at
mostDℓ color ℓ jobs arrive at each integral multiple ofDℓ.
In this paper, we assume∆ is a positive integer (it is not
hard to generalize our results to an arbitrary∆).

Roadmap.The rest of the paper is organized as follows.
Section 3 solves rate-limited[∆ | 1 | Dℓ | Dℓ], where
eachDℓ is a power of2. Section 4 solves[∆ | 1 | Dℓ | Dℓ],
where eachDℓ is a power of2, by a reduction to rate-limited
[∆ | 1 | Dℓ | Dℓ]. Section 5 solves our main problem
[∆ | 1 | Dℓ | 1] by a reduction to[∆ | 1 | Dℓ | Dℓ].

3. Rate-Limited Batched Arrivals

In this section, we solve rate-limited[∆ | 1 | Dℓ | Dℓ],
where eachDℓ is a power of2. This problem is charac-
terized by a fixed reconfiguration cost∆, a unit drop cost,
per-color delay boundsDℓ, batched arrivals (jobs of color
ℓ arrive at integral multiples ofDℓ), and rate-limited input
(at mostDℓ jobs of colorℓ arrive at each integral multiple
of Dℓ). As mentioned in Section 1, this problem is a key
building block to solve our main problem[∆ | 1 | Dℓ | 1].

In this section, we introduce three online algorithms:
EDF, ∆LRU, and ∆LRU-EDF. In Section 3.1, we first
present the common aspects of the three algorithms. For
instance, due to the difference between the reconfiguration
and drop costs, we do not configure a color until it has
enough job arrivals.

Algorithm EDF is based on the EDF scheduling princi-
ple. The main idea is that, among the colors with enough
job arrivals, we configure the colors with the earliest dead-
lines and with jobs to execute. AlgorithmEDF addresses
the urgency aspect of the request sequence. However, since
it favors colors that have jobs to execute,EDF suffers from
thrashing. See Section 3.2 for a detailed discussion ofEDF.

Algorithm ∆LRU is based on the LRU scheduling prin-
ciple. The main idea is that, among the colors with enough
job arrivals, we configure the colors with the most recent

timestamps. (For the formal definition of the timestamp of
a color, see Section 3.3.) Algorithm∆LRU addresses the
recency aspect of the request sequence. However, since it
does not consider whether colors have jobs to execute or
not, ∆LRU suffers from underutilization. See Section 3.3
for a detailed discussion of∆LRU.

Algorithm ∆LRU-EDF is a combination ofEDF and
∆LRU. The EDF component ensures that the resources
are well utilized. The∆LRU component reduces thrash-
ing by allowing colors with recent timestamps to remain
configured. See Section 3.4 for a detailed discussion of
∆LRU-EDF, and Section 3.5 for the proof that shows
∆LRU-EDF is resource competitive.

3.1. Common Aspects

For convenience of presentation, we consider the set of
resources as a cache, where resourcek is viewed as location
k. We view reconfiguring resourcek with colorℓ as caching
color ℓ at locationk. We use a counting scheme to ensure
that only colors with a sufficient number of job arrivals can
be brought into the cache.

In the following, we formally present the common as-
pects of the three algorithms. Given an instance(σ,m) of
rate-limited [∆ | 1 | Dℓ | Dℓ], we allow the online al-
gorithms to usen resources, wheren > m. Each color
is either eligible or ineligible. Only eligible colors can
be brought into the cache. For each color, we maintain a
counter and a deadline. Initially, the cache is empty, all col-
ors are ineligible, and the counter and deadline associated
with any color are zero. In each roundj, the actions per-
formed in the four phases are described as follows.

Arrival phase We receive a request. For any colorℓ, if j is
an integral multiple ofDℓ, we perform the following
steps.

1. We increase the counter ofℓ by the number of
color ℓ jobs received in this phase.

2. If the counter ofℓ is at least∆, we setℓ to eligible
and reset the counter ofℓ.

3. We set the deadline ofℓ to j + Dℓ − 1.

Reconfiguration phaseWe update the contents of the
cache; the method used depends on the algorithm, see
Sections 3.2 through 3.4.

Execution phaseFor any colorℓ, each resource configured
with color ℓ executes one pending job of colorℓ.

Drop phase For any colorℓ, if j mod Dℓ is Dℓ − 1, we
perform the following steps.

