
A Sealed-Bid Unit-Demand Auction with Put Options∗

Chinmayi Krishnappa
chinmayi@cs.utexas.edu

C. Greg Plaxton
plaxton@cs.utexas.edu

February 2011

Abstract

We introduce a variant of the classic sealed-bid unit-demand auction in which each item
has an associated put option. The put option of an item is held by the seller of the item, and
gives the holder the right to sell the item to a specified target bidder at a specified strike price,
regardless of market conditions. Unexercised put options expire when the auction terminates. In
keeping with the underlying unit-demand framework, we assume that each bidder is the target
of at most one put option. The details of each put option — holder, target, and strike price —
are fixed and publicly available prior to the submission of unit-demand bids. We motivate our
unit-demand auction by discussing applications to the reassignment of leases, and to the design
of multi-round auctions.

In the classic sealed-bid unit-demand setting, the VCG mechanism provides a truthful auc-
tion with strong associated guarantees, including efficiency and envy-freedom. In our setting,
the strike price of an item imposes a lower bound on its price. The VCG mechanism does not
accommodate such lower bound constraints, and hence is not directly applicable. Moreover, the
strong guarantees associated with the VCG mechanism in the classic setting cannot be achieved
in our setting. We formulate an appropriate solution concept for our setting, and devise a truth-
ful auction for implementing this solution concept. We show how to compute the outcome of
our auction in polynomial time.

∗Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Supported by NSF Grant
CCF–0635203 and THECB NHARP Grant 003658–0235–2007.

1 Introduction

Consider an auction in which many different items are for sale. Assume that a bidding agent assigns
a separate value to each item, and is interested in acquiring at most one item. Such an agent is
said to have unit-demand preferences. In a unit-demand auction, the bid of an agent takes the
same form as a unit-demand preference function: The agent specifies an offer for each item, with
the understanding that the bid can win at most one item. A put option associated with an item is
a commitment between two parties — the holder of the put and the target of the put. The holder
of the put possesses the right to sell the item to the target of the put at a specified “strike price”,
regardless of the current market prices.

In this paper, we consider a new variant of the classic sealed-bid unit-demand auction in which
each item is associated with a predetermined fixed put that expires when the auction terminates.
The holder of an item’s put is the seller of the item and the target is an agent in the auction
under the constraint that no agent is the target of more than one put. We restrict attention to the
case of no side-payments — the outcome of the auction consists of an allocation and pricing of the
items, and each agent who is allocated an item pays the item’s price to the seller of the item. We
seek to formulate a suitable solution concept for this setting and to design a truthful auction that
implements this solution concept.

Our auction finds motivation in several applications, some of which are described below. As
a first application, we introduce the following “Lease Exchange” problem. Consider a number of
leased apartments and a number of agents with unit demand preferences for renting the apartments.
The lessees of some apartments seek to break their current leases. We would like to reallocate and
reprice the apartments such that each lessor receives at least the monthly rent being paid by the
current lessee for the remainder of the lease term. Our auction provides a suitable way to do so. We
model each apartment as an item in our auction. The lessor of each apartment holds a put of the
apartment whose target is the current lessee and whose strike price is equal to the current monthly
rent of the apartment. In practice, a lease involves many other important considerations including
varying lease terms and lessee specific adjustments that have been ignored in our simple example.
Such factors are easily handled by allowing lessors to specify additive amounts for each option and
incorporating these amounts into the bidding based on the options chosen by each agent.

In combinatorial auction design, it is often useful to follow a two-phase approach e.g. the clock-
proxy auction proposed by Ausubel et al. [3]. A second application of our auction is in implementing
the second phase of a two-phase combinatorial auction. In general, our auction is a candidate for
implementing the last round of any dynamic unit-demand auction.

A natural third application of our auction is in the design of a dynamic unit-demand auction
in which each round is resolved using the sealed-bid auction proposed in this paper. In the first
round of the dynamic auction, the seller of each item holds a put whose target is a dummy agent
and whose strike price is equal to the reserve price of the item. In each subsequent round, each
item is associated with a put whose target is the agent who is tentatively allocated to the item in
the previous round, and whose strike price is the price of the item determined by the auction in the
previous round. Such a dynamic auction generalizes the eBay auction for the unit-demand setting.

In the standard sealed-bid unit-demand context, one can apply the well-known Vickrey-Clarke-
Groves (VCG) mechanism [16, 4, 7] to obtain an auction that is truthful, efficient, and envy-free [17].
For an item in our setting, the strike price of the item imposes a lower bound on the auction price
of the item — by exercising the item’s put, the seller of the item can ensure that the auction price is
at least as high as the strike price. Due to these lower bound constraints on prices, we find that the
VCG mechanism is not well-suited for our setting. Moreover, in our setting, we cannot guarantee
the strong properties that are achieved by VCG in the classic setting. For example, consider an

1

auction instance in which no agent bids on a particular item. The auction would be forced to
allocate the item to the target of its put at its associated strike price even if such an allocation
violates the envy-freedom property of the target. As a result, we formulate a solution concept that
is appropriate for our setting.

Solution concept. We now informally introduce the solution concept adopted in the present
work. In Section 2.4, we provide a formal specification of the associated equilibrium conditions.

We say that an agent u is “satisfied” in an outcome if u satisfies the standard properties of
voluntary participation and envy-freedom (see Section 2.3 for the formal definitions). For the
classic sealed-bid unit-demand auction, a solution is said to be Walrasian if all of the agents are
satisfied. Moreover, the VCG mechanism returns a Walrasian solution where the pricing is given
by the unique minimum price vector over all Walrasian solutions. For the present problem, we
relax the Walrasian conditions by requiring only a certain subset of the agents in an outcome to be
satisfied. For example, we enforce the natural requirement that if an agent u is not allocated, then
u is satisfied; equivalently, each component of the unit-demand bid of u is required to be less than
or equal to the price of the corresponding item. Additionally, we require that if a non-allocated
agent u is indifferent to being allocated to an item v that is allocated to some agent u′, then u′ is
satisfied. Continuing in this manner, we require that if a non-allocated agent u is indifferent to being
allocated to an item v that is allocated to agent u′, and u′ is indifferent to being allocated to an item
v′ (not equal to v) that is allocated to agent u′′, then u′′ is satisfied, and so on. In the terminology
of the well-known Hungarian algorithm [12] for weighted bipartite matching, the aforementioned
sequence of requirements may be stated more concisely as follows: If an agent u belongs to the
Hungarian tree rooted at some non-allocated agent, then u is satisfied. (In Section 2.3, we formalize
this requirement as a reachability condition in a suitably defined digraph.) The class of solutions
meeting the latter requirement — which clearly includes all Walrasian solutions — plays a central
role in our work. We refer to such solutions as “semi-Walrasian” (see Condition 1 in Section 2.4).

A key observation underlying the design of our solution concept is that a semi-Walrasian solution
implicitly partitions the items into two sets: the set of all items v such that any positive decrease
in the price of v (while leaving the prices of all other items unchanged) yields a solution that is no
longer semi-Walrasian, and the remaining items. In Section 2.3, the former items are defined to
be “priced at market”, and the latter items are defined to be “priced above market”. For an item
that is priced at market, the associated put need not be exercised in order to justify the price. For
such an item v, the price is required to be at least the strike price (see Condition 2 in Section 2.4);
otherwise, the seller of item v would prefer to exercise the put associated with v. For an item that
is priced above market, the price can only be justified via exercise of the associated put; for such
an item we require the price to be equal to the strike price (see Condition 3 in Section 2.4).

We require that the set of items V ′ priced above market be purchased by the set of agents
U ′ who are targets of the associated puts (see Condition 4(a) in Section 2.4); the motivation
for this requirement is that the items in V ′ are too expensive to be of interest to any of the
remaining agents. The problem of determining a suitable allocation of V ′ to U ′ may be viewed
as an instance of the house allocation problem [13]; accordingly, we enforce standard desiderata
related to voluntary participation (see Condition 4(b) in Section 2.4) and Pareto-efficiency (see
Condition 5 in Section 2.4).

The main contribution of this paper is a truthful auction that returns a pricing and allocation
satisfying all of the equilibrium conditions outlined above. Furthermore, our auction admits a
polynomial-time implementation. We also establish a property related to privacy preservation that
is critical for the dynamic unit-demand auction application mentioned earlier in this introduction.

A two-phase approach. We construct a two-phase auction that draws on two fundamental
techniques, one from the realm of mechanism design for numerical preferences — the dynamic unit-

2

demand approximate auction of Demange et al. [5] — and one from the realm of mechanism design
for ordinal preferences — the Top Trading Cycles (TTC) algorithm [13]. In what follows, we will
refer to the dynamic unit-demand approximate auction of Demange et al. as DGS-approximate.
The DGS-approximate auction is an ascending-price auction that proceeds in rounds. In each
round, agents that are not tentatively allocated are consulted in round-robin order and given the
opportunity to either select an item, or pass. If an unallocated agent u selects an item v, the
tentative price of item v is increased by a parameter δ, and the tentative allocation is updated to
reflect that item v is allocated to agent u. The DGS-approximate algorithm terminates when all of
the unallocated agents pass.

Informally, the first phase of our auction corresponds to the following proxy version of DGS-
approximate. We fix an initial tentative allocation and pricing of the items as follows: each item is
allocated to the target of its put and has a price equal to the strike price of its put. We associate
with each agent u, a proxy agent u′ who employs the following strategy to bid on behalf of u in
each round of DGS-approximate: if the tentative price on every item exceeds u’s offer on the item,
then u′ passes; otherwise, u′ selects an item with the highest utility for u (difference between u’s
offer on the item and the tentative price of the item). On termination of the auction, we identify
as “unhappy” each agent who is allocated to an item, but strictly prefers some other item at the
current prices. It is easy to see that the set of unhappy agents are a subset of the agents in
the initial tentative allocation. We note that in the limit as δ approaches zero, the proxy based
DGS-approximate auction achieves a relaxed form of efficiency: the auction is efficient if the unit-
demand bid of each unhappy agent is replaced with a single offer on its allocated item equal to the
strike price of the item. The proxy based DGS-approximate auction also achieves a relaxed form
of envy-freedom — the auction is envy-free for all agents other than the set of unhappy agents.

The second phase of our auction corresponds to a single application of the TTC algorithm on
a suitably defined instance of the house allocation problem [13]. The second phase of our auction
affects only the allocation, and keeps the item prices unchanged. The proposed two-phase auction
computes an outcome in the weak core and achieves the relaxed forms of efficiency and envy-
freedom that are described with respect to the first phase. Alternatively, by employing the TC≺

algorithm of Jaramillo and Manjunath [9] in the second phase, we achieve Pareto-efficiency of our
two-phase auction. The TC≺ algorithm runs in polynomial time and produces a strategy-proof and
Pareto-efficient outcome for the house allocation problem in the absence of strict preferences.

The two-phase approach proposed above has two shortcomings. Firstly, the auction is not
truthful for any positive value of δ. Secondly, the δ parameter associated with the DGS-approximate
auction leads to a trade-off between speed and efficiency in the first phase. The running time of the
first phase increases as δ diminishes (it takes O(1/δ) time to increase the item prices by a constant).
Furthermore, for large values of δ, the auction is not efficient, even in the relaxed form discussed
above. We address these shortcomings in our work. We provide a polynomial time implementation
of the first phase auction. By carefully breaking ties, we successfully obtain a truthful first phase
auction. The composition of two truthful auctions is not necessarily truthful. We successfully
show that the two-phase auction obtained by composing the truthful first and second phases is also
truthful.

The theory of two-sided matchings has a rich history. In recent work, Fujishige and Tamura [6]
show the existence of a stable matching in a generalized many to many matching model with upper
and lower bounds on payments. The model proposed by Fujishige and Tamura generalizes various
previous two-sided matching models; see [6] for a discussion of the relevant literature. Like much
of the prior work in this line of research, the work of Fujishige and Tamura does not address issues
related to incentive compatibility. In applying the theory of two-sided matchings to the design of
auctions, a fundamental challenge is to identify two-sided matching models where truthfulness is

3

achievable. Aggarwal et al. [1] address this challenge for a special case of Fujishige and Tamura’s
model with applications to sponsored search auctions. Specifically, for the unit-demand auction
setting with bidder and item specific minimum and maximum prices, Aggarwal et al. provide
a truthful auction that computes a bidder optimal stable matching. Similarly, for the setting
considered in the present work, our central focus is to obtain a truthful auction.

In the auction of Aggarwal et al. , each agent submits a value and a maximum price that the
agent is willing to pay for each item. We observe that the algorithm of Aggarwal et al. can be used
to implement the first phase of our auction in the special case where each agent that is the target
of a put values the associated item strictly below than the strike price of the put. This special
case of our auction can be modeled in the framework of Aggarwal et al. as follows: For each item
and agent pair where the agent is the target of the item’s put, we submit a value of infinity and a
maximum price equal to the strike price of the put; for every other agent and item pair, we submit
the agent’s offer for the item as the value and maximum price; we set the reserve price of each item
to the strike price of its put.

Recall the lease exchange problem that was discussed earlier in this introduction. A lessee may
sometimes value his leased apartment below its current rent. In such cases, the first phase of our
auction can be implemented using the algorithm of Aggarwal et al. [1] as described above. However,
it is not difficult to see that a lessee’s value for his leased apartment may in certain cases be higher
that the current rent. Note that the decision to put the apartment in the auction may not rest with
the lessee; in such situations, the lessee may be willing to pay a higher rent to retain his current
apartment. Even in situations where the lessee decides to put the apartment in the auction, it is
not uncommon to have lessees who are willing to risk winning their current apartments at higher
monthly rates.

