
Online Compression Caching

C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

*Department of Computer Science
University of Texas at Austin

plaxton@cs.utexas.edu, asun@vmware.com, mitul@kosmix.com, vin@cs.utexas.edu

Abstract. Motivated by the possibility of storing a file in a compressed
format, we formulate the following class of compression caching prob-
lems. We are given a cache with a specified capacity, a certain number of
compression/uncompression algorithms, and a set of files, each of which
can be cached as it is or by applying one of the compression algorithms.
Each compressed format of a file is specified by three parameters: encode
cost, decode cost, and size. The miss penalty of a file is the cost of access-
ing the file if the file or any compressed format of the file is not present
in the cache. The goal of a compression caching algorithm is to minimize
the total cost of executing a given sequence of requests for files. We say an
online algorithm is resource competitive if the algorithm is constant com-
petitive with a constant factor resource advantage. A well-known result
in the framework of competitive analysis states that the least-recently
used (LRU) algorithm is resource competitive for the traditional paging
problem. Since compression caching generalizes the traditional paging
problem, it is natural to ask whether a resource competitive online al-
gorithm exists or not for compression caching. In this work, we address
three problems in the class of compression caching. The first problem as-
sumes that the encode cost and decode cost associated with any format
of a file are equal. For this problem we present a resource competitive
online algorithm. To explore the existence of resource competitive on-
line algorithms for compression caching with arbitrary encode costs and
decode costs, we address two other natural problems in the aforemen-
tioned class, and for each of these problems, we show that there exists
a non-constant lower bound on the competitive ratio of any online algo-
rithm, even if the algorithm is given an arbitrary factor capacity blowup.
Thus, we establish that there is no resource competitive algorithm for
compression caching in its full generality.

1 Introduction

Recently we have seen an explosion in the amount of data distributed over hand-
held devices, personal computers, and local and wide area networks. There is a

1Supported by NSF Grants CNS–0326001 and CCF–0635203.
2Supported by NSF Grant CNS–0326001 and Texas Advanced Technology Pro-

gram 003658-0608-2003.
∗Most of the work was done while Yu Sun and Mitul Tiwari were Ph.D. students

at UT Austin.

2 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

growing need for self-tuning data management techniques that can operate under
a wide range of conditions, and optimize various resources such as storage space,
processing, and network bandwidth. There is a large body of work addressing
different aspects of this domain of self-tuning data management.

An important aspect of this domain that merits further attention is that
data can be stored in different formats. For example, one can compress a text file
using different traditional compression techniques such as gzip and bzip. Various
studies [1, 2, 6] have experimentally demonstrated the advantages of compression
in caching. A compressed file takes up less space, effectively increasing the size of
the memory. However, this increase in size comes at the cost of extra processing
needed for compression and uncompression. Consequently, it may be desirable
to keep frequently accessed files uncompressed in the memory.

As another example, consider the option of storing only a TEX file or the
corresponding pdf file along with the TEX file. One can save space by storing
only the TEX file, but one has to run a utility (such as pdflatex) to generate the
pdf file when needed. On the other hand, storing the pdf file may require an order
of magnitude more storage space than the TEX file, but the pdf file is readily
accessible when needed. In general, many files are automatically generated using
some utility such as a compiler or other translator. If the utility generates a large
output compared to the input, then by storing only the input one achieves a form
of “compression”, not in the traditional sense, but with analogous consequences.
In this paper, when we refer to compression, we have in mind this broader notion
of compression where one can have a wide separation between storage space and
processing costs associated with different formats of a file.

In this work, we address the notion of compression and uncompression of files,
while contemplating the possibility of a richer variety of separation between the
sizes and processing costs associated with the different formats of a file. We focus
primarily on the single machine setting, however one of our upper bound results
(see Section 3.2) is applicable to a simple, but well-motivated, special case of a
distributed storage problem.