1. We drop all pending jobs of colorℓ.

2. If color ℓ is eligible and not in the cache, we set
color ℓ to ineligible.



3.2. EDF

We say a colorℓ is idle if there are no pending jobs of
color ℓ, and nonidle otherwise. We rank nonidle colors
ahead of idle colors. The rank of idle colors is arbitrary. We
rank nonidle colors in ascending order of deadlines. Ties
are broken according to ascending order of delay bounds.
Further ties are broken according to a fixed order of colors.
We update the cache as follows. If a nonidle eligible color
ℓ in the topn positions of the ranking is not in the cache,
we bringℓ into the cache, evicting the color with the lowest
rank if there the cache is full.

Consider a colorℓ with a short delay bound that receives
a small number of jobs everyDℓ rounds. The priority ofℓ
changes from high to low, and then low to high, from time
to time, which may lead to thrashing. We refer the reader
to Appendix A for an example establishing thatEDF is not
resource competitive.

3.3. ∆LRU

For each colorℓ, we maintain atimestampas follows.
Initially, the timestamp ofℓ is zero. In the arrival phase of
any roundj, if the counter ofℓ is reset, we set the timestamp
of ℓ to j immediately after the counter is reset. In each
reconfiguration phase, we cache then eligible colors with
the most recent timestamps, breaking ties as in EDF.

Due to the difference between the reconfiguration and
drop costs, we require at least∆ job of colorℓ to arrive in
order to update the timestamp ofℓ. Algorithm∆LRU favors
idle colors with recent timestamps over nonidle colors that
do not have recent timestamps, which may result in low uti-
lization. We refer the reader to Appendix B for an example
establishing that∆LRU is not resource competitive.

3.4. ∆LRU-EDF

In this section, we formally define algorithm
∆LRU-EDF. We give∆LRU-EDF a factor of8 resource
advantage over an optimal feasible offline algorithm, that
is, n = 8m. We use the first half of the cache capacity to
keep distinct colors and the remaining half to replicate the
cache contents of the first half. We use the replication to
give half of the resources a factor of2 speedup. Below we
describe how we update the first half of the cache.

Let X be the n
4 eligible colors with the most recent

timestamps, where ties are broken as in∆LRU. We rank
eligible colors not inX as inEDF (see Section 3.2 for de-
tails). LetY be the set of nonidle eligible colors in the top
n
4 positions of the ranking. For any colorℓ that is inX ∪ Y

but not in the cache, we bringℓ into the cache, replacing an
arbitrary colorℓ′ that is in the cache but not inX∪Y , if nec-
essary. Since|X ∪ Y | ≤ n

2 , such a colorℓ′ is guaranteed to
exist if the first half of the cache is full.

3.5. Analysis of ∆LRU-EDF

In this section, we show that∆LRU-EDF is resource
competitive. The analysis is organized as follows. First,
Lemmas 3.1 through 3.4 argue that, on any instance such
that each color appearing in the request sequence has at least
∆ jobs, the cost incurred by∆LRU-EDF is within a con-
stant factor of that incurred by an optimal feasible offline al-
gorithm. For convenience of analysis, we partition the drop
costs incurred by∆LRU-EDF into “eligible” and “ineligi-
ble” drop costs (the formal definitions are provided later in
this section). Lemma 3.1 bounds the eligible drop cost in-
curred by∆LRU-EDF. Our proof of Lemma 3.1 uses the
EDF properties of∆LRU-EDF, and three intermediate al-
gorithms: “parallel”EDF, denotedPar-EDF, “sequential”
EDF, denotedSeq-EDF, and “double-speed”Seq-EDF, de-
noted2X-Seq-EDF. (See the proof of Lemma 3.1 for the
formal definitions of the three algorithms.)

To bound the other costs incurred by∆LRU-EDF, for
each colorℓ, we partition the sequence of rounds into subse-
quences, denoted “ℓ-epochs” (the formal definition is given
later in this section). Lemma 3.2 gives an upper bound on
the ineligible drop cost incurred by∆LRU-EDF, in terms
of the total number of epochs, over all colors. The proof
of Lemma 3.2 is straightforward. For any problem instance
such that each color appearing in the request sequence has
at least∆ jobs, Lemma 3.3 upper bounds the reconfigura-
tion cost incurred by∆LRU-EDF, and Lemma 3.4 lower
bounds the total cost incurred by an optimal feasible of-
fline algorithm, in terms of the total number of epochs. Our
proofs of Lemmas 3.3 and 3.4 make use of amortized anal-
ysis; our proof of Lemma 3.4 relies on the LRU properties
of ∆LRU-EDF.