Organization of the paper. We present and analyze our auction in two layers. Within the
technical body of this paper, we present two unit-demand auctions — the bottom-level auction and
the top-level auction. The top-level auction is our proposed sealed-bid unit-demand auction and
consists of two phases as discussed above. The first phase, which affects both the allocation and
pricing, is defined in terms of the bottom-level auction. The bottom-level auction is dynamic with
each round corresponding to an agent raising all of its offers by exactly one unit.

The remainder of the paper is organized as follows. Section 2 provides a formal description of
our problem. Section 3 provides a foundation for the technical presentation to follow. Sections 4
and 5 present the bottom-level and top-level auctions respectively. Section 6 offers some concluding
remarks.

2 Problem Formulation

In formulating our problem, we first introduce the notions of bid-graphs and configurations. Bid-
graphs and configurations model the inputs and outputs of our auctions.

2.1 Agents and Items

We refer to the bidders in our auction as agents. In order to break ties among agents, we identify
each agent with a binary string. We define the maximum over an empty set of agents as the
empty agent ε. An item v in our auction is a pair where the first component is a binary string
identifier, denoted id(v), and the second component is an integer lower bound on the price of v,
denoted min(v). We allow the price of an item in our auction to be negative in order to support
procurement-type auctions.

4

2.2 Bid-Graphs

A bid-graph encapsulates a set of items and a set of agents having unit-demand bids on the items.
Formally, a bid-graph is an edge-weighted complete bipartite graph G = (U, V,w), where U is a set
of agents, V is a set of items, w is a function from the set U × V to the set of integers, and the
following conditions are satisfied: (1) the cardinality of U is at least the cardinality of V ; (2) for
any agent u in U , agent u is nonempty; (3) for any pair of distinct items v and v′ in V , we have
id(v) 6= id(v′).

2.3 Configurations

A configuration encapsulates a bid-graph along with an associated outcome (allocation and pricing
of the items).

A configuration χ is a triple (G,M,Φ), where G = (U, V,w) is a bid-graph, M is a maximum
cardinality matching (MCM) of G, and Φ is a potential function that maps each item v in V to
an integer Φ(v) such that Φ(v) ≥ min(v). In the definitions that follow, let χ = (G,M,Φ) be a
configuration where G = (U, V,w).

We define matched(χ) as the subset of agents in U that are matched in M , and we define
unmatched(χ) as the set of agents in U \matched(χ). For any item v in V , we define match(χ, v) as
the agent u in U such that the edge (u, v) belongs to M . For any agent u in U , we define gap(χ, u)
as w(u, v)− Φ(v) if match(χ, v) = u, and as zero otherwise.

We say that an agent u in U satisfies voluntary participation if gap(χ, u) is nonnegative, and that
u satisfies envy-freedom if gap(χ, u) ≥ w(u, v) − Φ(v) for all items v in V . We say χ is Walrasian
if every agent u in U satisfies voluntary participation and envy-freedom.

We now characterize a suitable directed graph on χ and formulate a reachability condition on
this directed graph. We define digraph(χ) as the directed graph (U ∪ V,A), where A is the set of
arcs that includes for each edge (u, v) in M such that w(u, v) ≥ w(u, v′) for every item v′ in V − v:
(1) an arc (v, u) if edge (u, v) is in M ; (2) an arc (u, v) if edge (u, v) is not in M . For any agent u
in unmatched(χ), we define items(χ, u) as the set of items v in V such that there exists a directed
path from agent u to item v in digraph(χ). In the terminology of the Hungarian algorithm, the set
items(χ, u) is the set of items reachable from agent u in the Hungarian tree rooted at u.

We now formally introduce semi-Walrasian configurations that we referred to during the dis-
cussion of the solution concept in the introduction. A configuration χ is semi-Walrasian if for every
agent u in unmatched(χ) and every item v in items(χ, u), the agent match(χ, v) satisfies voluntary
participation and envy-freedom.

A semi-Walrasian configuration χ induces a partition of the items into two sets: the set of items
that belong to items(χ, u) for some agent u in unmatched(χ), and the remaining items. We say
that the items in the former set are priced at market, and that the remaining items are priced above
market. For the standard sealed-bid unit-demand auction, the VCG mechanism yields a Walrasian
configuration in which every item is priced at market.

2.4 Problem Statement

We use configurations to represent both the inputs and outputs of our auction. For any configuration
χ = (G,M,Φ) as input where G = (U, v, w), and any item v in V , the target of v’s put is the agent
match(χ, v), and the strike price of v’s put is Φ(v).

Given a configuration χ0 = (G,M0,Φ0) as input where G = (U, V,w), we seek to devise a truth-
ful mechanism that computes a configuration χ = (G,M,Φ) satisfying the equilibrium conditions
listed below.

5

1. The configuration χ is semi-Walrasian.

2. For any item v in V that is priced at market, we have Φ(v) ≥ Φ0(v).

3. For any item v in V that is priced above market, we have Φ(v) = Φ0(v).

4. Let V ′ denote the set of all items in V that are priced above market. Then there is a
permutation π of V ′ such that the following conditions hold.

(a) For any item v in V ′, match(χ, π(v)) = match(χ0, v).

(b) For any item v in V ′ having match(χ0, v) = u, gap(χ, u) ≥ gap(χ0, u).

5. For any configuration χ′ = (G,M ′,Φ), if there exists an agent u in U such that gap(χ, u) <
gap(χ′, u), then there exists an agent u′ in U such that: (strong version) gap(χ′, u′) <
gap(χ, u′); (weak version) u′ is matched differently in M and M ′, and gap(χ′, u′) ≤ gap(χ, u′).

The reader will note that above conditions are stated in terms of an agent’s gap rather than
the utility. For a unit-demand auction where agents bid truthfully, the gap of an agent is equal to
its utility, and (the weak version of) Condition 5 corresponds to a solution in the (weak) core. Our
reference to the (weak) core is in the sense defined by Jaramillo and Manjunath [9]. Consequently,
for a truthful auction, a solution in the core satisfies Pareto-efficiency, and a solution is in the
weak core satisfies the following property: no subset of agents can exchange their allocated items
amongst themselves such that every agent in the subset experiences a strict improvement in utility.

3 Additional Definitions

In Section 2, we introduced the notions of bid-graphs and configurations. Below we present addi-
tional definitions related to bid-graphs and configurations. We also introduce additional types that
are useful in our analysis.

3.1 Bid-Graphs

In general, an agent’s unit-demand bid may not include an offer for every item in the bid-graph.
In this paper, we assume that an agent’s unit-demand bid includes an integer offer for every item
in the big-graph, and we choose to represent the absence of an offer by a negative integer that is
sufficiently large in magnitude.

For any set of items V , we define a (unit-demand) bid on V as a function that maps each item
in V to an integer. In the definitions that follow, let G = (U, V,w) be a bid-graph. We define
bids(G) as the set of all possible bids on the set V . For any agent u in U , we define bid(G, u) as
the bid β in bids(G) such that β(v) = w(u, v) for any item v in V .

For any nonempty agent u not in U , and any bid β in bids(G), we define add(G, u, β) as the
bid-graph G′ = (U + u, V, w′) where bid(G′, u) = β and bid(G′, u′) = bid(G, u′) for any agent u′ in
U . For any nonempty agent u not in U , any item v in V , and any integer z, we define add(G, u, v, z)
as add(G, u, β), where β is the bid in bids(G) such that β(v) = z and β(v′) = min(v′)− 1 for any
item v′ in V − v.

For any any agent u in U , and any integer z, we define shift(G, u, z) as the bid-graph (U, V,w′)
where w′(u, v) = w(u, v) + z for any item v in V , and w′(u′, v) = w(u′, v) for any agent u′ in U − u
and any item v in V . For any any agent u in U , and any bid β in bids(G), we define subst(G, u, β)
as the bid-graph G′ = (U, V,w′) where bid(G′, u) = β, and bid(G′, u′) = bid(G, u′) for any agent u′

in U − u.

6

3.2 Configurations

In the definitions that follow, let χ = (G,M,Φ) be a configuration where bid-graph G = (U, V,w).
We say χ is efficient if M is a maximum weight MCM (MWMCM) of G. The function agents(χ)

is the set U and the function items(χ) is the set V . For any item v in V , we define amount(χ, v)
as w(match(χ, v), v), and we define amount(χ) as the function that maps each item v in V to
amount(χ, v). We define positive(χ) as the set of agents u in U such that gap(χ, u) > 0 and we
define the set nonpositive(χ) as U \ positive(χ).

For any bid β in bids(G), we define max-gap(χ, β) as the maximum over all items v in V , of
β(v)− Φ(v). For any bid β in bids(G), we define pseudo-demand(χ, β) as the set of all items v in
V such that β(v) − Φ(v) = max-gap(χ, β). For any bid β in bids(G), we define demand(χ, β) as
pseudo-demand(χ, β) if max-gap(χ, β) ≥ 0, and as the empty set ∅ otherwise. For any item v in V ,
we define bids(χ, v) as the set of all bids β in bids(G) such that v belongs to demand(χ, β). For any
agent u in U , we define max-gap(χ, u) as max-gap(χ, bid(G, u)), we define pseudo-demand(χ, u) as
pseudo-demand(χ, bid(G, u)), and we define demand(χ, u) as demand(χ, bid(G, u)).

For any nonempty agent u not in U , and any bid β in bids(G), we define add(χ, u, β) as the
configuration (add(G, u, β),M,Φ). Similarly, for any nonempty agent u not in U , any item v in V ,
and any integer z, we define add(χ, u, v, z) as the configuration (add(G, u, v, z),M,Φ).

For any agent u in U and any bid β in bids(G), we denote the configuration (subst(G, u, β),M,Φ)
by subst(χ, u, β). For any agent u in U and any nonempty agent u′ not in U , we define subst(χ, u, u′)
as the configuration obtained from χ by replacing all occurrences of agent u with agent u′. For any
agent u in U and any integer z, we define shift(χ, u, z) as the configuration subst(χ, u, β) where β
is the bid in bids(G) such that β(v) = w(u, v) + 1 for any item v in V .

3.3 Agent Colors

We identify special classes of configurations (e.g. Walrasian configurations) by adopting a suitable
coloring scheme of the agents. Every agent in a configuration is colored white, gray, or black
according to certain rules. Informally, a non-black agent satisfies voluntary participation and envy-
freedom, and a white agent satisfies a certain tie-breaking convention described below.

For any configuration χ, the color of any agent u in agents(χ) is determined as follows. We first
consider the case where agent u belongs to matched(χ). In this case, let v be the item such that
match(χ, v) = u. If v does not belong to pseudo-demand(χ, u), then agent u is black. If v belongs
to demand(χ, u), then agent u is white. Otherwise, agent u is gray. Next, we consider the case
where agent u belongs to unmatched(χ). In this case, if max-gap(χ, u) > 0, then agent u is black.
If max-gap(χ, u) = 0, and there exists some item v in items(χ, u) such that either match(χ, v) is
non-white, or match(χ, v) < u and gap(χ,match(χ, v)) = 0, then agent u is gray. Otherwise, agent
u is white.

We define white(χ) as the set of white agents in χ. The sets gray(χ), black(χ), nonblack(χ),
and nonwhite(χ) are defined similarly.

3.4 Walrasian configurations

In this section, we formalize the notion of Walrasian solutions that were discussed in Section 2.
The results of the present section and the following section on white configurations follow from
standard results in the literature; these sections have been included in order to provide a self-
contained presentation.

A configuration χ = (G,M,Φ) is Walrasian if matched(χ) ⊆ white(χ) and unmatched(χ) ⊆
nonblack(χ). A bid-graph G is Walrasian if it admits a Walrasian configuration of the form

7

(G,M,Φ). The following is a list of definitions and lemmas related to Walrasian configurations.

Lemma 3.1. For any bid-graph G′ of the form add(G, u, β), if bid-graph G is Walrasian then the
bid-graph G′ is Walrasian.

Proof. Since G is Walrasian, there exists some Walrasian configuration of the form (G,M,Φ). It
follows that M is an MWMCM of G, and thus there exists some MWMCM M ′ of G′. Koopmans and
Beckmann [10] show the existence of prices satisfying the Walrasian properties in the unit-demand
setting; thus, there exists some Walrasian configuration of the form (G′,M ′,Φ′).

Lemma 3.2. If χ = (G,M,Φ) is a Walrasian configuration, then M is an MWMCM of G.

Proof. By definition, every agent in matched(χ) is white; thus for every item v in items(χ), we
have w(match(χ, v), v) ≥ Φ(v). Similarly, for every agent u in unmatched(χ) and every item v in
items(χ), we have w((u, v)) ≤ Φ(v). It follows that any MCM of G with higher weight than M
must match the set of agents in matched(χ).

Suppose there exists an MCM M ′ of G that matches agents in matched(χ) and has higher
weight than M . Since every agent in matched(χ) is white, it follows that w((u, v)) − Φ(v) ≥
w((u, v′)) − Φ(v′), where v and v′ are the items matched to u in M and M ′ respectively. Thus,∑
(u,v)∈M

w((u, v)) − Φ(v) ≥
∑

(u′,v)∈M ′
w((u′, v)) − Φ(v). Thus, M ′ cannot be of higher weight than

M .
For any Walrasian bid-graph G, we define potentials(G) as the set of all potential functions Φ

such that there exists a Walrasian configuration of the form (G,M,Φ).

Lemma 3.3. Let (G,M,Φ) be a Walrasian configuration where bid-graph G = (U, V,w), and let
M∗ be an MWMCM of G. Let P be a path in the undirected graph (U ∪V,M ⊕M∗). Let A denote
the set of edges of P that are in M and let B denote the set of edges of P that are in M∗. Then
the configuration (G,M −A+B,Φ) is Walrasian.