Problem Formulation. We define a class of compression caching problems
in which a file can be cached in multiple compressed formats with varying sizes,
and costs for compression and uncompression (see Section 2 for a formal de-
scription). We are given a cache with a specified capacity. Also assume that for
each file, there are multiple associated formats. Each format is specified by three
parameters: encode cost, decode cost, and size. The encode cost of a particular
format is defined as the cost of creating that format from the uncompressed
format of the file. The decode cost of a format is defined as the cost of creating
the uncompressed format. The miss penalty of a file is defined as the cost of
accessing the file if no format of the file is present in the cache. To execute a
request for a file, the file is required to be loaded into the cache in the uncom-
pressed format. The goal of a compression caching algorithm is to minimize the
total cost of executing a given request sequence.

The main challenge is to design algorithms that determine — in an online
manner — which files to keep in the fast memory, and of these, which to keep

Online Compression Caching 3

in compressed form. The problem is further complicated by the multiple com-
pression formats for a file, with varying sizes and encode/decode costs. Since
compression caching has the potential to be useful in many different scenarios, a
desirable property of an online algorithm is to provide a good competitive ratio,
which is defined as the maximum ratio of the cost of the online algorithm and
that of the offline algorithm over any request sequence (see [4] for more details).
We refer to an online algorithm that achieves a constant competitive ratio when
given a constant factor resource advantage as a resource competitive algorithm.

In a seminal work, Sleator and Tarjan [7] show that the competitive ratio
of any deterministic online paging algorithm without any capacity blowup is
the size of the cache, and they also show that LRU is resource competitive for
the disk paging problem. Since compression caching generalizes the disk paging
problem, it is natural to ask whether similar resource competitive results can be
obtained for compression caching.

Contributions. In this paper, we address three problems in the class of the
compression caching. Our contributions for each of these problems are as follows.

– The first problem assumes that the encode cost and decode cost associated
with any format of a file are equal. For this problem we generalize the Land-
lord algorithm [9] to obtain an online algorithm that is resource competitive.
We find that this problem also corresponds to a special case of the distributed
storage problem, and hence, our algorithm is applicable to this special case.

– The second problem assumes that the decode costs associated with different
formats of a file are the same. For this problem, we show that any deter-
ministic online algorithm (even with an arbitrary factor capacity blowup)
is Ω(m)-competitive, where m is the number of possible formats of a file.
The proof of this lower bound result is the most technically challenging part
of the paper. Further, we give an online algorithm for this problem that
is O(m)-competitive with O(m) factor capacity blowup. Thus, we tightly
characterize the competitive ratio achievable for this problem.

– The third problem assumes that the encode costs associated with different
formats of a file are the same. For this problem we show that any deter-
ministic online algorithm (even with an arbitrary factor capacity blowup)
has competitive ratio Ω(log m). We also present an online algorithm for this
problem that is O(m)-competitive with O(m) factor capacity blowup.

Related Work. The competitive analysis framework was pioneered by Sleator
and Tarjan [7]. For the disk paging problem, it has been shown that LRU is

k
k−h+1 -competitive, where k is the cache capacity of LRU and h is the cache
capacity of any offline algorithm [7]. In the same paper, it has been shown that

k
k−h+1 is the best possible competitive ratio for any deterministic online paging
algorithm. For the variable size file caching problem, which is useful in the con-
text of web-caching, Young [9] proposes the Landlord algorithm, and shows that
Landlord is k

k−h+1 -competitive. For the variable size file caching problem, Cao
and Irani [5] independently propose the greedy-dual-size algorithm and show
that it is k-competitive against any offline algorithm, where k is cache capacity
of both greedy-dual-size and the offline algorithm. For the distributed paging

4 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

problem, Awerbuch et al. [3] give an algorithm that is polylog(n,∆)-competitive
with polylog(n,∆) factor capacity blowup, where n is the number of nodes and
∆ is the diameter of the network.

Various studies [1, 2, 6] have shown experimentally that compression effec-
tively increases on-chip and off-chip chip cache capacity, as well as off-chip band-
width, since the compressed data is smaller in size. Further, these studies show
that compression in caching increases the overall performance of the system.