Second, Theorem 1 establishes the resource competitive-
ness of∆LRU-EDFby a reduction to a problem instance in
which each color appearing in the request sequence has at
least∆ jobs, and by using Lemmas 3.1 through 3.4.

Now we give the formal definitions for the analysis. Let
(σ,m) be any instance of rate-limited[∆ | 1 | Dℓ | Dℓ].
Let A be any algorithm. LetOFF be an optimal feasible
offline algorithm for (σ,m). Let Cost(A, σ,m) (resp.,
ReconfigCost(A, σ,m), DropCost(A, σ,m)) denote the
cost (resp., reconfiguration cost, drop cost) incurred byA

on (σ,m). A job x of color ℓ is considered to beineligible
(resp.,eligible) if color ℓ is ineligible (resp., eligible) at the
end of the arrival phase in whichx arrives. We define the in-
eligible (resp., eligible) drop cost incurred by∆LRU-EDF,
denoted IneligibleDropCost(∆LRU-EDF, σ,m) (resp.,
EligibleDropCost(∆LRU-EDF, σ,m)), to be the drop cost
incurred by∆LRU-EDF on ineligible (resp., eligible) jobs
in σ.

For each colorℓ, we partition the sequence of rounds
into ℓ-epochs as follows. We defineℓ-epoch0 to start with



round0 and end with the first round in whichℓ becomes
ineligible. For everyi ≥ 1, ℓ-epochi starts whenℓ-epoch
i − 1 ends, and ends with the first round followingℓ-epoch
i − 1 in which ℓ becomes ineligible. For convenience, we
use the termepochto refer to anℓ-epoch, for someℓ. We
usenumEpochs(σ) to denote the total number of epochs as-
sociated withσ.

Lemma 3.1 For any instance(σ,m) of rate-limited [∆ |
1 | Dℓ | Dℓ], EligibleDropCost(∆LRU-EDF, σ,m) is at
most DropCost(OFF, σ,m).

Proof sketch.To show the lemma, we find it convenient to
define the following three algorithms:Par-EDF, Seq-EDF,
and2X-Seq-EDF. Each of the three algorithms is allowed to
usem resources. AlgorithmPar-EDF is defined as follows.
In each reconfiguration phase, we reconfigure the resources
in such a way that we can executem pending jobs with the
best ranks in the immediately following execution phase,
where jobs are ranked in ascending order of deadlines, and
ties are broken as inEDF. Algorithm Seq-EDFis defined
as follows. In each reconfiguration phase, we configurem

nonidle colors with the best ranks, where colors are ranked
as in EDF. We define adouble-speedschedule to be a
schedule in which the reconfiguration and execution phases
are performed twice in each round. We use2X-Seq-EDF
to denote double-speedSeq-EDF. Note that the three algo-
rithms defined in this paragraph do not require a color to be
eligible to in order to be configured on the resources.

By a standard EDF-type swapping argument, one can
easily show the following inequality.

DropCost(Par-EDF, σ,m) ≤ DropCost(OFF, σ,m) (1)

It is more challenging to show the follow two inequalities,
which are needed to obtain the lemma.

DropCost(2X-Seq-EDF, σ,m)

≤ DropCost(Par-EDF, σ,m) (2)

EligibleDropCost(∆LRU-EDF, σ,m)

≤ DropCost(2X-Seq-EDF, σ,m) (3)

We omit the proof for Inequalities (2) and (3) due to
space limitations. The lemma follows from Inequalities (1)
through (3).

Lemma 3.2 For any instance(σ,m) of rate-limited [∆ |
1 | Dℓ | Dℓ], IneligibleDropCost(∆LRU-EDF, σ,m) <

numEpochs(σ) · ∆.

Proof. Consider any colorℓ. Let h be anyℓ-epoch. LetC
be the ineligible drop cost incurred by∆LRU-EDFon color
ℓ jobs inh. It is sufficient to show thatC is less than∆.

Let h′ be the longest prefix ofh throughout whichℓ is
ineligible. LetC ′ be the drop cost incurred by∆LRU-EDF
on colorℓ jobs in h′. Sinceℓ does not become eligible in
h′, the number of colorℓ jobs that arrive inh′ is less than
∆. Hence,C ′ < ∆. By the definition of an epoch, once
ℓ becomes eligible inh, it remains eligible untilh ends.
By the definition of ineligible jobs and ineligible drop cost,
C = C ′. Therefore,C < ∆.