Proof. Let path P be defined by the sequence of vertices u0, v0, u1, v1, · · ·vk−1, uk. We use the fact
that (G,M,Φ) is Walrasian to derive the following equations.

w((uk, vk−1)) ≥ Φ(vk−1), (1)
w((u0, v0)) ≤ Φ(v0), (2)

w((ui, vi−1))− Φ(vi−1) ≥ w((ui, vi))− Φ(vi) (3)

for all i such that 0 < i < k. Rewriting inequalities 1 and 2 as w((uk, vk−1)) − Φ(vk−1) ≥ 0
and 0 ≥ w((u0, v0)) − Φ(v0), respectively, and then adding the latter inequalities to those ob-
tained from 3, we find that the potential terms all cancel out, and we are left with the inequality∑

0<i≤k w((ui, vi−1)) ≥
∑

0≤i<k w((ui, vi)). Since M and M∗ are both MWMCMs, the above in-
equality is tight. It follows that all of the inequalities we summed in order to obtain the above
inequality are also tight. In other words, we have

w((uk, vk−1)) = Φ(vk−1), (4)
w((u0, v0)) = Φ(v0), (5)

and

w((ui, vi−1))− Φ(vi−1) = w((ui, vi))− Φ(vi) (6)

8

for all i such that 0 < i < k. Armed with the above equations, we are now ready to establish that
(G,M ′,Φ) is Walrasian.

First we show that for all edges e = (u, v) in M ′ \M , w(e) ≥ Φ(v). The latter claim follows
immediately from Equations 5 and 6. Next we show that for all nodes v such that (uk, v) belongs
to M ⊕M∗, w((uk, v)) ≤ Φ(v). (Notice that uk is the only node that is matched under M and
unmatched under M ′.) For v = vk−1, the desired inequality holds tightly by Equation 4. For
v 6= vk−1, Walrasian property of (G,M,Φ) implies w((uk, vk−1))−Φ(vk−1) ≥ w((uk, v))−Φ(v), so
the desired inequality follows from Equation 4.

Finally, we show that for any edges e = (u, v) and e′ = (u, v′) such that (u, v) belongs to M ′,
w(e)−Φ(v) ≥ w(e′)−Φ(v′). We consider three subcases. In the first subcase, assume that u is not
equal to one of the ui’s, 0 ≤ i ≤ k. In this subcase, the claim follows from the Walrasian property
of (G,M,Φ). In the second subcase, assume that u = u0, which is unmatched in M and matched
via edge e = (u0, v0) in M ′. Let edge e′ = (u0, v

′) belong to E, where v′ 6= v0. Then Equation 5
implies that w(e)−Φ(v0) = 0, and the Walrasian property of (G,M,Φ) implies that w(e′) ≤ Φ(v′);
hence w(e)−Φ(v0) ≥ w(e′)−Φ(v′), as required. In the third subcase, assume that u = ui for some
i such that 0 < i < k. (We do not need to consider u = uk because uk is unmatched in M ′.) Notice
that ui is matched in M ′ via edge e = (ui, vi). Let edge e′ = (ui, v′) belong to E, where v′ 6= vi.
If v′ = vi−1, the required inequality w(e) − Φ(vi) ≥ w(e′) − Φ(v′) holds tightly by Equation 6.
Otherwise, Equation 6 implies that w(e)−Φ(vi) = w((ui, vi−1))−Φ(vi−1), the Walrasian property
of (G,M,Φ) implies that w((ui, vi−1))−Φ(vi−1) ≥ w(e′)−Φ(v′), and hence the required inequality
w(e)− Φ(vi) ≥ w(e′)− Φ(v′) holds.

Lemma 3.4. Let (G,M,Φ) be a Walrasian configuration where bid-graph G = (U, V,w), and let
M∗ be an MWMCM of G. Let C be a cycle in the undirected graph (U ∪V,M ⊕M∗). Let A denote
the set of edges of C that are in M and let B denote the set of edges of C that are in M∗. Then
the configuration (G,M −A+B,Φ) is Walrasian.

Proof. The proof is similar to that of Lemma 3.3.

Lemma 3.5. For any Walrasian bid-graph G, any MWMCM M of G, and any potential function
Φ in potentials(G), the configuration (G,M,Φ) is Walrasian.

Proof. Let M denote the set of all MWMCMs M ′ of G such that (G,M ′,Φ) is Walrasian. Since
Φ is in potentials(G), the set M is guaranteed to be nonempty. Fix an MWMCM M∗ in M
such that |M \ M∗| is minimized. It is sufficient to prove that M = M∗. We prove this by
contradiction. Assume that |M \M∗| is equal to some positive integer k. Consider the undirected
graph G′ = (U ∪V,M ⊕M∗). Since no vertex in G′ has degree greater than 2, it can be partitioned
into isolated vertices, simple paths of positive length, and simple cycles of positive length. Since
k > 0, we are assured that G′ contains either a simple path of positive length or a simple cycle of
positive length. We consider these two cases separately.

• Graph G′ contains a simple path P of positive length

Let A and B denote the sets of edges of P that are in M∗ and M respectively. By Lemma3.3,
the configuration (G,M ′,Φ) is Walrasian, where M ′ = M∗−A+B. Furthermore, |M \M ′| =
k − |A| < k, contradicting the definition of M∗.

• Graph G′ contains a simple cycle C of positive length

Let A and B denote the sets of edges of P that are in M∗ and M respectively. By Lemma 3.4,
the configuration (G,M ′,Φ) is Walrasian, where M ′ = M∗−A+B. Furthermore, |M \M ′| =
k − |A| < k, contradicting the definition of M∗.

9

Lemma 3.6. For any Walrasian bid-graph G, the functions in potentials(G) form a lattice with
meet and join operations given by pointwise minimum and maximum, respectively.

Proof. Let G = (U, V,w) and let Φ0 and Φ1 be potential functions in potentials(G). Let Φ and
Φ′ be potential functions such that for any item v in V , Φ(v) = min(Φ0(v),Φ1(v)) and Φ′(v) =
max(Φ0(v),Φ1(v)). We are required to show that configurations (G,M,Φ) and (G,M,Φ′) are
Walrasian. In what follows, we will show that (G,M,Φ) is Walrasian. By a similar argument, it
follows that (G,M,Φ′) is also Walrasian.

Observe that (G,M,Φ0) and (G,M,Φ1) are Walrasian; thus, for any edge (u, v) in M , we
have w((u, v)) ≥ Φ0(v) and w((u, v)) ≥ Φ1(v); thus w((u, v)) ≥ Φ(v). Similarly, for any agent u
unmatched in M and any item v in V , we have w((u, v)) ≤ Φ0(v) and w((u, v)) ≤ Φ1(v); thus
w((u, v)) ≤ Φ(v). It now remains to be shown the following condition: for any edge (u, v) in M
and any item v′ in V − v, we have w((u, v)) − Φ(v) ≥ w((u, v′)) − Φ(v′). We accomplish this by
showing that the condition holds when Φ(v) = Φ0(v). It follows by symmetry that the condition
also holds when Φ(v) = Φ1(v). Fix an arbitrary item v′ in V , and consider the following two cases.

• Φ(v′) = Φ0(v′).

Since (G,M,Φ0) is Walrasian, we have w((u, v))−Φ0(v) ≥ w((u, v′))−Φ0(v′); using Φ(v) =
Φ0(v) and Φ(v′) = Φ0(v′), we obtain the desired inequality w((u, v)) − Φ(v) ≥ w((u, v′)) −
Φ(v′).

• Φ(v′) = Φ1(v′)

By the Walrasian property of configuration (G,M,Φ1), we have w((u, v))−Φ1(v) ≥ w((u, v′))−
Φ1(v′). Since Φ(v) = Φ0(v), we have Φ0(v) ≤ Φ1(v). Thus w((u, v)) − Φ0(v) ≥ w((u, v′)) −
Φ1(v′); using Φ(v) = Φ0(v) and Φ(v′) = Φ1(v′), we obtain the desired inequality w((u, v))−
Φ(v) ≥ w((u, v′))− Φ(v′).

For any Walrasian bid-graph G, we define max-potential(G) and min-potential(G) as the max-
imum and minimum functions in potentials(G); the existence of these functions is guaranteed by
Lemma 3.6.

Lemma 3.7. For any bid-graph G′ of the form add(G, u, v, z) where bid-graph G is Walrasian,
there exists a unique integer z0 such that the following conditions hold:

• If z > z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u belongs to matched(χ).

• If z < z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u belongs to unmatched(χ).

• If z = z0, then there exist Walrasian configurations χ = (G′,M,Φ) and χ′ = (G′,M ′,Φ) such
that agent u belongs to matched(χ) ∩ unmatched(χ′).

Proof. Let Φ = max-potential(G) and let M be some MWMCM of G. Since G is Walrasian,
(G,M,Φ) is Walrasian. Thus the weight of any MWMCM of G is at least equal to

∑
v∈G Φ(v).

By Lemma 3.1, G′ is Walrasian and by Lemma 3.5, any configuration of the form (G′,M ′,Φ′) is
Walrasian, where M ′ is an MWMCM of G′ and Φ′ is in potentials(G′). It is easy to see that when
z < Φ(v), (G′,M,Φ) is Walrasian and thus u is unmatched in every Walrasian configuration of
G′. We now consider the case when z = Φ(v). There exists some item v′ in items(χ, u) such that
gap(χ,match(χ, v′)) = 0 as otherwise Φ(v′′) can be incremented for each item v′′ in items(χ, u). In

10

this case, by Lemma 3.3, u is matched in some Walrasian configuration of G′. Further, it is easy
to see that if u is matched in some Walrasian configuration χ of G′, then u is matched in every
Walrasian configuration of shift(χ, u, 1). Thus, there exists a unique z0 = max-potential(v) with
the desired property.

For any Walrasian bid-graph G = (U, V,w) and any item v in V , we define threshold(G, v) as
the unique integer z0 of Lemma 3.7, and we define threshold(G) as the function that maps each
item v in V to threshold(G, v).

Lemma 3.8. For any Walrasian bid-graph G, we have threshold(G) = max-potential(G).

Proof. In the proof of Lemma 3.7, we showed that for any item v inG, threshold(G, v) = max-potential(v).

For any Walrasian bid-graph G = (U, V,w), we define price(G) as min-potential(G), and for
any item v in V , we define price(G, v) as Φ(v), where Φ is equal to min-potential(G).

Lemma 3.9. For any bid-graph G′ of the form add(G, u, β) where bid-graph G = (U, V,w) is
Walrasian, if β(v) ≤ price(G, v) for every item v in V , then price(G′) = price(G).

Proof. Let M be an MWMCM of G. By Lemma 3.5, χ = (G,M, price(G)) is Walrasian and thus
the weight of M is at least

∑
v∈G price(G, v). Since β(v) ≤ price(G, v) for every item v in V , M is

an MWMCM of G′. It follows that (G′,M, price(G)) is a Walrasian configuration. Further, if there
exists a potential function Φ in potentials(G′) such that Φ < price(G), then (G,M,Φ) is Walrasian;
this contradicts the definition of price(G). Thus, price(G′) = price(G).

Lemma 3.10. For any Walrasian configuration χ = (G,M,Φ), we have price(G) ≤ threshold(G) ≤
amount(χ).

Proof. By definition, price(G) = min-potential(G) and by Lemma 3.8, threshold(G) = max-potential(G);
thus price(G) ≤ threshold(G). Since threshold(G) = max-potential(G), it follows from Lemma 3.5
that (G,M, threshold(G)) is Walrasian. By the definition of Walrasian configurations, it follows
that amount(χ) ≥ threshold(G).

Lemma 3.11. Let G′ be a bid-graph of the form add(G, u, β) where bid-graph G = (U, V,w) is
Walrasian. Let ∆ denote the maximum over all items v in V , of β(v) − threshold(G, v), and let
V ′ denote the set of all items v in V such that β(v) − threshold(G, v) = ∆. Then the following
conditions hold:

• If ∆ > 0 and configuration χ = (G′,M,Φ) is Walrasian, then match(χ, v) = u for some item
v in V ′, and price(G′, v) = threshold(G, v) for for every item v in V ′.

• If ∆ < 0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u is unmatched in M .

• If ∆ = 0, then there exist Walrasian configurations χ = (G′,M,Φ) and χ′ = (G′,M ′,Φ) such
that agent u belongs to matched(χ) ∩ unmatched(χ′).

• If ∆ ≤ 0, then threshold(G′) = threshold(G).

Proof. Let M be an MWMCM of G and let Φ = max-potential(G). By Lemma 3.5, χ0 = (G,M,Φ)
is Walrasian; thus, by definition, the weight of M is at least

∑
v∈G Φ(v). We consider the following

cases:

11

• ∆ < 0

In this case, β(v) < Φ(v) for each item v in G, and thus, M is an MWMCM of G′. Thus,
(G′,M,Φ) is Walrasian, and it follows by the definition of Walrasian configurations that u is
unmatched in M .

• ∆ ≤ 0

By the same argument as in the previous case, (G′,M,Φ) is Walrasian. Further, if there exists
a potential function Φ′ in potentials(G′) such that Φ′ > max-potential(G), then (G,M,Φ′)
is Walrasian; this contradicts the definition of max-potential(G). Thus, max-potential(G′) =
max-potential(G). By Lemma 3.8, max-potential(G) = threshold(G) and max-potential(G′) =
threshold(G′); thus threshold(G) = threshold(G′).

• ∆ ≥ 0

There exists at least one item v in items(χ0, u) such that gap(χ0,match(χ0, v)) = 0 as oth-
erwise the potential associated with each item in items(χ0, u) can be incremented while χ
remains Walrasian, violating the definition of max-potential(G). When ∆ ≥ 0, v belongs to
items(χ0, u); thus there exists an augmenting path in digraph(χ0). It follows that u belongs
to some MWMCM of G′.