Outline. The rest of this paper is organized as follows. In Section 2 we
provide some definitions. In Section 3 we present our results for the compression
caching problem with equal encode and decode costs. In Section 4 we describe
our results for the compression caching problem with varying encode costs and
uniform decode costs. In Section 5 we discuss our results for the compression
caching problem with uniform encode costs and varying decode costs.

2 Preliminaries

Assume that we are given a cache with a specified capacity and m different
functions for encoding and decoding any file, denoted hi and h−1

i , where 0 ≤
i < m. Without loss of generality, we assume that h0 and h−1

0 are the identity
functions. We define index i as an integer i such that 0 ≤ i < m. For any index
i, we obtain the i-encoding of any file f by evaluating hi(f), and we obtain
the file f from the i-encoding µ of f by evaluating h−1

i (µ). For any file f , we
refer to the 0-encoding of f as the trivial encoding, and for i > 0, we refer to
the i-encoding of f as a nontrivial encoding. For any file f and index i, the
i-encoding of f is also referred to as an encoding of f , and we say f is present in
the cache if any encoding of f is present in the cache. For any file f and index i,
the i-encoding of f is characterized by three parameters: encode cost, denoted
encode(i, f); decode cost, denoted decode(i, f); and size, denoted size(i, f). The
encode cost encode(i, f) is defined as the cost of evaluating hi(f), and the decode
cost decode(i, f) is defined as the cost of evaluating h−1

i (µ), where µ is the i-
encoding of f . For any file f , encode(0, f) and decode(0, f) are 0.

For any file f , the access cost of f is defined as follows: if for some index i,
the i-encoding of f is present in the cache (break ties by picking minimum such
i), then the access cost is decode(i, f); if none of the encodings of f is present
in the cache, then the access cost is defined as the miss penalty p(f). Without
loss of generality, we assume that the miss penalty for any file f is at least the
decode cost of any of the encodings of f . The cost of deleting any encoding of
any file from the cache is 0. For any file f and index i, the i-encoding of f can
be added to the cache if there is enough free space to store the i-encoding of f .
For any file f and index i, the cost of adding the i-encoding of f to the cache is
the sum of the access cost of f and encode(i, f).

To execute a request for a file f , an algorithm A is allowed to modify its cache
content by adding/deleting encodings of files, and then incurs the access cost for
f . The goal of the compression caching problem is to minimize the total cost of
executing a given request sequence. An online compression caching algorithm A

Online Compression Caching 5

is c-competitive if for all request sequences τ and compression caching algorithms
B, the cost of executing τ by A is at most c times that of executing τ by B.

Any instance I of the compression caching problem is represented by a triple
(σ,m, k), where σ is the sequence of request for the instance I, m is the number
of possible encodings for files in σ, and k is the cache capacity. For any instance
I = (σ,m, k), we define reqseq(I) = σ, numindex (I) = m, and space(I) = k.

We define a configuration as a set of encodings of files. For any configuration
S, we define the size of S as the sum, over all encodings µ in S, of size of µ.
We define a trace as a sequence of pairs, where the first element of the pair is a
request for a file and the second element of the pair is a configuration. For any
configuration S and any integer k, S is k-feasible if the size of S is at most k.
For any trace T and integer k, T is k-feasible if and only if any configuration in
T is k-feasible. For any two sequences τ and τ ′, we define τ ◦ τ ′ as the sequence
obtained by appending τ ′ to τ . For any trace T , we define requests(T) as the
sequence of requests present in T , in the same order as in T .

For any file f , any trace T , and any configuration S, we define costf (T, S)
inductively as follows. If T is empty, then costf (T, S) is zero. If T is equal to
〈(f ′, S′)〉 ◦T ′, then costf (T, S) is costf (T ′, S′) plus the sum, over all i-encodings
µ of f such that µ is present in S′ and µ is not present in S, of encode(i, f),
plus the access cost of f in S if f = f ′. For any file f and any trace T , we define
costf (T) as costf (T, ∅). For any trace T and any configuration S, we define
cost(T, S) as the sum, over all files f , of costf (T, S). For any trace T , we define
cost(T) as cost(T, ∅).