Lemma 3.3 For any instance(σ,m) of rate-limited [∆ |
1 | Dℓ | Dℓ] such that each color appearing inσ
has at least∆ jobs, ReconfigCost(∆LRU-EDF, σ,m) ≤
O(Cost(OFF, σ,m) + numEpochs(σ) · ∆).

Proof sketch.In order to establish this result, it is useful to
label each eviction as either an “LRU eviction” or an “EDF
eviction” in our analysis of∆LRU-EDF. We say that an
LRU eviction occurs whenever a color is evicted in a given
round and that color was kept by the LRU principle in the
preceding round. All other evictions are EDF evictions.

We proceed in three stages. In the first stage, we are
able to show the following claim. For any instance(σ,m)
of rate-limited[∆ | 1 | Dℓ | Dℓ] such that each color ap-
pearing inσ has at least∆ jobs, the total number of LRU
evictions times∆ is O(Cost(OFF, σ,m)).

In the second stage, we are able to show the following
claim. For any colorℓ, anyℓ-epochh, and any two rounds
i andj in h such thati < j and∆LRU-EDF bringsℓ into
the cache in roundi andj, the following conditions hold in
roundj: (1) color ℓ is brought into the cache by the EDF
principle, and (2) if bringingℓ into the cache results in an
EDF eviction, then the evicted color is idle. Due to space
limitations, we omit the proofs of the claims associated with
the first two stages.

In the third stage, we prove the lemma using the above
claims and amortized analysis as follows. We associate
4∆ units of credit with each epoch:2∆ units of “first-
time” credit and2∆ units of “end-of-epoch” credit. We
also associate2∆ units of credit with each LRU evic-
tion. From the claim of the first stage, the total credit
is O(Cost(OFF, σ,m) + numEpochs(σ) · ∆). It is suffi-
cient to show that the total reconfiguration cost incurred by
∆LRU-EDFcan be paid for by the total credit.

Consider any colorℓ and anyℓ-epochh. If ∆LRU-EDF
does not bringℓ into the cache inh, then it does not incur
any reconfiguration cost inh. Otherwise, let roundsi0 <

· · · < ik be the rounds inh in which ∆LRU-EDF bringsℓ

into the cache. For everyj such that0 ≤ j ≤ k, let Rj be
the reconfiguration operation performed by∆LRU-EDF to
bring in ℓ in roundij . Since each cached color is replicated
in ∆LRU-EDF, the cost of operationRj is 2∆. We use the
2∆ units of “first-time” credit associated withh to pay for
operationR0. In the following, we show that the remaining
Rj ’s can also be paid for.



Fix j arbitrarily, where0 < j ≤ k. It is not hard to
see that, when colorℓ is brought into the cache in round
ij , some colorℓ′ is evicted. If the eviction of colorℓ′ is
an LRU eviction, operationRj can be paid for by the2∆
units of credit associated with the LRU eviction. If the evic-
tion of color ℓ′ is an EDF eviction, then the claim of the
second stage implies that colorℓ′ is evicted idle in round
ij . Since jobs of colorℓ′ arrive only at integral multiples of
Dℓ′ , ℓ′ remains idle until the next integral multiple ofDℓ′ ,
at which pointℓ′ becomes ineligible and its currentℓ-epoch
h′ ends. Hence, we can use the “end-of-epoch” credit as-
sociated withh′ to pay for operationRj . It is not difficult
to argue that each unit of credit is used at most once. This
completes the proof.

Lemma 3.4 For any instance(σ,m) of rate-limited [∆ |
1 | Dℓ | Dℓ] such that each color appearing inσ has at
least∆ jobs, Cost(OFF, σ,m) = Ω(numEpochs(σ) · ∆).

Proof sketch.To get a lower bound on the cost ofOFF,
we find it convenient to partition the sequence of rounds
into super-epochs. Super-epoch0 is the minimum sequence
of rounds, beginning with round0, during which at least
2m colors have their counters reset. For everyi ≥ 1,
super-epochi is the minimum sequence of rounds follow-
ing super-epochi − 1 during which at least2m colors have
their counters reset. Note that the last super-epoch may be
incomplete. We say that a colorℓ is active in super-epoch
i if the counter ofℓ is reset in super-epochi. We parti-
tion the epochs into two sets:specialepochs, the epochs
that are not active in any complete super-epoch, andregular
epochs, the epochs that are not special. We handle special
and regular epochs separately. For special epochs, we show
that,Cost(OFF, σ,m) is Ω(∆) times the number of special
epochs. For regular epochs, we define the amortized cost
of OFF in such a way that the total amortized cost ofOFF
is within a constant factor of the actual cost ofOFF, and
show that the total amortized cost ofOFF is Ω(∆) times
the number of regular epochs.