When ∆ = 0, it is easy to see that (G′,M,Φ) is Walrasian; thus, Φ is in potentials(G′).
By Lemma 3.5, (G′,M, price(G′)) is Walrasian. However, we know that u is not matched
in M . It follows that price(G′, v) ≥ Φ(v) for each item v in V ′ to satisfy the Walrasian
property of (G′,M, price(G′)). Thus price(G′, v) = Φ(v) = threshold(G, v) for each item
v in V ′. Above we showed that when ∆ = 0, u is matched in some MWMCM M ′ of G′;
thus (G′,M ′, price(G′)) is Walrasian. It is easy to see that when ∆ > 0, (G′,M ′, price(G′))
remains Walrasian and thus, price(G′, v) = threshold(G, v) for each item v in V ′.

3.5 White configurations

A configuration χ is white if agents(χ) = white(χ). The following is a set of definitions and
lemmas related to white configurations. The proofs of these lemmas are similar to those for the
corresponding results established in Section 3.4 for Walrasian configurations.

Lemma 3.12. For any Walrasian bid-graph G, there exists a white configuration of the form
(G,M,Φ), and for any white configuration of the form (G,M,Φ), the bid-graph G is Walrasian.

Proof. By definition, every white configuration is Walrasian. Thus, for any white configuration
of the form (G,M,Φ), the bid-graph G is Walrasian. Consider any Walrasian configuration χ =
(G,M,Φ) that is not white. Then there exists at least one agent u in unmatched(χ) such that for
some item v in items(χ, u), gap(χ,match(χ, v)) = 0 and match(χ, v) < u. By repeated application
of Lemma 3.3, χ can be transformed to a white configuration.

Lemma 3.13. For any Walrasian bid-graph G and any potential function Φ in potentials(G), there
exists a white configuration of the form (G,M,Φ).

Proof. By Lemma 3.5, any configuration χ = (G,M ′,Φ) is Walrasian where M ′ is an MWMCM
of G. Then there exists at least one agent u in unmatched(χ) such that gap(χ,match(χ, v)) = 0
and match(χ, v) < u for some item v in items(χ, u). By repeated application of Lemma 3.3, χ can
be transformed to a white configuration. Thus, there exists some MWMCM M of G such that
(G,M,Φ) is white.

12

Lemma 3.14. For any Walrasian bid-graph G and any pair of white configurations χ = (G,M,Φ)
and χ′ = (G,M ′,Φ′), we have matched(χ) = matched(χ′).

Proof. Let χ0 = (G,M,max-potential(G)) and let χ1 = (G,M ′,max-potential(G)). By Lemma 3.5,
χ0 and χ1 are Walrasian. Further, since max-potential(G) ≥ Φ and max-potential(G) ≥ Φ′, it
follows that white(χ)∩unmatched(χ) = white(χ0)∩unmatched(χ0) and white(χ′)∩unmatched(χ′) =
white(χ1) ∩ unmatched(χ1); thus χ0 and χ1 are white configurations. If M ⊕M ′ consists of only
cycles and no paths, then it follows that matched(χ) = matched(χ′). Suppose there exists some
path P in M ⊕M ′ with endpoints u in matched(χ0) ∩ unmatched(χ1) and u′ in matched(χ1) ∩
unmatched(χ0). By Lemma 3.3, u belongs to agents(χ0, u

′) and u′ belongs to agents(χ1, u). Since
u < u′ or u′ < u, this violates the assumption that χ0 and χ1 are both white. Thus, there is no
such path P and matched(χ) = matched(χ′).

By Lemmas 3.12 and 3.14, we can conclude that for any Walrasian bid-graph G, there exists
a unique set of matched agents in any white configuration of the form (G,M,Φ). We denote this
unique set of matched agents by matched(G).

Lemma 3.15. For any white configuration (G,M,Φ), and for any potential function Φ′ in potentials(G),
the configuration (G,M,Φ′) is white.

Proof. By Lemma 3.13, there exists an MWMCM M ′ of G such that the configuration χ′ =
(G,M ′,Φ′) is white. Let χ = (G,M,Φ) and let χ′′ = (G,M,Φ′). By Lemma 3.5, χ′′ is Wal-
rasian and by Lemma 3.14, matched(χ) = matched(χ′). Thus, matched(χ) = matched(χ′′) and
matched(χ′′) ⊆ white(χ′′). Since χ′′ and χ are Walrasian, for any agent u in unmatched(χ′′), we
have agents(χ′′, u) = agents(χ, u); since u is white in χ, it follows that u is white in χ′′.

In what follows, we sometimes compare amount-agent pairs. Such comparisons are resolved
lexicographically.

Lemma 3.16. For any Walrasian bid-graph G = (U, V,w), any item v in V , and any white
configurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ), we have agents(χ, v) = agents(χ′, v).

Proof. By Lemma 3.14, we have matched(χ) = matched(χ′); thus unmatched(χ) = unmatched(χ′).
Since χ and χ′ are Walrasian, for any item v, gap(χ,match(χ, v)) = maxv∈V w(match(χ, v), v) −
Φ(v). Further, by the definition of digraph(χ), arc (match(χ, v), v′) belongs to digraph(χ) for
every item v′ in demand(χ,match(χ, v)). By a similar argument, arc (match(χ′, v), v′) belongs
to digraph(χ′) for every item v′ in demand(χ′,match(χ′, v)). Thus it follows that agents(χ, v) =
agents(χ′, v).

For any Walrasian bid-graph G = (U, V,w), any potential function Φ in potentials(G), and any
item v in V , we define agents(G,Φ, v) as the unique set agents(χ, v) of Lemma 3.16, where χ =
(G,M,Φ) is a white configuration whose existence is guaranteed by Lemma 3.13. For any Walrasian
bid-graph G = (U, V,w), and any item v in V , we define agents(G, v) as agents(G, price(G), v).

For any Walrasian bid-graph G = (U, V,w), and any item v in V , we define price∗(G, v) as
(price(G), u0), where u0 is the maximum agent in agents(G, v). Recall that the maximum agent
over an empty set is defined as ε. In addition, we define price∗(G) as the function that maps each
item v in V to price∗(G, v).

For the following lemmas, we view bids and prices as pairs — if u has an offer of z on item v,
we view the offer as the pair (z, u).

Lemma 3.17. For any bid-graph G′ of the form add(G, u, v, z) where bid-graph G = (U, V,w) is
Walrasian, there exists a unique agent u0 in U such that agent u belongs to matched(G′) if and
only if (z, u) > (threshold(G, v), u0).

13

Proof. The proof is similar to that of Lemma 3.9 when bids and prices are viewed as pairs.
For any Walrasian bid-graph G = (U, V,w) and any item v in V , we define threshold∗(G, v) as

the unique pair (threshold(G, v), u0) of Lemma 3.17.

Lemma 3.18. For any bid-graph G′ of the form add(G, u, β) where bid-graph G is Walrasian, if
the pair (β(v), u) < price∗(G, v) for all items v in V , then price∗(G′) = price∗(G).

Proof. The proof is similar to that of Lemma 3.9 when bids and prices are viewed as pairs.
For any configuration χ = (G,M,Φ) where G = (U, V,w), and any item v in V , we define

amount∗(χ, v) as the pair (amount(χ, v),match(χ, v)), and we define amount∗(χ) as the function
that maps each item v in V to amount∗(χ, v).

Lemma 3.19. For any white configuration χ = (G,M,Φ), we have price∗(G) ≤ threshold∗(G) ≤
amount∗(χ).

Proof. The proof is similar to that of Lemma 3.10 when bids and prices are viewed as pairs.

Lemma 3.20. Let G′ be a bid-graph of the form add(G, u, β) where bid-graph G = (U, V,w) is
Walrasian. Let ∆ denote the maximum, over all items v in V , of β(v) − threshold(G, v), and let
V ′ denote the set of all items v in V such that β(v) − threshold(G, v) = ∆. Let u0 denote the
minimum, over all items v in V ′, of the second component of the pair threshold∗(G, v). Then the
following conditions hold:

• If the pair (∆, u) > (0, u0) and configuration χ = (G′,M,Φ) is white, then match(χ, v) = u
for some item v in V ′, and price(G′, v) = threshold(G, v) for every item v in V ′.

• If the pair (∆, u) < (0, u0) and configuration χ = (G′,M,Φ) is white, then agent u is un-
matched in M and threshold∗(G′) = threshold∗(G).

Proof. The proof is similar to that of Lemma 3.11 when bids and prices are viewed as pairs.

3.6 Quiescent configurations

The inputs and outputs of the bottom-level auction of Section 4 are quiescent configurations. A
configuration χ = (G,M,Φ) is quiescent if unmatched(χ) ⊆ white(χ), and for any agent u in
black(χ) where β = bid(G, u), we have β(v) < Φ(v) for all items v in items(χ). It is easy to see
that quiescent configurations satisfy equilibrium conditions 1, 2, and 3 of Section 2.4.

For any configuration χ = (G,M,Φ) where G = (U, V,w), and any agent u in U , we say χ is
u-quiescent if either (1) u belongs to unmatched(χ) ∩ gray(χ) and (G′,M,Φ) is quiescent, where
G′ = (U − u, V, w), or (2) u belongs to matched(χ) and shift(χ, u, 1) is quiescent.

3.7 ECCs

We use tie-breaking to handle degeneracy in the bottom-level auction of Section 4; in each round,
we break ties such that the set of allocated agents is uniquely determined. Below we identify
equivalence classes of configurations (ECCs) that adhere to this tie breaking scheme.

For any pair of configurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ), we write χ ∼ χ′ if
matched(χ) = matched(χ′), nonwhite(χ) = nonwhite(χ′), and for any item v in items(χ) such
that match(χ, v) is non-white, we have match(χ, v) = match(χ′, v). Observe that ∼ is an equiv-
alence relation and thus partitions the set of all configurations into equivalence classes. We refer
to an equivalence class of configurations as an ECC , and we use the notation [χ] to refer to the

14

ECC of a given configuration χ. By definition, for any ECC X, there exists a unique bid-graph G0

and a unique potential function Φ0 such that every configuration in X is of the form (G0,M,Φ0).
We define bid-graph(X) and potential(X) as G0 and Φ0 respectively. We define potential(X, v) as
Φ0(v), for any item v in V , where G0 = (U, V,w). An ECC X is quiescent if every configuration χ
in X is quiescent. We define u-quiescent ECCs similarly.

It follows by definition that for any ECC X that every configuration χ in X is associated with
the same set of agents; we define agents(X) to be this unique set of agents. We define the follow-
ing similarly: items(X), matched(X), and unmatched(X). For any ECC X and any agent u in
unmatched(X), we define items(X,u) to be the unique set of items given by Lemma 3.21. We de-
fine the following similarly: gray(X), white(X), black(X), nonwhite(X), nonblack(X), enabled(X),
positive(X), nonpositive(X), gap(X,u), max-gap(X,u), demand(X,u), pseudo-demand(X,u), bids(X, v),
items(X,u), agents(X,u), and agents(X, v).

For any ECC X, any agent u in agents(X) and any integer z such that either u belongs to
unmatched(X) or z ≥ 0, we define shift(X,u, z) as [shift(χ, z, u)] where χ is any configuration in
X. For any ECC X and any agent u in agents(X) and any agent u′ not in agents(X), we define
subst(X,u, u′) as the ECC ∪χ∈X [subst(χ, u, u′)] given by Lemma 3.23. We define the following
similarly: add(X,u, β), and add(X,u, v, z).

Lemma 3.21. For any ECC X, any agent u in unmatched(X), and any pair of configurations χ
and χ′ in X, we have items(χ, u) = items(χ′, u).

Proof. Configurations χ and χ′ are associated with the same potential function. By definition,
matched(χ) = matched(χ′), nonwhite(χ) = nonwhite(χ′), and for any agent u′′ in matched(χ) ∩
nonwhite(χ), u is matched to the same item in χ and χ′. Thus, for any item v, gap(χ,match(χ, v)) =
maxv∈V w(match(χ, v), v) − Φ(v). Further, by the definition of digraph(χ), arc (match(χ, v), v′)
belongs to digraph(χ) for every item v′ in demand(χ,match(χ, v)). By a similar argument, arc
(match(χ′, v), v′) belongs to digraph(χ′) for every item v′ in demand(χ′,match(χ′, v)). It follows
that items(χ, u) = items(χ′, u).

Lemma 3.22. For any quiescent configuration χ, the ECC [χ] is quiescent.

Proof. Let χ = (G,M,Φ) and let χ′ be any configuration in [χ]. By definition, potential([χ′]) = Φ,
unmatched(χ′) = unmatched(χ), and for every agent u in matched(χ) ∩ nonwhite(χ), there exists
an item v in items(χ) such that match(χ, v) = match(χ′, v) = u. It follows that since χ is quiescent,
χ′ is quiescent.

Lemma 3.23. For any ECC X, any agent u in agents(X), and any agent u′ not in agents(X),
the set of configurations given by ∪χ∈X [subst(χ, u, u′)] is an ECC.

Proof. The proof follows from the definition of ECCs and the definition of subst(χ, u, u′) for any
configuration χ in X.

4 Bottom-Level Auction

As discussed in the introduction, we present our auction in two layers. The bottom-level auction
constitutes the first layer and is a building block of the first phase of our top-level auction.