3 Equal Encode and Decode Costs

In this section, we consider a symmetric instance of the compression caching
problem which assumes that the encode cost and decode cost associated with
any encoding of a file are equal. We present an online algorithm for this problem,
and show that the algorithm is resource competitive. Interestingly, this problem
also corresponds to a multilevel storage scenario, as discussed in Section 3.2.

For the restricted version of the compression caching problem considered in
this section, we have encode(i, f) = decode(i, f) for any file f and index i. At
the expense of a small constant factor in the competitive ratio, we can assume
that, for any file f , the miss penalty p(f) is at least q · encode(m − 1, f), where
q > 1; and by preprocessing, we can arrange encodings of files in geometrically
decreasing sizes and geometrically increasing encode-decode costs. The basic idea
behind the preprocessing phase is as follows. First, consider any two encodings
with sizes (resp., similar encode-decode costs) within a constant factor. Second,
from these two encodings, select the one with smaller encode-decode cost (resp.,
smaller size), and eliminate the other. While an encoding can be eliminated by
one of the above preprocessing steps, we do so. After the above preprocessing
phase, we can arrange the encodings of files in geometrically decreasing sizes and
geometrically increasing encode-decode costs.

6 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

For ease of presentation, we assume that m encodings are selected for each
file in the preprocessing phase. More precisely, after the preprocessing phase,
for any file f and index i < m − 1, we have size(i + 1, f) ≤ 1

r
· size(i, f) and

encode(i+1, f) ≥ q ·encode(i, f), where r > 1. Also, we assume that the capacity
of the cache given to an online algorithm is b times that given to an offline
algorithm.

3.1 Algorithm

In Figure 1, we present our online algorithm ON. At a high level, ON is a
credit-rental algorithm. Algorithm ON maintains a containment property on
the encodings in the cache, defined as follows: If ON has the i-encoding of some
file f in the cache, then ON also has all the j-encodings of f for any index j ≥ i

in the cache. A credit is associated with each encoding present in the cache.
For any file f and index i, the i-encoding of f is created with an initial credit
decode(i+1, f), for i < m− 1, and credit p(f), for i = m− 1. On a request for a
file f , if the 0-encoding of f is not present in the cache, then ON creates space for
the 0-encoding of f , and for other i-encodings of f that are necessary to maintain
the containment property. Then, ON creates the 0-encoding of f , and any other
i-encodings of f that are necessary to maintain the containment property, with
an initial credit as described above. In order to create space, for each file present
in the cache, ON charges rent from the credit of the largest encoding of the file,
where rent charged is proportional to the size of the encoding, and deletes any
encoding with 0 credit. The credit-rental algorithm described here can be viewed
as a generalization of Young’s Landlord algorithm [9].

We use a potential function argument similar to that of Young to show that
ON is resource competitive. See [8, Section 3.3.2] for the complete proof of the
following theorem.

Theorem 1. Algorithm ON is resource competitive for any symmetric instance

of the compression caching problem.

3.2 Multilevel Storage

Consider an outsourced storage service scenario (for simplicity, here we describe
the problem for a single user) where we have multiple levels of storage. Each
storage space is specified by two parameters: storage cost and access latency to
the user. The user specifies a fixed overall budget to buy storage space at the
various levels, and generates requests for files. The goal is to manage the user
budget and minimize the total latency incurred in processing a given request
sequence. Our credit-rental algorithm for the compression caching problem with
equal encode and decode costs can be easily generalized to this scenario, and
we can show (using a similar analysis as above) that the generalized algorithm
is constant competitive with a constant factor advantage in the budget for the
aforementioned multilevel storage problem.