Theorem 1 Algorithm∆LRU-EDF is resource competitive
for rate-limited[∆ | 1 | Dℓ | Dℓ], where eachDℓ is a power
of 2.

Proof. Let (σ,m) be an arbitrary instance of rate-limited
[∆ | 1 | Dℓ | Dℓ]. We say a colorℓ is heavy(resp.,light)
if there are at least (resp., less than)∆ jobs of colorℓ in
σ. Any job of a heavy (resp., light) color is a heavy (resp.,
light) job. We break each request into two requests, one
consisting of the light jobs and the other consisting of the
heavy jobs. Letα (resp.,β) denote the resulting sequence
of requests involving heavy (resp., light) jobs.

Since there are less than∆ jobs of any light color,OFF,
as an optimal feasible offline algorithm, drops all light jobs.

Hence,Cost(OFF, σ) equalsCost(OFF, α) plus the total
number of light jobs. Since there are are less than∆
jobs of any light color, no light color ever becomes eli-
gible. Thus,∆LRU-EDF never caches a light color, and
drops all light jobs. Hence,Cost(∆LRU-EDF, σ,m) equals
Cost(∆LRU-EDF, α,m) plus the total number of light jobs.
From Lemmas 3.1 through 3.4,Cost(∆LRU-EDF, α,m) =
O(Cost(OFF, α,m)). Hence, the lemma follows.

4. Batched Arrivals

In this section, we solve[∆ | 1 | Dℓ | Dℓ], where each
Dℓ is a power of2. This problem is characterized by a fixed
reconfiguration cost∆, a unit drop cost, per-color delay
boundsDℓ, and batched arrivals (jobs of colorℓ arrive at
integral multiples ofDℓ).

As mentioned in Section 1,[∆ | 1 | Dℓ | Dℓ] is a build-
ing block to solve our main problem[∆ | 1 | Dℓ | 1]. To
solve[∆ | 1 | Dℓ | Dℓ], we use a reduction to rate-limited
[∆ | 1 | Dℓ | Dℓ], which is solved in Section 3. Sections
4.1 and 4.2 give the reduction algorithm and analysis, re-
spectively.

4.1. Algorithm

Given any instance(σ,m) of [∆ | 1 | Dℓ | Dℓ], where
Dℓ is a power of2, algorithmRecolorproceeds in the fol-
lowing three steps. In the first step, we construct a request
sequenceσ′ for rate-limited[∆ | 1 | Dℓ | Dℓ] as follows.
Let σi be requesti of σ, where0 ≤ i < |σ|. For any color
ℓ, we rank colorℓ jobs inσi in an arbitrary order. For any
color ℓ and colorℓ job x in σi, we construct a joby that
is the same asx except that the color ofy is given by the

pair (ℓ, j), wherej =
⌊

rank(x)
Dℓ

⌋

, andrank(x) is the rank

of x in σi. Let σ′

i be the union of all suchy’s that are con-
structed over all colorsℓ. We obtainσ′ by concatenating
σ′

i’s in increasing order ofi.
In the second step, we use algorithm∆LRU-EDF on

(σ′, 3m) to obtain a scheduleS′ for σ′. In the third step,
from S′ we construct a scheduleS for σ as follows. For
any colorℓ, any integersj andk, wheneverS′ configures
color (ℓ, j) on resourcek, S configures colorℓ on resource
k; wheneverS′ executes a job of color(ℓ, j) on resourcek,
S executes a job of colorℓ on resourcek. Note thatRecolor
is an online algorithm.

4.2. Analysis

In this section, we show that algorithmRecolor is re-
source competitive. The request sequencesσ andσ′, and
the schedulesS andS′ mentioned in the lemma statements
and proofs below are defined in Section 4.1.



Lemma 4.1 If there exists a scheduleT for σ that usesm
resources and incurs costC, then there exists a scheduleT ′

for σ′ that uses3m resources and incurs costO(C).

The main proof idea of Lemma 4.1 is to constructT ′ by
rearranging and recoloring the jobs executed inT . Due to
space limitations, we omit the proof of Lemma 4.1.