The bottom-level auction is dynamic. The input to each round of the bottom-level auction
is a quiescent ECC. Recall that a quiescent ECC satisfies equilibrium conditions 1, 2, and 3 of
Section 2.4. In each round of the bottom-level auction, a single agent increments its offers on all
items by one unit, and the round is resolved by incorporating the bid increment while continuing

15

to satisfy equilibrium conditions 1, 2,and 3. (We note that equilibrium conditions 4 and 5 are
incorporated by the second phase of the top-level auction discussed in Section 5.2.)

4.1 Description

For any configuration χ, we define enabled(χ) as the set of agents u in agents(χ) such that either
(1) u belongs to white(χ), or (2) u belongs to nonwhite(χ) and for all items v in items(χ), we have
β(v) < Φ(v)− 1, where β = bid(G, u). We define enabled(X) similarly.

The bottom-level auction takes a quiescent ECC as input and updates the ECC over a sequence
of rounds. In a general round of the bottom-level auction, a single enabled agent in the ECC invokes
the function raise defined below. Informally, an invocation of raise by an agent corresponds to the
agent incrementing all components of its bid by one unit. If two or more enabled agents wish to
invoke raise in a round, then the auction chooses from amongst them arbitrarily. The auction
terminates when no agent invokes raise in a round.

We now develop formalism leading to the definition of the function raise. For any ECC X and
any agent u in unmatched(X), we define the predicate P0(X,u) to hold if X is either quiescent or
u-quiescent. We now define victim(X,u, z) for any ECC X, any integer z in {0, 1}, and any agent
u in unmatched(X) such that the predicate P0(X,u) holds. Let set U0 denote white(X) and let set
U1 denote agents(X,u) ∪ {u} ∩ nonpositive(X). Note that set U1 is nonempty as it contains agent
u. If U1 \U0 6= ∅, we define victim(X,u, z) as the minimum agent in U1 \U0. If U1 \U0 = ∅, z = 1,
and U1 − u 6= ∅, then we define victim(X,u, z) as the minimum agent in U1 − u. Otherwise, we
define victim(X,u, z) as the minimum agent in U1.

For any ECC X and any agent u in enabled(X), we define the predicate P1(X,u) to hold if either
(1) agent u belongs to matched(X) and X is quiescent, or (2) agent u belongs to unmatched(X)
and the predicate P0(X,u) holds. We now define augment(X,u, z) for any ECC X, any integer z
in {0, 1}, and any agent u in enabled(X) such that the predicate P1(X,u) holds. If agent u belongs
to matched(X), then augment(X,u, z) is the ECC X. Otherwise, augment(X,u, z) is the ECC
[χ′], where χ′ is constructed as follows: Let χ be an arbitrary configuration in X and let P be
an arbitrary simple directed path from u to victim(X,u, z) in digraph(χ); for every item v′ such
that there exists an arc of the form (u′, v′) on path P , we set match(χ′, v′) = u′, and for every
item v′ that is not on path P , we set match(χ′, v′) = match(χ, v′). By Lemma 4.1, it follows that
augment(X,u, z) is well defined.

For any ECC X and any agent u in enabled(X) such that either (1) X is quiescent and
agents(X,u) ∩ nonpositive(X) = ∅, or (2) X is u-quiescent and u belongs to matched(X), we
define inc(X,u) as the ∪(G,M,Φ)∈X [(G′,M,Φ′)] where G′ = shift(bid-graph(X), u, 1), and Φ′ is de-
fined as follows: if agent u belongs to matched(χ), then Φ′ = Φ; otherwise Φ′(v) = Φ(v) + 1 for any
item v in items(χ, u) and Φ′(v) = Φ(v) for any item v in items(χ) \ items(χ, u). The existence of
such an ECC is established by Lemma 4.2.

For any quiescent ECCX and any agent u in enabled(X), we define raise ′(X,u) as augment(X,u, 1).
For any ECC X and any agent u in enabled(X) such that either X is quiescent, or X is u-quiescent
and u belongs to matched(X), we define raise ′′(X,u) as augment(inc(X,u), u, 0) For any quiescent
ECC X and any agent u in enabled(X), the function raise(X,u) is defined as raise ′′(raise ′(X,u), u).

For any quiescent ECCX and any agent u in unmatched(X), we define victim(X,u) as follows: if
matched(X)∩unmatched(raise(X,u)) = {u′}, then victim(X,u) = u′; otherwise, victim(X,u) = ∅.
Recall that by Fact 4.4, matched(X) ∩ unmatched(X) has a cardinality of at most 1.

The facts below follow from the definition of the function raise.

Fact 4.1. For any quiescent ECC X and any agent u in enabled(X) ∩ matched(X), we have
raise(X,u) = shift(X,u, 1).

16

Fact 4.2. For any quiescent ECC X and any agent u in enabled(X), we have potential(raise(X,u)) ≥
potential(X).

Fact 4.3. For any quiescent ECC X and any agent u in enabled(X) such that bid(bid-graph(X), u) <
potential(X), we have potential(raise(X,u)) = potential(X).

Fact 4.4. For any ECC X ′ of the form raise(X,u), we have |S| ≤ 1, where S = matched(X) \
matched(X ′).

The following lemmas establish that the output of the bottom-level auction is a quiescent ECC.

Lemma 4.1. For any ECC X, any integer z in {0, 1}, and any agent u in enabled(X) such that the
predicate P1(X,u) holds, there is a unique ECC of the form augment(X,u, z). augment(X,u, z).

Proof. If u belongs to matched(X), then by definition augment(X,u, z) = X. We now consider the
case where u belongs to unmatched(X). Let χ be any configuration in X. By definition, irrespective
of the choice of χ and the path P used, the agent victim(χ, u, z) is unmatched in augment(X,u, z)
and each agent in matched(χ)∩nonwhite(χ) \ victim(χ, u, z) is matched to the same item in χ and
augment(X,u, z). Thus it follows that augment(X,u, z) is an ECC.

Lemma 4.2. Any set of configurations of the form inc(X,u) is an ECC.

Proof. If u belongs to matched(X), then by definition inc(X,u) = shift(X,u, 1). We now consider
the case where u belongs to unmatched(X). By the preconditions on X required by inc(X,u), it
follows that X is quiescent and there exists no agent u′ in agents(X,u) such that gap(X,u′) ≤ 0. Let
(G,M,Φ) be any configuration in X. By definition, inc(X,u) includes the configuration (G′,M,Φ′)
where G′ = shift(bid-graph(X), u, 1) and Φ′(v) = Φ(v) + 1 for each item v in items(χ, u). Thus,
every agent in nonwhite(χ) is matched to the same item in χ and χ′. It follows that the set of
configurations given by inc(X,u) is an ECC.

Lemma 4.3. For any quiescent ECC X and any agent u in enabled(X), the predicate P1(X,u)
holds.

Proof. Since X is quiescent, by definition, P1(X,u) holds if u belongs to matched(X). Suppose u
belongs to unmatched(X). Then, P1(X,u) holds if P0(X,u) holds. By definition, P0(X,u) holds
when X is quiescent.

Lemma 4.4. For any ECC X ′ of the form inc(X,u), the predicate P1(X ′, u) holds.

Proof. By the preconditions of inc(X,u), we know that either agents(X,u) ∩ nonpositive(X) = ∅
and X is quiescent, or u belongs to matched(X) and shift(X,u, 1) is quiescent. We first consider
the case when u belongs to matched(X). In this case, inc(X,u) = shift(X,u, 1). Thus inc(X,u)
is quiescent and P1(X ′, u) holds. Next we consider the case when u belongs to unmatched(X). In
this case, agents(X,u)∩nonpositive(X) = ∅ and X is quiescent. By definition, inc(X,u) is an ECC
X ′ whose bid-graph G = shift(bid-graph(X), u, 1) and whose potential function has incremented
potential(X, v) by one for each item v in items(X,u). It is easy to see that u is either white or
gray in inc(X,u); thus inc(X,u) is either quiescent or u-quiescent. It follows that P1(inc(X,u), u)
holds

Lemma 4.5. For any quiescent ECC X and any agent u in enabled(X), either raise′(X,u) is
quiescent, or raise′(X,u) is u-quiescent and u belongs to matched(raise′(X,u)).

17

Proof. We first consider the case where u belongs to matched(X). In this case raise ′(X,u) = X
and thus raise ′(X,u) is quiescent.

Next, we consider the case where u belongs to unmatched(X). Since X is quiescent, u belongs
to white(X). In this case, raise ′(X,u) = augment(X,u, 1). Thus, either u is unmatched and u is
white in raise ′(X,u), or u belongs to matched(raise ′(X,u)) and u is gray in raise ′(X,u). Thus,
raise ′(X,u) is either quiescent or u-quiescent.

Lemma 4.6. Any ECC of the form raise(X,u) is quiescent.

Proof. By definition raise(X,u) = raise ′′(raise ′(X,u), u). By Lemma 4.5, raise ′(X,u) satisfies the
preconditions of raise ′′. We consider the following two cases. First, we consider the case where u
belongs to matched(raise ′(X,u)), In this case, by Lemma 4.5, raise ′(X,u) is u-quiescent. Further,
by definition, raise ′′ for a matched agent results in incrementing the bid of the agent by one unit;
thus, raise(X,u) = shift(raise ′(X,u), u, 1) which is quiescent by definition.

Next we consider the case where u belongs to unmatched(raise ′(X,u)). In this case, by
Lemma 4.5, raise ′(X,u) is quiescent and thus raise ′(X,u) satisfies the precondition for invok-
ing inc. By Lemma 4.4, the predicate P1(inc(raise ′(X,u), u), u) holds; thus, either u belongs
to matched(inc(raise ′(X,u), u)), or inc(raise ′(X,u), u) is either quiescent of u-quiescent. In the
case where inc(raise ′(X,u), u) is u-quiescent, it is easy to see from the definition of augment that
raise(X,u) is quiescent. For the remaining two cases, augment is a no-op.

4.2 Basic Properties

Below we discuss some basic properties of the bottom-level auction that are useful in both proving
lemmas of Section 4.5 and establishing properties of the top-level auction of Section 5.

Lemma 4.7. For any ECC X ′ of the form raise(X,u′) and any agent u in nonwhite(X), either
(1) u belongs to unmatched(X ′), or (2) u belongs to nonwhite(X ′), and there exists an item v in
items(X) such that potential(X, v) = potential(X ′, v) and match(χ, v) = u for any configuration χ
in X ∪X ′.

Proof. Since u belongs to nonwhite(X), there exists an item v in items(X) such that for any
configuration χ in X, we have match(χ, v) = u. By definition, u does not belong to digraph(X) and
v is a leaf of digraph(X). Since v is a leaf of digraph(X), by the definition of the function raise ′ either
implies that u = victim(X,u′, 1) or match(χ, v) = u for any configuration χ in X ∪ raise ′(X,u′). If
u = victim(X,u′, 1), then u belongs to unmatched(X ′) and the proof is complete.

We now consider the case where u 6= victim(X,u′, 1); thus v does not belong to items(X,u′).
By the definition of the function raise ′′, potential(X ′, v′) = potential(X, v′) + 1 for any item v′

in items(X,u′) and potential(X ′, v′) = potential(X, v′) for any item v′ not in items(X,u′); thus
potential(X ′, v) = potential(X, v). Let X ′′ = inc(raise ′(X,u′), u′). It is easy to see that v is a leaf
of digraph(X ′′). Thus, either u = victim(X ′′, u′, 0) or match(χ, v) = u for any configuration χ in
X ∪X ′.

Lemma 4.8. For any quiescent ECC X and any agent u in enabled(X), if X ′ = raise(X,u), then

gray(X) ⊆ nonblack(X ′) ∧ white(X) ⊆ white(X ′).

Proof. By the definition of the function raise, if u belongs to gray(X), then u belongs to gray(X ′),
and if u belongs to white(X), then u belongs to white(X ′). Consider any agent u0 in agents(X)−u.
By Lemma 4.6, X ′ is quiescent, and by the definition of a quiescent ECC, unmatched(X ′) ⊆

18

white(X ′). Thus, if u0 belongs to unmatched(X ′), then u0 belongs to white(X ′) and hence u0

belongs to enabled(X ′). Now suppose that u0 belongs to matched(X ′). We consider the following
two cases.

First we consider the case where u0 belongs to gray(X)∩matched(X ′). By Fact 4.2, potential(X ′) ≥
potential(X) and by Lemma 4.7, it follows that there exists an item v0 in items(X) having
potential(X, v0) = potential(X ′, v0) and for any configuration χ in X ∪X ′, we have match(χ, v0) =
u0. It follows that u0 belongs to gray(X ′).

Next we consider the case where u0 belongs to white(X) ∩ matched(X ′). By our assumption,
u0 belongs to matched(X). By the definition of raise, it follows that gap(X ′, u0) ≥ 0. Thus, u0

belongs to white(X ′).

Lemma 4.9. For any quiescent ECC X and any agent u in enabled(X), we have enabled(X)−u ⊆
enabled(raise(X,u)).

Proof. LetX ′ = raise(X,u). By Lemma 4.6, X ′ is quiescent. Consider any agent u0 in enabled(X)−
u. Suppose u0 belongs to white(X); then by Lemma 4.8, u0 belongs to white(X ′), and hence u0

belongs to enabled(X ′).
Suppose u0 belongs to nonwhite(X). Since u0 belongs to enabled(X), we have β(v) < potential(X, v)

for every item v in items(X), where β = bid(X,u0). By Fact 4.2, potential(X ′) ≥ potential(X)
and by Lemma 4.7, either u0 belongs to unmatched(X ′) or there exists an item v0 in items(X)
such that for any configuration χ in X ∪ X ′, we have match(χ, v0) = u0. Thus, u0 belongs to
enabled(X ′).

Lemma 4.10. For any quiescent ECC X and any agent u in enabled(X), if there exists an item v in
items(X) such that potential(X, v) = potential(raise(X,u), v), then bids(X, v) ⊆ bids(raise(X,u), v).