Online Compression Caching 7

1 {Initially, for any encoding µ of any file, credit(µ) = 0}
2 On a request for a file f
3 if f is not present in the cache then

4 createspace(f, m − 1)
5 for all indices i, add the i-encoding µ of f , with credit(µ) := decode(i + 1, f), if i < m − 1,

and with credit(µ) := p(f), if i = m − 1
6 else if the i-encoding µ of f is present in the cache (break ties by picking the minimum such i) then

7 evaluate h−1
i (µ)

8 credit(µ) := decode(i + 1, f)
9 if i > 0 then

10 createspace(f, i − 1)
11 for all indices j < i, add the j-encoding ν of f , with credit(ν) := decode(j + 1, f)
12 fi

13 fi

14 createspace(f, i)

15 sz :=
Pi

j=0 size(f, j)

16 while free space in the cache < sz do

17 δ := minµ∈X
credit(µ)

size(j,f′)
, where µ is the j-encoding of f ′

18 for each file f ′ such that there is an encoding of f ′ in the cache do

19 let µ be the largest (in size) encoding of f ′ in the cache
20 let j be the index of µ

21 credit(µ) := credit(µ) − δ · size(j, f ′)
22 if credit(µ) = 0 then

23 delete µ
24 fi

25 od

26 od

Fig. 1. The online algorithm ON for any symmetric instance of the compression caching problem.
Here, X is the cache content of ON.

4 Varying Encode Costs and Uniform Decode Costs

We say that an instance I = (σ,m, k) of the compression caching problem is a
uniform-decode instance if any file in σ satisfies the following properties. First,
we consider that the decode cost associated with different encodings of any file
in σ are the same; for any file f and any index i > 0, we abbreviate decode(i, f)
to decode. Second, we consider that for any index i, any file f and f ′ in σ,
size(i, f) = size(i, f ′), p(f) = p(f ′), and encode(i, f) = encode(i, f ′). For the
sake of brevity, we write encode(i, f) as encode(i).

We formulate this problem to explore the existence of resource competitive
algorithms for the problems in the class of compression caching. This problem
is also motivated by the existence of multiple formats of a multimedia file with
varying sizes and encode costs, and with roughly similar decode costs.

One might hope to generalize existing algorithms like Landlord for this prob-
lem, and to achieve resource competitiveness. However, in this section we show
that any deterministic online algorithm (even with an arbitrary factor capacity
blowup) for this problem is Ω(m)-competitive, where m is the number of possi-
ble encodings of each file. We also give an online algorithm for this problem that
is O(m)-competitive with O(m) factor capacity blowup.

8 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

4.1 The Lower Bound

In this section we show that any deterministic online algorithm (even with an
arbitrary factor capacity blowup) for any uniform-decode instance of the com-
pression caching problem is Ω(m)-competitive.

For any algorithm A, any request sequence σ, and any real number k, we
define config(A, σ, k) as the configuration of A after executing σ with a cache of
size k, starting with an empty configuration.

Informal overview At a high level, the adversarial request generating algo-
rithm Adversary works recursively as follows. For a given online algorithm ON,
a given number of encodings for a file m, a given cache capacity of the offline
algorithm k, and a blowup b, the algorithm Adversary(ON,m, k, b) picks a set
of files X such that any file in X is not in ON’s cache, and invokes a recursive
request generating procedure AdversaryHelper(X, i, σ,ON, k, b), where initially
|X| is the number of (m−1)-encodings that can fit in a cache of size k, i = m−1,
and σ is empty. This procedure returns a trace of the offline algorithm OFF. (See
Section 4.1 for formal definitions and a description of the algorithm.)

Consider an invocation of procedure AdversaryHelper(X, i, σ,ON, k, b). The
adversary picks a subset of the files Y from X such that any file f in Y satis-
fies certain conditions. For i > 1, if Y contains sufficiently many files, then the
adversary invokes AdversaryHelper(Y, i− 1, σ′,ON, k, b), where σ′ is the request
sequence generated; otherwise, AdversaryHelper(X, i, σ,ON, k, b) is terminated.
For i = 1, the adversary picks a file f in Y , and repeatedly generates requests for
f until either ON adds an encoding of f to its cache, or a certain number of re-
quests for f are generated. Finally, AdversaryHelper(X, 1, σ,ON, k, b) terminates
when Y is empty.