Lemma 4.2 The cost ofS is at most that ofS′.

Proof. Since the scheduleS replaces color(ℓ, j) with color
ℓ, the reconfiguration cost incurred byS is at most that in-
curred byS′. From the way we constructσ′ andS′, it is not
hard to see that the number of colorℓ jobs executed byS is
equal to the total number of color(ℓ, j) jobs executed byS′,
over allj. Since the number of colorℓ jobs associated with
σ is equal to the total number of color(ℓ, j) jobs associated
with σ′, over allj, the drop cost incurred byS is equal to
that incurred byS′.

Theorem 2 Algorithm Recolor is resource competitive for
[∆ | 1 | Dℓ | Dℓ], where eachDℓ is a power of2.

Proof. Let T be the schedule produced by an arbitrary fea-
sible offline algorithm on(σ,m). By the definition of a fea-
sible algorithm,T usesm resources. LetC be the cost ofT .
By Lemma 4.1, there exists a scheduleT ′ for σ′ that uses
3m resources and incurs costO(C). By Theorem 1, the
scheduleS′ for σ′ generated by algorithm∆LRU-EDFuses
O(m) resources and incurs costO(C). By construction,S
uses the same number of resources asS′. By Lemma 4.2,
the cost ofS is at most that ofS′. Hence,S usesO(m)
resources and incursO(C) cost. SinceS is a schedule for
σ, the theorem follows.

5. Main Result

In this section, we solve our main problem[∆ | 1 | Dℓ |
1], which is characterized by a fixed reconfiguration cost∆,
a unit drop cost, per-color delay boundsDℓ, and nonbatched
arrivals (requests can arrive at any round).

To simplify the presentation, we focus on the special case
where eachDℓ is a power of2. The special case is solved
by a reduction to[∆ | 1 | Dℓ | Dℓ], which is solved in
Section 4. For any colorℓ such thatDℓ is equal to1, jobs
of color ℓ are already batched. For convenience, we fo-
cus on the case whereDℓ is greater than1, for all colors
ℓ. Sections 5.1 and 5.2 give the algorithm and analysis for
the reduction, respectively. Section 5.3 comments on how
to extend our solution to arbitrary delay bounds, that is, the
delay bounds are not necessarily powers of2.

5.1. Algorithm

For any delay boundp and any nonnegative integeri,
we definehalfBlock(p, i) to be thep

2 rounds starting from
roundi · p

2 . Let σ be an arbitrary request sequence for[∆ |
1 | Dℓ | 1]. We define thebatched versionof σ, denoted
σ′, as follows. We obtainσ′ by moving the arrival of any
job x of color ℓ that arrives inhalfBlock(Dℓ, i) in σ to the
beginning ofhalfBlock(Dℓ, i + 1), and changing the delay
bound ofx to Dℓ

2 . Thus, the request sequenceσ′ can be
viewed as a request sequence for[∆ | 1 | Dℓ

2 | Dℓ

2 ].
Algorithm VarBatch proceeds in the following three

steps. First, given an arbitrary instance(σ,m) of [∆ | 1 |
Dℓ | 1], we construct an instance(σ′, 7m) of [∆ | 1 | Dℓ

2 |
Dℓ

2 ], whereσ′ is the batched version ofσ. Second, we ap-
ply algorithmRecolor(defined in Section 4.1) on(σ′, 7m)
to obtain a scheduleS′ for σ′. Finally, we obtain a schedule
S for σ from S′. The scheduleS is the same asS′ except
the request sequence associated withS is σ. Note that algo-
rithm VarBatchis an online algorithm.

5.2. Analysis

In this section, we show that algorithmVarBatchis re-
source competitive. The request sequencesσ andσ′, and
the schedulesS andS′ mentioned in the lemma statements
and proofs below are defined in Section 5.1.

Lemma 5.1 If there exists a scheduleT for σ that usesm
resources and incurs costC, then there exists a scheduleT ′

for σ′ that uses7m resources and incurs costO(C).

Proof sketch.For any color ℓ job x that arrives in
halfBlock(Dℓ, i) in σ, we say the execution ofx
in T is early (resp., punctual, late) if x is exe-
cuted in halfBlock(Dℓ, i) (resp., halfBlock(Dℓ, i + 1),
halfBlock(Dℓ, i + 2)) in T . We prove the lemma in two
stages as follows. First, we construct a scheduleT ′ for σ′

that uses7m resources by rearranging the job executions in
T . The main idea is to use extra resources to move the early
executions inT forward, and the late executions inT back-
ward. Second, we use amortized analysis to show that the
cost ofT ′ is O(C). In the following, we give more details
about these two stages.