Proof. Let β be any bid in in bids(X, v). By definition, for any item v′ in items(X) − v, we have
β(v)− potential(X, v) ≥ β(v′)− potential(X, v′). By Lemma 4.2, we have potential(raise(X,u)) ≥
potential(X). Thus, for any item v′ in items(X) − v, we have β(v) − potential(X, v) ≥ β(v′) −
potential(raise(X,u), v′). Thus, β belongs to bids(raise(X,u), v).

Lemma 4.11. For any quiescent ECC X0 and any quiescent ECC X1 of the form subst(X0, u0, u1)
where u0 belongs to unmatched(X0) and u1 < u0, we have gap(raise(X0, u0), u0) = gap(raise(X1, u1), u1) =
0. Furthermore, either (1) raise(X1, u1) = subst(raise(X0, u0), u0, u1), or (2) raise(raise(X1, u1), u1) =
subst(raise(raise(X0, u0), u0), u0, u1).

Proof. Let β = bid(bid-graph(X0), u0). Let X ′0 = raise ′(X0, u0) and let X ′′0 = raise ′′(X ′0, u0). Let
X ′1 = raise ′(X1, u1) and let X ′′1 = raise ′′(X ′1, u1). Note that items(X0, u0) = items(X1, u1). Thus,
by the definition of the function raise ′ it follows that X ′1 = subst(X ′0, u0, u1). If u0 belongs to
matched(X ′0), then it is easy to see that X ′′1 = subst(X ′′0 , u0, u1) and the proof is complete. We now
consider the case where u0 belongs to unmatched(X ′0). Note that items(X ′0, u0) = items(X ′1, u1).
Since u1 < u0, it follows from the definition of the function raise ′′ that if u1 belongs to matched(X ′′1),
then u0 belongs to matched(X ′′0). Similarly, if u0 belongs to unmatched(X ′′0), then u1 belongs
to unmatched(X ′′1). Thus, either X ′′1 = subst(X ′′0 , u0, u1), or u0 belongs to matched(X ′′0) and
u1 belongs to unmatched(X ′′1). Thus, there exists an item v in items(inc(X ′1, u1), u1) such that
match(inc(X ′1, u1), v) belongs to zero(inc(X ′1, u1)) and u1 < u′ < u0. It is easy to see from the
definition of the function raise ′ that raise ′(X ′′0 , u0) = X ′′0 and raise ′(X ′′1 , u1) = subst(X ′′0 , u0, u1).
Thus, raise(X ′′1 , u0) = subst(raise(X ′′0 , u0), u0, u1).

19

4.3 Commutativity of raise invocations

A key property of the bottom-level auction is the commutativity of raise invocations. This property
is formalized in Lemma 4.20 and is used extensively in the following sections of the paper.

Lemma 4.12. For any quiescent ECC X, any agents u0 and u1 in unmatched(X) such that
agents(X,u0) ∩ nonpositive(X) = ∅, and any item v in items(X,u0), we find that v belongs to
items(raise(X,u1), u0) if and only if potential(raise(X,u1), v) = potential(X, v).

Proof. Since agents(X,u0)∩nonpositive(X) = ∅, it follows that victim(X,u1, 1) does not belong to
agents(X,u0), thus agents(X,u0) = agents(raise ′(X,u1), u0) and items(X,u0) = items(raise ′(X,u1), u0).
Let χ = (G,M,Φ) be any configuration in X and let χ′ = (G′,M ′,Φ′) be any configuration in
raise(X,u1). By Lemma 3.21, items(χ, u0) = items(X,u0) and items(χ′, u0) = items(raise(X,u1), u0).
By definition, v belongs to items(χ, u0) if and only if there exists a directed path from u0 to
v in digraph(χ), where every edge of the form (u′, v′) in digraph(χ) is such that v′ belongs to
demand(χ, bid(bid-graph(X), u′)).

It is easy to see that if potential(raise(X,u1), v) > potential(X, v), then there is no directed
path from u0 to v in digraph(χ). We now consider the case where potential(raise(X,u1), v) =
potential(X, v). It follows from the definition of the raise function that if Φ′(v′) > Φ(v′) for some
item v′ on a directed path from u0 to v, then Φ′(v) > Φ(v), and this would contradict our assumption
that potential(raise(X,u1), v) = potential(X, v). Thus every item v′ on every directed path from
u0 to v has Φ′(v′) = Φ(v′); it follows that all such directed paths are preserved in digraph(χ′), and
thus, v belongs to items(raise(X,u1), u0).

Lemma 4.13. For any quiescent ECC X and any agents u0 in unmatched(X) and u1 in enabled(X),
if agents(X,u0) ∩ nonpositive(X) = ∅, then agents(X1, u0) ⊆ agents(X,u0), and agents(X1, u0) ∩
nonpositive(X1) = ∅, where X1 = raise(X,u1).

Proof. If u1 belongs to matched(X), then by Fact 4.1, we have X1 = shift(X,u1, 1); in this case it
is easy to see that agents(X1, u0) ⊆ agents(X,u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅.

We now consider the case where u1 belongs to unmatched(X). By Lemma 4.12, we have
items(X1, u0) ⊆ items(X,u0) and potential(X1, v) = potential(X, v) for any item v in items(X1, u0).
Thus, we have agents(X1, u0) ⊆ agents(X,u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅.

Lemma 4.14. Let X0 and X1 be quiescent ECCs such that bid-graph(X0) = bid-graph(X1),
potential(X0) = potential(X1) and for any agent u in nonwhite(X) ∩matched(X), there exists an
item v such that match(χ, v) = u for any configuration χ in X0∪X1. For any agents u0 and u1 such
that matched(X0) \ matched(X1) = {u1} and matched(X1) \ matched(X0) = {u0}, if u1 belongs
to agents(X0, u0) and u0 belongs to agents(X1, u1), either victim(X0, u0, 1) = victim(X1, u1, 1) or
victim(X0, u0, 0) = victim(X1, u1, 0).

Proof. Let U = matched(X0)−u1 = matched(X1)−u0. We have potential(X0) = potential(X1) and
for any agent u in nonwhite(X)∩matched(X), there exists an item v such that match(χ, v) = u for
any configuration χ in X0∪X1; thus we have nonpositive(X0) = nonpositive(X1) and for any agent
u in U , we have agents(X0, u) = agents(X1, u) and items(X0, u) = items(X1, u). Additionally,
since u1 belongs to agents(X0, u0) and u0 belongs to agents(X1, u1), we have nonpositive(X0) ∩
agents(X0, u0) = nonpositive(X1) ∩ agents(X1, u1). By the definition of the function victim, it is
easy to see that either victim(X0, u0, 1) = victim(X1, u1, 1) or victim(X0, u0, 0) = victim(X1, u1, 0).

Lemma 4.15. For any quiescent ECC X and any agents u0 and u1 in unmatched(X), if victim(X,u0) =
victim(X,u1, 1), then u0 belongs to agents(raise(X,u0), u1).

20

Proof. LetX0 = raise(X,u0) and let victim(X,u0) = victim(X,u1, 1) = u. Since u = victim(X,u1, 1),
we have u1 belongs to nonpositive(X) and V ⊆ items(X,u1) where V = demand(X,u).

Suppose V ∩items(X0, u1) = ∅. Then, by Lemma 4.12, we have potential(X0, v) = potential(X, v)+
1 for every item in V and V ⊆ items(X,u0); thus u belongs to agents(X,u0) and by the defini-
tion of the function raise ′, potential(X0) = potential(X), which is a contradiction. Thus, we have
V ∩ items(X0, u1) 6= ∅. Additionally, since u = victim(X,u0), we have u0 belongs to agents(X0, u

′)
for any agent u′ having V ∩ items(X0, u

′) = ∅. Thus, u0 belongs to agents(raise(X,u0), u1).

Lemma 4.16. For any quiescent ECC X and any agents u0 and u1 in unmatched(X) such that
u1 = victim(X,u1, 1), if victim(X,u0) = victim(X ′1, u1, 0) where X ′1 = inc(raise′(X,u1), u1), then
agent u0 belongs to agents(X ′01, u1) where X ′01 = inc(raise′(raise(X,u0), u1), u1).

Proof. Let X0 = raise(X,u0) and let victim(X,u0) = victim(X ′1, u1, 0) = u. Note that the case
where victim(X,u0, 1) = u is symmetric to the case handled by Lemma 4.15; thus the proof of this
case follows from Lemma 4.15.

We now focus on the case where victim(X,u0, 1) = u0. By the definition of the function raise ′′,
we have potential(X0, v) = potential(X, v) + 1 for any item v in items(X,u0) and potential(X, v) =
potential(X, v) for any item v in items(X) \ items(X,u0). Since victim(X,u0) = u, we have u0

belongs to agents(X0, u
′) for any agent u′ such that demand(X0, u) ∩ items(X0, u

′) 6= ∅. Since
victim(X,u1, 1) = u1, we have nonpositive(X)∩ agents(X,u1) = ∅; thus by Lemmas 4.12 and 4.13,
we have potential(X ′01, v) = potential(X, v)+1 for any item v in items(X,u0)∪ items(X,u1). Since
victim(X ′1, u1, 0) = u, we have V ∩items(X ′01, u1) 6= ∅. It follows that u0 belongs to agents(X ′01, u1).

Lemma 4.17. Let X be a quiescent ECC and let u0 and u1 be agents in unmatched(X). Let
X0 = raise(X,u0) and let X1 = raise(X,u1). If victim(X,u0) 6= victim(X,u1), then we have
victim(X0, u1) = victim(X,u1) and potential(raise(X0, u1), v) = potential(X1, v) for any item v in
items(X) such that potential(X1, v) = potential(X, v) + 1.

Proof. First we consider the case where victim(X,u1, 1) 6= u1. In this case, we have victim(X,u1) =
victim(X,u1, 1) and potential(X1) = potential(X); thus victim(X,u1) belongs to nonpositive(X).
The statement of the lemma assumes that victim(X,u0) 6= victim(X,u1); thus, by the defini-
tion of the function raise, we find that victim(X,u1) belongs to agents(X0, u1) ∩ nonpositive(X0).
If victim(X0, u1) = victim(X,u1), then the proof is complete. Suppose that victim(X0, u1) 6=
victim(X,u1). Then there is an agent u′ in agents(X,u1) such that u′ = victim(X,u0), and
hence u0 belongs to agents(X0, u1). Since u′ = victim(X0, u0), u′ belongs to agents(X,u1),
and u′ 6= victim(X,u1, 1), the definition of the function victim implies that victim(X0, u1, 1) =
victim(X,u1, 1).

Next we consider the case where victim(X,u1, 1) = u1; thus, by the definition of the function
raise, we have nonpositive(X)∩agents(X,u1) = ∅ and potential(X1, v) = potential(X, v)+1 for any
item v in items(X,u1). Thus, victim(X,u1) = victim(X ′1, u1, 0), where X ′1 = inc(raise ′(X,u1), u1).
By Lemma 4.12, we have items(X0, u1) = items(X,u1) \ items(X,u0) and potential(X0, v) =
potential(X, v)+1 for any item v in items(X,u0). By Lemmas 4.12 and 4.13, we have nonpositive(X0)∩
agents(X0, u1) = ∅; thus, we have potential(raise(X0, u1), v) = potential(X, v) + 1 for any item v in
items(X0, u1). Since items(X0, u1) = items(X,u1)\items(X,u0), we have potential(raise(X1, u1), v) =
potential(X, v)+1 for any item v in items(X,u0)∪items(X,u1). LetX ′01 = inc(raise ′(X0, u1), u1). If
victim(X ′01, u1, 0) = victim(X ′1, u1, 0), then the proof is complete. Suppose that victim(X ′01, u1, 0) 6=
victim(X ′1, u1, 0); then there is an agent u′ in agents(X ′1, u1) such that u′ = victim(X,u0), and
hence u0 belongs to agents(X ′01, u1). Since u′ = victim(X0, u0), u′ belongs to agents(X ′1, u1), and

21

u′ 6= victim(X ′1, u1, 0). The definition of the function victim implies that victim(X ′01, u1, 0) =
victim(X ′1, u1, 0).

Thus, victim(X0, u1) = victim(X,u1) and potential(raise(X0, u1), v) = potential(X1, v) for any
item v in items(X) such that potential(X1, v) = potential(X, v) + 1.

Lemma 4.18. For any quiescent ECC X and any agents u0 and u1 in agents(X), if matched(X)∩
{u0, u1} 6= ∅, then potential(X01) = potential(X10) and matched(X01) = matched(X10), where
X01 = raise(raise(X,u0), u1) and X10 = raise(raise(X,u1), u0).

Proof. Let X0 = raise(X,u0) and let X1 = raise(X,u1).
We first consider the case where |{u0, u1} ∩ matched(X)| = 2; thus, {u0, u1} ⊆ matched(X).

By Fact 4.1, we have X01 = shift(shift(X,u0, 1), u1, 1), and X10 = shift(shift(X,u1, 1), u0, 1); thus,
X01 = X10.

We now focus on the case where |{u0, u1} ∩ matched(X)| = 1. Without loss of generality,
we assume that {u0, u1} ∩ matched(X) = {u1}; thus, u1 belongs to matched(X). Since u1 be-
longs to enabled(X) ∩ matched(X) and X1 = shift(X,u1, 1), either u1 belongs to nonwhite(X) ∩
nonwhite(X1) or u1 belongs to white(X)∩white(X1). If u1 belongs to nonwhite(X)∩nonwhite(X1),
then for every item v in items(X), we have β(v) < potential(X, v)−2, where β = bid(bid-graph(X), u1).
Thus we have victim(X,u0) = victim(X1, u0) = u1 and raise(X0, u1) = X0. Using these facts, it is
straightforward to argue that potential(X01) = potential(X10) and matched(X01) = matched(X10).
It remains to address the case where u belongs to white(X) ∩ white(X1). We proceed via the
following case analysis.