At a high level, the offline algorithm OFF works as follows. Algorithm OFF
decides the encodings for the files in X when AdversaryHelper(X, i, σ,ON, k, b)
terminates. For any index j ≥ i, if ON adds the j-encodings of less than a
certain fraction of files in X any time during the execution of the request
sequence generated by AdversaryHelper(X, i, σ,ON, k, b), then OFF adds the
i-encodings of all the files in X, and incurs no miss penalties in executing
the request sequence generated by AdversaryHelper(X, i, σ,ON, k, b). Otherwise,
OFF returns the concatenation of the traces generated during the execution of
AdversaryHelper(X, i, σ,ON, k, b). By adding the j-encodings of a certain frac-
tion of files in X, ON incurs much higher cost than OFF in executing the request
sequence generated by AdversaryHelper(X, i, σ,ON, k, b).

Using an inductive argument, we show that ON is Ω(m)-competitive for the
compression caching problem with varying encode and uniform decode costs.

Adversarial request generating algorithm Some key notations used in the
adversarial request generating algorithm are as follows.

For any file f and any real number b, eligible(f,m, b) holds if the following
conditions hold: (1) for any index i, size(i, f) = rm−i−1, where r = 8b; (2) p(f) =

Online Compression Caching 9

p; (3) for any index i, encode(i, f) = p · qi, where q = m
20 ; and (4) decode = 0.

The number of i-encodings of files that can fit in a cache of size k is denoted
num(k, i). Note that, for eligible files, num(k, i) is equal to r · num(k, i − 1).

For any algorithm A, any request sequence σ, any real number k, any file f ,
and any index i, we define a predicate aggressive(A, σ, k, f, i) as follows. If σ is
empty, then aggressive(A, σ, k, f, i) does not hold. If σ is equal to σ′ ◦ 〈f ′〉, then
aggressive(A, σ, k, f, i) holds if either aggressive(A, σ′, k, f, i) holds or, for some
index j ≥ i, the j-encoding of f is present in config(ON, σ, k).

For any request sequence σ, and any index i, any set of files X, we define
trace(σ, i,X) as follows. If σ is empty, then trace(σ, i,X) is empty. If σ is equal
to σ′ ◦ 〈f〉, then trace(σ, i,X) is trace(σ′, i,X) ◦ 〈(f, Y)〉, where Y is the set of
the i-encodings of files in X.

In Figure 2 we describe the adversarial request generating algorithm Adversary .
The caching decisions of the offline algorithm OFF are given by the trace T gen-

1 Adversary(ON, m, k, b)
2 T := ∅
3 while |T | < N do

4 X := set of num(k, m − 1) files f such that (1) eligible(f, m, b) holds; and
(2) f is not present in config(ON, requests(T), bk)

5 T := T ◦ AdversaryHelper(X, m − 1, requests(T), ON, k, b)
6 od

7 return T

8 AdversaryHelper(X, i, σ, ON, k, b)
9 T, σ′ := ∅, ∅

10 Y := X
11 repeat

12 if i = 1 then

13 Let f be an arbitrary file in Y
14 count := 0
15 repeat

16 σ′ := σ′ ◦ 〈f〉
17 S := config(ON, σ ◦ requests(T) ◦ σ′, bk)
18 count := count + 1
19 until f is not present in S or count ≥ 8
20 T := T ◦ trace(σ′, 0, {f})
21 σ′ := ∅
22 else

23 X′ := arbitrary subset of num(k, i − 1) files in Y

24 T ′ := AdversaryHelper(X′, i − 1, σ ◦ requests(T), ON, k, b)
25 T := T ◦ T ′

26 fi

27 reassign Y as follows: for any file f, f is in Y if and only if (1) f is in X
(2) f is not present in config(ON, σ ◦ requests(T), bk);
(3) costf (T) < (8 · ei − 8 · ei−1); and
(4) aggressive(ON, requests(T), bk, f, i) does not hold

28 until (i = 1 and |Y | = ∅) or (|Y | < num(k, i − 1))
29 if |{f ∈ X|aggressive(ON, requests(T), bk, f, i)}| < 2b · num(k, i − 1) then

30 T := trace(requests(T), i, X)
31 fi

32 return T

Fig. 2. The adversarial request generating algorithm for the compression caching problem with
varying encode and uniform decode costs. Here, N is the number of requests to be generated.