We first describe how to constructT ′. For convenience,
we number the resources from0. Consider any integerk
such that0 ≤ k < m. Let Wk be the set of jobs that are
executed on resourcek in T . Let Xk, Yk, andZk be the
jobs inWk such that the corresponding executions are early,
punctual, and late inT , respectively. All the jobs inXk

(resp.,Yk, Zk) are rearranged to execute inT ′ on resources
7k through7k + 2 (resp.,7k + 3, 7k + 4 through7k + 6).
The jobs inYk are arranged to execute in the same round as



in T . Below we describe how to rearrange the jobs inXk.
The jobs inZk can be rearranged in a similar manner.

A job x in Xk is defined to bek-special if, in sched-
ule T , the color ofx, call it ℓ, is configured on resourcek
throughouthalfBlock(Dℓ, i) andhalfBlock(Dℓ, i + 1), and
x is executed on resourcek in halfBlock(Dℓ, i). Any job
in Xk that is notk-special is said to bek-regular. We use
resource7k to executek-special jobs as follows. For any
color ℓ and anyk-special jobx of color ℓ that is executed
in round j in T , we executex in round j + Dℓ

2 . We use
resources7k + 1 and7k + 2 to executek-regular jobs. To
avoid collisions (i.e., different jobs executed on the same
resource and in the same round), we proceed in the follow
manner. We rearrangek-regular jobs in increasing order
of delay bounds. For any delay boundp and any nonnega-
tive integeri, let R be the set ofk-regular jobs with delay
boundp that are executed on resourcek in halfBlock(p, i)
in T . For any colorℓ with delay boundp, let Rℓ be the
color ℓ jobs inR. To rearrange the jobs inR, we iteratively
consider each colorℓ with delay boundp (in arbitrary or-
der), and rearrange the jobs inRℓ. In the remaining of the
paragraph we describe how to rearrange the jobs inRℓ. We
define aslot to be a round on a resource. We say a slot is
freeif no job is assigned to execute in the slot. We order the
slots in increasing order of resource indices, breaking ties
by increasing round indices. We arrange the jobs inRℓ in
the first |Rℓ| free slots inhalfBlock(p, i + 1) on resources
7k + 1 and7k + 2.

It is not hard to see thatT ′ is a schedule forσ′, and that
all jobs executed byT are executed byT ′. It remains to
show that the reconfiguration cost incurred byT ′ is O(C).
Fix k arbitrarily, where0 ≤ k < m. LetCk be the reconfig-
uration cost incurred on resourcek in T . It is sufficient to
show that the reconfiguration cost inT ′ associated with the
jobs inWk (i.e., the jobs executed on resources7k through
7k + 6) is O(Ck). It is straightforward to show that the re-
configuration cost inT ′ associated with the jobs inYk (i.e.,
the jobs executed on resource7k + 3) is at mostCk. Be-
low we argue that the reconfiguration cost inT ′ associated
with the jobs inXk (i.e., the jobs executed on resources7k

through7k + 2) is O(Ck). Similarly, one can argue that
the reconfiguration cost inT ′ associated with the jobs inZk

(i.e., the jobs executed on resources7k + 4 through7k + 6)
is O(Ck). It is straightforward to show that the reconfigu-
ration cost inT ′ associated with thek-special jobs inXk

is at mostCk. Hence, it is sufficient to account for the re-
configuration cost inT ′ associated withk-regular jobs in
Xk. To do this, we associateO(∆) units of credit with each
reconfiguration on resourcek in T , and show that the total
reconfiguration cost incurred by thek-regular jobs can be
paid for by the credit.

Theorem 3 Algorithm VarBatch is resource competitive for

[∆ | 1 | Dℓ | 1], where eachDℓ is a power of2.

Proof. Let T be the schedule produced by an arbitrary fea-
sible offline algorithm on(σ,m). By the definition of a
feasible algorithm,T usesm resources. LetC be the cost
of T . By Lemma 5.1, there exists an offline scheduleT ′ for
σ′ that uses7m resources and incurs costO(C).