• Case 1: victim(X,u0) 6= u1.

– Case 1.1: victim(X,u0, 1) 6= u0.
We have victim(X,u0) = victim(X,u0, 1). In this case, u0 belongs to matched(raise ′(X,u0));
thus, by the definition of the function raise, we have matched(X0) = matched(X) +
u0 − victim(X,u0) and potential(X0) = potential(X). By Fact 4.1, we have X01 =
shift(X0, u1, 1); thus potential(X01) = potential(X) and matched(X01) = matched(X) +
u0 − victim(X,u0).
Since victim(X,u0) 6= u1, there exists an agent u′ in nonwhite(X) ∩ agents(X,u0)
such that victim(X,u1, 1) = u′. By Fact 4.1, we have X1 = shift(X,u1, 1) and thus,
nonwhite(X)∩ agents(X,u0)− u1 = nonwhite(X1)∩ agents(X1, u0)− u1; it follows that
victim(X1, u0) = victim(X,u0). Thus, matched(X10) = matched(X)+u0−victim(X,u0).
SinceX1 = shift(X,u, 1) and u0 belongs to matched(raise ′(X,u0)), we have potential(X10) =
potential(X).
Thus, matched(X01) = matched(X10) and potential(X01) = potential(X10).

– Case 1.2: victim(X,u0, 1) = u0.
In this case, victim(X,u0) = victim(X ′0, u0, 0) where X ′0 = inc(raise ′(X,u0), u0). Since
victim(X,u0, 1) = u0, we have nonwhite(X)∩agents(X,u0) = ∅; thus, potential(X0, v) =
potential(X, v) + 1 for any item v in items(X,u0). By Fact 4.1, we have X01 =
shift(X0, u1, 1); thus potential(X01) = potential(X0) and matched(X01) = matched(X)+
u0 − victim(X,u0). We established above that X1 = shift(X,u1, 1); thus we have
potential(X1) = potential(X) and matched(X1) = matched(X). Further, since agents(X,u0)∩
nonpositive(X) = ∅ and potential(X1) = potential(X0), by Lemmas 4.12 and 4.13 can
be used to argue that we have items(X1, u0) = items(X,u0) and agents(X1, u0) ∩

22

nonpositive(X1) = ∅; thus it follows that potential(X10, v) = potential(X, v) + 1 for
any item v in items(X,u0).
Let X ′1 = inc(raise ′(X1, u0), u0); it is easy to see that X ′1 = shift(X ′0, u1, 1). Since
u1 6= victim(X ′0, u0) and X ′1 = shift(X ′0, u1, 1), we have u1 6= victim(X ′1, u0); thus,
victim(X ′1, u0) = victim(X ′0, u0) = victim(X,u0), and matched(X10) = matched(X) +
u0 − victim(X,u0).
It follows that matched(X01) = matched(X10) and potential(X01) = potential(X10).

• Case 2: victim(X,u0) = u1.

– Case 2.1: victim(X,u0, 1) 6= u0.
In this case, victim(X,u0) = victim(X,u0, 1) = u1; thus, potential(X0) = potential(X)
and matched(X0) = matched(X) + u0 − u1. By the definition of the function raise, we
have gap(X,u1) = 0 and gap(X0, u0) = 1. We consider two sub-cases.
First we consider the sub-case where agents(X0, u1)∩nonpositive(X0) 6= ∅. In this case,
we have potential(X01) = potential(X0) and by Lemma 4.13, we have agents(X0, u1) ∩
nonpositive(X0) = nonpositive(X)∩(agents(X,u1)∪agents(X,u0)). Since gap(X,u1) =
0 and X1 = shift(X,u1, 1), we have gap(X1, u1) = 1; by the definition of the func-
tion raise ′, we find that u1 does not belong to nonpositive(X0) and victim(X0, u1) 6=
u1. Thus, potential(X01) = potential(X) and matched(X01) = matched(X) + u0 +
u1 − victim(X0, u1). Since u1 belongs to agents(X1, u0) and X1 = shift(X,u1, 1), it
follows that potential(X1) = potential(X0) and nonpositive(X1) ∩ agents(X1, u0) =
nonpositive(X)∩(agents(X,u0)∪agents(X,u1))−u1; thus victim(X1, u0) = victim(X0, u1).
Therefore, we have potential(X10) = potential(X) and matched(X10) = matched(X) +
u0 + u1 − victim(X0, u1).
Next we consider the sub-case where agents(X0, u1) ∩ nonpositive(X0) = ∅, In this
case, we have potential(X01, v) = potential(X, v) + 1 for any item v in items(X0, u1)
and victim(X0, u1) = victim(X ′0, u1, 0) where X ′0 = inc(raise ′(X,u1), u1). Since u0 be-
longs to agents(X0, u1) and gap(X0, u0) = 1, we have u0 belongs to nonpositive(X ′0) ∩
agents(X ′0, u1); thus u1 belongs to matched(X01). Thus, we have matched(X01) =
matched(X) +u0 +u1− victim(X ′0, u1, 0) and potential(X01, v) = potential(X, v) + 1 for
any item in items(X,u1). Since potential(X0) = potential(X) and victim(X,u0, 1) = u1,
and since agents(X0, u1)∩nonpositive(X0) = ∅, we have agents(X,u0)∩nonpositive(X0) =
{u1}. Since X1 = shift(X,u, 1), we have agents(X1, u0) ∩ nonpositive(X1) = ∅; thus
potential(X10, v) = potential(X, v)+1 for any item v in items(X1, u0), where items(X1, u0) =
items(X0, u1). Let X ′1 = inc(raise ′(X1, u1), u1); thus we have X ′1 = shift(X ′0, u1, 1),
agents(X ′1, u0)∩ nonpositive(X ′1) = agents(X ′0, u1)∩ nonpositive(X ′0)− u1, and we have
victim(X ′1, u0, 0) = victim(X ′0, u1, 0). Therefore, we have potential(X10) = potential(X)
and matched(X10) = matched(X) + u0 + u1 − victim(X ′0, u1, 0).

– Case 2.2: victim(X,u0, 1) = u0.
In this case, victim(X,u0) = victim(X ′0, u0, 0) = u1 where X ′0 = inc(raise ′(X,u0), u0).
Since victim(X,u0, 1) = u0, we have nonwhite(X)∩agents(X,u0) = ∅; thus, potential(X0, v) =
potential(X, v) + 1 for any item v in items(X,u0), and by the definition of the function
raise ′′, we have gap(X0, u0) = 0. Since u0 belongs to agents(X0, u1) and gap(X0, u0) = 0,
we have u1 belongs to matched(raise ′(X0, u1)); thus potential(X01) = potential(X0) and
matched(X01) = matched(X) + u0 + u1 − victim(X0, u0, 1).

23

We established above thatX1 = shift(X,u1, 1); thus we have potential(X1) = potential(X)
and matched(X1) = matched(X). Further, since agents(X,u0) ∩ nonpositive(X) = ∅
and potential(X1) = potential(X), Lemmas 4.12 and 4.13 imply that items(X1, u0) =
items(X,u0) and agents(X1, u0)∩nonpositive(X1) = ∅; thus potential(X ′1, v) = potential(X, v)+
1 for any item v in items(X,u0), where X ′1 = inc(raise ′(X1, u0), u0). Since gap(X0, u1) =
0, potential(X ′1) = potential(X0) and X1 = shift(X,u1, 1), we have gap(X ′1, u1) = 1;
thus u1 6= victim(X ′1, u0, 0). By the definition of the function raise, we have X ′1 =
shift(X0, u1, 1); thus, victim(X ′1, u0) = victim(X0, u0, 0). It is now easy to see that
matched(X10) = matched(X)+u0+u1−victim(X,u0, 0) and potential(X10) = potential(X0).

Lemma 4.19. For any quiescent ECC X and any agents u0 and u1 in unmatched(X), if victim(X,u0) =
victim(X,u1) = u, then potential(X01) = potential(X10) and matched(X01) = matched(X10) where
X01 = raise(raise(X,u0), u1) and X10 = raise(raise(X,u1), u0).

Proof. Let X0 = raise(X,u0) and let X1 = raise(X,u1). Let X ′0 = inc(raise ′(X,u0), u0) and let
X ′01 = inc(raise ′(X0, u1), u1). Let X ′1 = inc(raise ′(X,u1), u1) and let X ′10 = inc(raise ′(X1, u0), u0).
We consider the following cases.

• Case 1: victim(X,u1, 1) 6= u1

– Case 1.1 victim(X,u0, 1) 6= u0. We begin by establishing the following sequence of
claims.

1. potential(X0) = potential(X). Follows from the fact that victim(X,u0, 1) 6= u0 and
the definition of the function raise ′′.

2. u0 belongs to agents(X0, u1). Follows from the fact that victim(X,u0) = victim(X,u1, 1) =
u and Lemma 4.15.

3. potential(X1) = potential(X). Follows from the fact that victim(X,u1, 1) 6= u1 and
the definition of the function raise ′′.

4. u1 belongs to agents(X1, u0). Follows from the fact that victim(X,u1) = victim(X,u0, 1) =
u and Lemma 4.15.
We now consider two sub-cases.
(a) Case 1.1.2 victim(X0, u1, 1) 6= u1.

By claims 1 and 2, we have potential(X0) = potential(X1) and by claims 2
and 4, we have u0 belongs to agents(X0, u1) and u1 belongs to agents(X1, u0);
thus we have victim(X1, u0, 1) 6= u0. Since victim(X,u0) = victim(X,u1) = u,
we have matched(X0)\matched(X1) = {u0} and matched(X1)\matched(X0) =
{u1}. Further, by the definition of the function raise, we have bid-graph(X0) =
bid-graph(X1) and for any agent u′ in nonwhite(X), there exists an item v′ in
items(X) such that match(χ, v) = u′ for any configuration χ in X0 ∪X1. Thus,
by Lemma 4.14, we have victim(X0, u1, 1) = victim(X1, u0, 1). Further, by
the definition of the function raise ′′, we have potential(X01) = potential(X10).
Since victim(X,u0) = victim(X,u1) and victim(X0, u1, 1) = victim(X1, u0, 1),
we have matched(X01) = matched(X10).

(b) Case 1.1.2 victim(X0, u1, 1) = u1.
By claims 1 and 2, we have potential(X0) = potential(X1) and by claims 2
and 4, we have u0 belongs to agents(X0, u1) and u1 belongs to agents(X1, u0);

24

thus we have agents(X0, u1) = agents(X1, u0) and by the definition of the func-
tion raise ′′, we have potential(X ′01) = potential(X ′10). Since victim(X,u0) =
victim(X,u1) = u, we have matched(X ′01)\matched(X ′10) = {u0} and matched(X ′10)\
matched(X ′01) = {u1}. Further, by the definition of the function raise, we
have bid-graph(X ′01) = bid-graph(X ′10) and for any agent u′ in nonwhite(X),
there exists an item v′ in items(X) such that match(χ, v) = u′ for any config-
uration χ in X ′01 ∪ X ′10. Thus, by Lemma 4.14, we have victim(X ′01, u1, 0) =
victim(X ′10, u0, 0). By the definition of the function raise ′′, we have potential(X01) =
potential(X10). Since victim(X,u0) = victim(X,u1) and victim(X ′01, u1, 0) =
victim(X10, u0, 0), we have matched(X01) = matched(X10).

– Case 1.2. victim(X,u0, 1) = u0. We begin by establishing the following sequence of
claims.

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X,u0) and potential(X0, v) =
potential(X, v) for any item v in items(X)\ items(X,u0). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

2. gap(X0, u0) = 0. We have victim(X,u0, 1) = u0 and victim(X,u0) = u; thus, u0 is
matched by a raise ′′ invocation and gap(X0, u0) = 0.

3. u0 belongs to agents(X0, u1). Since victim(X,u0) = victim(X,u1, 1), by Lemma 4.15,
we have u0 belongs to agents(X0, u1).

4. potential(X ′01) = potential(X0). By 2 and 3, we have u0 belongs to nonpositive(X0)∩
agents(X0, u1); thus by the definition of the function raise ′, we have potential(X ′01) =
potential(X0).

5. potential(X1) = potential(X). Follows from the fact that victim(X,u1, 1) = u and
the definition of the function raise ′.

6. potential(X ′10) = potential(X0). Since victim(X,u0, 1) = u, we have nonpositive(X)∩
agents(X,u0) = ∅, thus by 5 and Lemma 4.12, we have items(X1, u0) = items(X,u0),
and by Lemma 4.13, we have nonpositive(X1)∩agents(X1, u0) = ∅; thus by the def-
inition of the function raise ′′ and 1, we have potential(X ′10) = potential(X0).

7. u1 belongs to agents(X ′10, u0). Since victim(X,u0, 1) = u0, we have victim(X,u0) =
victim(X ′0, u0, 0) = u where X ′0 = inc(raise ′(X,u0), u0). We have victim(X,u1, 1) =
u. Thus, by Lemma 4.16, we have u1 belongs to agents(X ′10, u0).

8. victim(X ′10, u0, 0) = victim(X0, u1, 1). By claims 4 and 6, we have potential(X ′01) =
potential(X ′10) and by claims 3 and 7 we have u0 belongs to agents(X0, u1) and u1

belongs to agents(X10′ , u0). It is easy to see that matched(X0) \ matched(X ′10) =
{u0} and matched(X ′10)\matched(X0) = {u1}, and by the definition of the function
raise, for any agent in nonwhite(X ′01), there exists an item in items(X) such that
match(χ, v) = u for any configuration in X0∪X ′10. Thus, it follows from Lemma 4.16
that victim(X ′10, u0, 0) = victim(X0, u1, 1).