10 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

erated during the execution of Adversary (Figure 2). See [8, Section 3.4.1.3] for
the proof of the following theorem.

Theorem 2. Any deterministic online algorithm with an arbitrary factor capac-

ity blowup is Ω(m)-competitive for any uniform-decode instance I of the com-

pression caching problem, where m = numindex (I).

4.2 An Upper Bound

In this section we present an online algorithm that is O(m)-competitive with
O(m) factor capacity blowup for any uniform-decode instance I of the compres-
sion caching problem, where m = numindex (I). As in Section 3, by prepro-
cessing, we can arrange the encodings of files in decreasing sizes and increasing
encode costs; that is, after preprocessing, for any file f and any index i < m−1,
size(i+1, f) ≤ 1

r
size(i, f), and encode(i+1, f) ≥ q ·encode(i, f), where r = 1+ǫ,

q = 1 + ǫ′, ǫ > 0, and ǫ′ > 0.

Algorithm ON divides its cache into m blocks. For any index i, block i keeps
only the i-encodings of files. For any integer k and index i, let num(k, i) be the
maximum number of i-encodings of files that can fit in any block of size k.

Roughly speaking, ON works as follows. For any index i, ON adds the i-
encoding of a file f after the miss penalties incurred by ON on f sum to at least
encode(i, f). We use a standard marking algorithm as an eviction procedure for
each block. The complete description of ON is presented in [8, Figure 3.3].

See [8, Section 3.4.2.2] for the proof of the following theorem.

Theorem 3. For any uniform-decode instance I of the compression caching

problem, there exists an online algorithm that is is O(m)-competitive with O(m)
factor capacity blowup, where m = numindex (I).

5 Uniform Encode Costs and Varying Decode Costs

We say that an instance I(σ,m, k) of the compression caching problem is a
uniform-encode instance if any file in σ satisfies the following properties. First,
we consider that the encode costs of all the nontrivial encodings of any file f in σ

are the same; for any index i > 0, we abbreviate encode(i, f) to encode. Second,
we consider that for any index i, any file f and f ′ in σ, size(i, f) = size(i, f ′),
p(f) = p(f ′), and decode(i, f) = decode(i, f ′). For the sake of brevity, for any
file f in σ, we write decode(i, f) as decode(i).

In this section we show that any deterministic online algorithm (even with
an arbitrary factor capacity blowup) for any uniform-encode instance of the
compression caching problem is Ω(log m)-competitive, where m is the number
of possible encodings for each file. Further, we present an online algorithm for
this problem that is O(m)-competitive with O(m) factor capacity blowup.

Online Compression Caching 11

5.1 The Lower Bound

In this section, we show that any deterministic online algorithm (even with an
arbitrary capacity blowup) for any uniform-encode instance of the compression
caching problem is Ω(log m)-competitive.

For any given online algorithm ON with a capacity blowup b, we construct
a uniform-encode instance of the compression caching problem. For any file f

and index i < m − 1, we consider that size(i + 1, f) ≤ 1
r
· size(i, f), where

r > b. For any file f and index i such that 0 < i < m − 1, we consider that
decode(i + 1, f) ≥ decode(i, f) · log m. We also set the miss penalty p(f) to be
encode, and encode ≥ decode(m − 1, f) · log m.

Adversarial request generating algorithm Our adversarial request gener-
ating algorithm ADV takes ON as input, and generates a request sequence σ

and an offline algorithm OFF such that ON incurs at least log m times the cost
incurred by OFF in executing σ. For any file f , ADV maintains two indices
denoted wu(f) and wℓ(f); initially, wu(f) = m and wℓ(f) = 0. The complete
description of ADV is presented in [8, Figure 3.5].