Sinceσ′ can be viewed as a request sequence for[∆ | 1 |
Dℓ

2 | Dℓ

2 ], and by Theorem 2, algorithmRecoloris resource
competitive for[∆ | 1 | Dℓ

2 | Dℓ

2 ], S′ usesO(m) resources
and incurs costO(C). By definition,S is a schedule forσ,
usesO(m) resources, and incurs costO(C).

5.3. Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay bounds is
straightforward. The basic idea is as follows: for any delay
boundp such that2j ≤ p < 2j+1, and any jobx with delay
boundp that arrives inhalfBlock(2j , i), we delay the arrival
of x to the beginning ofhalfBlock(2j , i + 1), and change
the delay bound ofx to 2j−1. The proof that the extended
solution is resource competitive is similar to the proof given
in Section 5.2.
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A. Analysis of EDF

In this section, we show thatEDF is not constant com-
petitive, even ifEDF is given an arbitrary constant factor
resource advantage, and an arbitrary constant replication
factor r, that is, each color in the cache is replicated inr

locations.
Consider an arbitrary instance(σ,m) of rate-limited[∆ |

1 | Dℓ | Dℓ]. Let OFF denote an arbitrary feasible offline
algorithm. We assume that,n, the number of resources that
EDF can use, is equal torsm, wherer is the replication
factor, ands is an arbitrary positive constant. We consider
(s + 1)m colors as follows:m colors with a delay bound
2j , m colors with a delay bound2k, m colors with a delay
bound2k+1, . . ., andm colors with a delay bound2k+s−1,
where2k > 2j > ∆. For convenience, we refer to each
color with a delay bound2j as a short-term color and any
other color as a long-term color. The request sequence pro-
ceeds in2k+s−1 rounds as follows. For each short-term

color, we receive∆ jobs at each integral multiple of2j , in
rounds0 through2k−1−1. For each long-term color with a
delay bound of2k+i, for 0 ≤ i < s, we receive2k+i−1 jobs
at the very beginning.

Consider rounds0 through 2k−1

r
. Each long-term color

always has jobs to execute. Since2j > ∆, each short-
term color is brought into the cache and then evicted2k−1

2jr

times. Hence, the reconfiguration cost incurred byEDF is
Ω(2k−jm∆).

Suppose thatOFF caches the short-term colors in rounds
0 through2k−1 − 1, and caches the colors with a delay
bound 2k+i in rounds2k+i−1 through 2k+i − 1, where
0 ≤ i < s.

Algorithm OFF does not incur any drop cost and incurs
a reconfiguration cost ofO(m∆). Hence the competitive
ratio of EDF is Ω(2k−j), which can be arbitrarily large by
settingj andk appropriately.

B. Analysis of∆LRU

In this section, we show that∆LRU is not constant com-
petitive, even if∆LRU is given an arbitrary constant fac-
tor resource advantage, and an arbitrary constant replication
factorr, that is, each color in the cache is replicated inr lo-
cations.

Consider an arbitrary instance(σ,m) of rate-limited[∆ |
1 | Dℓ | Dℓ]. Let OFF denote an arbitrary feasible offline
algorithm. We assume thatn, the number of resources that
∆LRU can use, is equal torsm, wherer is the replication
factor, ands is an arbitrary positive constant. Considersm

colors with a delay bound2j and m colors with a delay
bound2k, where2k > 2j > ∆. For convenience, we refer
to each color with a delay bound2j as a short-term color
and each color with a delay bound2k as a long-term color.
The request sequence proceeds in2k rounds as follows. We
receive∆ jobs of each short-term color at each integral mul-
tiple of 2j , and2k jobs of each long-term color at the very
beginning.

It is not hard to verify that, from the reconfiguration
phase of round2j , the timestamp of any short-term color is
more recent than that of any long-term color. Hence, in the
reconfiguration phase of round2j , ∆LRU caches all short-
term colors, and evicts all long-term colors; from onwards,
∆LRU does not change the configuration. Thus, the drop
cost incurred by∆LRU is at least(2k −2j)m. Sincek > j,
the cost incurred by∆LRU is Ω(2km).

Suppose thatOFF caches the long-term colors through-
out. The reconfiguration cost incurred byOFF is m∆. The
drop cost incurred byOFF is 2k−jsm∆. Hence the total
cost incurred byOFF is O(2k−jm∆). Thus, the competi-
tive ratio of∆LRU is Ω( 2km

2k−jm∆
) = Ω( 2j

∆ ), which can be
arbitrarily large by settingj andk appropriately.