Roughly, ADV operates as follows. Algorithm ADV forces ON to do a search
over the encodings of a file to find the encoding that OFF has chosen for that
file. Before any request is generated, ADV ensures that for any f , there is no
i-encoding of f in ON’s cache such that wℓ(f) ≤ i < wu(f). On a request for any
file f , if ON adds the i-encoding of f such that wℓ(f) ≤ i < wu(f), then ADV
readjusts wℓ(f) and wu(f) to ensure that the above condition is satisfied. If ON
does not keep the i-encoding of f such that i < wu(f), then ADV continues to
generate requests for f . Finally, when wu(f) = wℓ(f), OFF claims that OFF
has kept the i-encoding of f , where i = wℓ(f), throughout this process, and has
executed the requests for f . Then, ADV resets the variables wu(f) and wℓ(f) to
m and 0, respectively, and OFF deletes the encoding of f from its cache. In this
process, OFF incurs encoding cost of adding only one encoding of file f . On the
other hand ON incurs much higher cost than OFF because of adding multiple
encodings of f . See [8, Section 3.5.1.2] for the proof of the following theorem.

Theorem 4. Any deterministic online algorithm with an arbitrary factor ca-

pacity blowup is Ω(log m)-competitive for any uniform-encode instance of the

compression caching problem.

5.2 An Upper Bound

In this section we present an O(m)-competitive online algorithm ON with O(m)
factor capacity blowup for any uniform-encode instance I of the compression
caching problem, where m = numindex (I).

As in Section 3.1, by preprocessing, we can arrange the encodings of the
files in such a way that sizes are decreasing and decode costs are increasing. In
other words, after preprocessing, for any file f and index i < m − 1, size(i +

12 C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

1, f) < size(i, f), and decode(i + 1, f) > decode(i, f). Recall that for any file f ,
decode(m − 1, f) < p(f).

For any uniform-encode instance I = (σ,m, k), the online algorithm ON is
given a 2bm factor capacity blowup, where b is at least 1 + ǫ for some constant
ǫ > 0. We divide ON’s cache into 2m blocks, denoted i-left and i-right , 0 ≤
i < m, such that the capacity of each block is bk. For any index i, i-left keeps
only the i-encodings of files, and i-right keeps only the 0-encodings of files. For
any file f and index i, we maintain an associated value charge(f, i). Roughly,
whenever the cost incurred in miss penalties or decode costs on a file f exceeds
encode, then ON adds an encoding of the file that is cheaper in terms of the
access cost than the current encoding (if any) of f . The complete description of
algorithm ON is given in [8, Figure 3.6].

See [8, Section 3.5.2.2] for the proof of the following theorem.

Theorem 5. For any uniform-encode instance I of the compression caching

problem, there exists an online algorithm that is O(m)-competitive with O(m)
factor capacity blowup, where m = numindex (I).

References

1. B. Abali, M. Banikazemi, X. Shen, H. Franke, D. E. Poff, and T. B. Smith. Hardware
compressed main memory: Operating system support and performance evaluation.
IEEE Transactions on Computers, 50:1219–1233, 2001.

2. A. R. Alameldeen and D. A. Wood. Adaptive cache compression for high-
performance processors. In Proceedings of the 31st Annual International Symposium

on Computer Architecture, pages 212–223, June 2004.
3. B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.

Journal of Algorithms, 28:67–104, 1998.
4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, Cambridge, 1998.
5. P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings

of the 1st Usenix Symposium on Internet Technologies and Systems, pages 193–206,
December 1997.

6. E. G. Hallnor and S. K. Reinhardt. A unified compressed memory hierarchy. In
Proceedings of the 11th International Symposium on High-Performance Computer

Architecture, pages 201–212, February 2005.
7. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28:202–208, 1985.
8. M. Tiwari. Algorithms for distributed caching and aggregation.

http://www.cs.utexas.edu/users/plaxton/pubs/dissertations/mitul.pdf,
2007.

9. N. E. Young. On-line file caching. Algorithmica, 33:371–383, 2002.