By claims 4 and 6, we have potential(X01) = potential(X10). The statement of the lemma
assumes that victim(X,u0) = victim(X,u1) and by claim 8, we have victim(X ′10, u0, 0) =
victim(X0, u1, 1); thus matched(X01) = matched(X10).

• Case 2: victim(X,u1, 1) = u1

– Case 2.1: victim(X,u0, 1) 6= u0

This case is symmetric to case 1.2.

25

– Case 2.1: victim(X,u0, 1) = u0. We begin by establishing the following sequence of
claims.

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X,u0) and potential(X0, v) =
potential(X, v) for any item v in items(X)\ items(X,u0). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

2. potential(X ′01, v) = potential(X, v) + 1 for any item v in items(X,u0)∪ items(X,u1)
and potential(X ′01, v) = potential(X, v) for any item v in items(X) \ items(X,u0) ∪
items(X,u1). Since victim(X,u1, 1) = u1, we have nonpositive(X)∩agents(X,u1) =
∅; by 1 and Lemma 4.12, we have items(X0, u1) = items(X,u1) \ items(X,u0), and
by Lemma 4.13, we have nonpositive(X0)∩agents(X0, u1) = ∅; thus, claim 2 follows
by the definition of the function raise ′′ and claim 1.

3. u0 belongs to agents(X ′01, u1). By claim 2, we have potential(X ′01) > potential(X0);
thus victim(X0, u1, 1) = u1 and victim(X0, u1) = victim(X ′01, u1, 0); and by Lemma 4.16,
we find that u0 belongs to agents(X ′01, u1).

4. potential(X1, v) = potential(X, v)+1 for any item v in items(X,u1) and potential(X0, v) =
potential(X, v) for any item v in items(X)\ items(X,u1). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

5. potential(X ′10, v) = potential(X, v) + 1 for any item v in items(X,u1)∪ items(X,u0)
and potential(X ′10, v) = potential(X, v) for any item v in items(X) \ items(X,u1) ∪
items(X,u0). The analysis is similar to claim 2.

6. u1 belongs to agents(X ′10, u0). By claim 5, we have potential(X ′10) > potential(X1);
thus victim(X1, u0, 1) = u0; and victim(X1, u0) = victim(X ′10, u0, 0); and by Lemma 4.16,
we find that u1 belongs to agents(X ′10, u0).

7. victim(X ′10, u0, 0) = victim(X ′01, u1, 0). By claims 4 and 5, we have potential(X ′01) =
potential(X ′10) and by claims 3 and 6 we have u0 belongs to agents(X ′01, u1) and u1

belongs to agents(X ′10, u0). Since victim(X,u0) = victim(X,u1), we have matched(X ′01)\
matched(X ′10) = {u1} and matched(X ′10) \ matched(X ′10) = {u0}, and by the defi-
nition of the function raise, for any agent in nonwhite(X ′01), there exists an item in
items(X) such that match(χ, v) = u for any configuration in X ′01 ∪X ′10. It follows
from Lemma 4.16 that victim(X ′10, u0, 0) = victim(X ′01, u1, 0).

By claims 2 and 5, we have potential(X01) = potential(X10). The statement of the lemma
assumes that victim(X,u0) = victim(X,u1) and by claim 7, we have victim(X ′10, u0, 0) =
victim(X ′01, u1, 0); thus, matched(X01) = matched(X10).

Lemma 4.20. For any quiescent ECC X and any agents u0 and u1 in enabled(X), we have

raise(raise(X,u0), u1) = raise(raise(X,u1), u0).

Proof. Let X01 = raise(raise(X,u0), u1) and let X10 = raise(raise(X,u1), u0).
We first prove the following claim: potential(X01) = potential(X10) and matched(X01) =

matched(X10). By Lemma 4.18, the claim holds when matched(X) ∩ {u0, u1} 6= ∅. It remains
to show that the claim holds when {u0, u1} ⊆ unmatched(X). By Lemma 4.19, the claim holds
when {u0, u1} ⊆ unmatched(X) and victim(X,u0) = victim(X,u1). By Lemma 4.17, the claim
holds when {u0, u1} ⊆ unmatched(X) and victim(X,u0) 6= victim(X,u1).

It now remains to be shown that if potential(X01) = potential(X10) and matched(X01) =
matched(X10), then X01 = X10. Consider any agent u in nonwhite(X); thus, there exists an item

26

v in items(X) such that match(χ, v) = u for every configuration χ in X. Note that if u belongs
to unmatched(raise(X,u0)), then by the definition of the function raise, it follows that u belongs
to unmatched(X01). Using this fact and by repeated application of Lemma 4.7, it follows that
either u belongs to unmatched(X01) or match(χ, v) = u for every configuration χ in X ∪ X01.
By an identical argument, we find that either u belongs to unmatched(X10) or match(χ, v) = u
for every configuration in X ∪ X10. However, since we established above that matched(X01) =
matched(X10), it follows that match(χ, v) = u for every configuration χ in X ∪ X01 ∪ X10, and
hence, X01 = X10.

4.4 A restricted class of bidding strategies

The first phase of our top-level auction is defined in terms of the bottom-level auction. We associate
with each agent u in the top-level auction, a proxy agent u′ who bids on behalf of u in the bottom-
level auction. The bid of agent u in the top-level auction restricts the number of raise invocations
of agent u′ in the bottom-level auction. Accordingly, we analyze the bottom-level auction when
each agent has a restricted “target” number of raise invocations.

We define a target as a function from the set of all agents to the set of nonnegative integers.
For any target α, any agent u, and any integer z such that α(u) + z ≥ 0, we define shift(α, u, z) as
the target α′ where α′(u) = α(u) + z and α′(u′) = α(u′) for any agent u′ different from u. For any
configuration χ = (G,M,Φ) where G = (U, V,w), and any target α, we define shift(χ, α) as the
configuration (G′,M,Φ) where G′ = (U, V,w′) and w′(u, v) = w(u, v) + α(u) for any agent u in U
and any item v in V . For any ECC X and any target α, we define shift(X,α) as ∪χ∈X [shift(χ, α)].

We view the bottom-level auction as taking a pair (X,α) as input, where X is a quiescent ECC
and α is a target, and updating this pair over a sequence of rounds. For any agent u in X, the
nonnegative integer α(u) represents the number of additional raise invocations desired by agent
u. In a general round of the auction with input (X0, α0), a single agent u in enabled(X0) having
α0(u) > 0 invokes raise, and the output of the round, denoted by raise(X0, u, α0) is given by
(raise(X0, u), shift(α0, u,−1)). The auction terminates when no enabled agent has pending raise
invocations.

We define bottom(X,α) as the output of the bottom-level auction when given the pair (X,α)
as input. By Lemma 4.9 and Lemma 4.20, it follows that bottom(X,α) is uniquely defined.

In Section 4.5, we establish various properties of bottom(X,α). These properties are crucial for
describing and analyzing the top-level auction of Section 5.

The facts below follow from the definition of the function raise and the commutativity of raise
invocations established in Lemma 4.20.

Fact 4.5. For any quiescent ECC X, any target α, and any agent u in enabled(X), we have

bottom(raise(X,u), α) = bottom(X, shift(α, u, 1)).

Fact 4.6. For any quiescent ECC X0 of the form add(X,u, β) and any target α, we have bottom(X0, α) =
bottom(add(X ′, u, β), α′) where (X ′, α′) = bottom(X,α).

Fact 4.7. For any quiescent ECC X, any agent u in white(X), and any target α, if (X0, α0) =
bottom(X,α), then

bottom(X, shift(α, u, 1)) = bottom(X0, shift(α0, u, 1)).

27

4.5 Truthfulness-related properties

The goal of this section is to establish Lemma 4.30. We use Lemma 4.30 to establish Lemma 5.9
(see Section 5.4.1) on the truthfulness of the top-level auction.

For any quiescent ECC X and any target α, we define matched(X,α) as the set of agents in
matched(X ′), where (X ′, α′) = bottom(X,α). For any quiescent ECC X, any target α, and any
item v in items(X), we define agents(X,α, v) as agents(X ′, v), where (X ′, α′) = bottom(X,α).

Lemma 4.21. For any quiescent ECC X, any quiescent ECC X ′ of the form subst(X,u, u′), and
any target α such that α(u) = α(u′), if u belongs to matched(X) ∩ white(X), then gap(X0, u) =
gap(X1, u

′), where (X0, α0) = bottom(X,α) and (X1, α1) = bottom(X ′, α).

Proof. By Lemma 4.20, the raise invocations of the bottom-level auction instances with inputs
X and subst(X,u, u′) can be reordered such that at each round, either the same agent invokes
raise in both executions, or agents u and u′ invoke raise in their corresponding executions. By
the definitions of the functions raise ′ and raise ′′, the executions treat agents u and u′ identically
until both agents attain a utility of zero. By Lemma 4.8, we know that u and u′ remain white in
every round of their corresponding executions, and by Fact 4.2, we know that the potentials are
nondecreasing over the rounds of both executions. Thus, agents u and u′ continue to have zero
utility for the remainder of the executions, and we have gap(X0, u) = gap(X1, u

′).

Lemma 4.22. Let X be a quiescent ECC and let X ′ be a quiescent ECC of the form subst(X,u, u′)
such that for any agent u′′ in agents(X), we have u′′ < u if and only if u′′ < u′. Let α and α′ be
targets such that α(u) = α′(u′) and α(u′′) = α′(u′′) for any agent u′′ in agents(X)−u. If (X0, α0) =
bottom(X,α) and (X1, α1) = bottom(X ′, α′), then gap(X0, u) + α0(u) = gap(X1, u

′) + α1(u′).

Proof. By Lemma 4.20, the raise invocations of the bottom-level auction instances with inputs X
and subst(X,u, u′) can be reordered such that at each round, either the same agent invokes raise
in both executions, or agents u and u′ invoke raise in their corresponding executions. Since agents
u and u′ have the same relative ordering with respect to the agents in agents(X)− u, it is easy to
see that if X0 and X ′0 are the output ECCs corresponding to the same round in both executions,
then we have X ′0 = subst(X0, u, u

′).

Lemma 4.23. For any quiescent ECC X ′ of the form add(X,u, v, z) and any target α, there exists a
unique integer z∗ and a unique agent u∗ in agents(X)+ε such that u belongs to matched(X ′, α) if and
only if (z+α(u), u) > (z∗, u∗). Moreover, if u belongs to matched(X ′, α), then potential(X ′′, v) = z∗

where (X ′′, α′′) = bottom(X ′, α).

Proof. Let S be the ordered sequence of all pairs of the form (z′, u′) where z′ is an integer and u′ is
an agent that does not belong to agents(X)∪ε. Consider any pair (z0, u0) in S such that z0+α0(u) <
potential(X0, v), where α0 = subst(α, u0, α(u)) and (X0, α

′
0) = bottom(add(X,u0, v, z0), α0). By

repeated application of Fact 4.2, we know that potential(X0) ≥ potential(X) and by repeated appli-
cation of Lemma 4.8, we have u0 belongs to white(X0). Thus, u0 does not belong to matched(X0).
Further, since u0 belongs to white(X0), it follows that potential(X0, v) ≥ z0. Since prices can-
not grow indefinitely, there must be a first pair (z1, u1) > (z0, u0) in S such that u1 belongs to
matched(X1, α1) where X1 = add(X,u1, v, z1) and α1 = subst(α, u1, α(u)). Consider the pair
(z1, u2) where u2 is the maximum agent such that u2 < u1. By Lemma 4.22, if u2 does not belong
to agents(X) ∪ ε, then u2 and u1 have the same relative ordering with respect to the remaining
agents in X and thus, u2 belongs to matched(subst(X1, u1, u2), subst(α, u2, α(u))). However, we
know that (z1, u1) is the first pair in S such that u1 belongs to matched(X1, α1). Thus, it follows
that u2 belongs to agents(X) ∪ ε. Consider any pair (z3, u3) > (z1, u1) in S; by the definition of

28

the bottom-level auction, we find that u3 belongs to matched(subst(X1, u1, u3), subst(α, u3, α(u))).
Thus u∗ = u2 and z∗ = z1.

We now show that if u belongs to matched(X ′, α), then potential(X ′′, v) = z∗ where (X ′′, α′′) =
bottom(X ′, α). Suppose that potential(X ′′, v) < z∗. Then consider the case where u < u∗ and
z + α(u) = z∗. Since (z + α(u), u) < (z∗, u∗), we have u belongs to unmatched(X ′′) and since
z + α(u) > potential(X ′′, v), we have u belongs to matched(X ′′); a contradiction. Suppose that
potential(X ′′, v) > z∗. Then consider the case where u > u∗ and z + α(u) = z∗. Since (z + α(u) +
z, u) > (z∗, u∗), we have u belongs to matched(X ′′) and since z +α(u) < potential(X ′′, v), we have
u belongs to unmatched(X ′′); a contradiction. It follows that potential(X ′′, v) = z∗.

For any quiescent ECCX, any target α, and any item v in items(X), we define threshold∗(X,α, v)
as the unique pair (z∗, u∗) of Lemma 4.23, and we define threshold∗(X,α) as the function that maps
each item v in items(X) to threshold∗(X,α, v). In addition, we define threshold(X,α, v) as the in-
teger z∗ and we define threshold(X,α) as the function that maps each item v in items(X) to
threshold(X,α, v).

Lemma 4.24. For any quiescent ECC X, any target α, and any agent u in enabled(X), we have

threshold∗(X,α) ≤ threshold∗(raise(X,u), α).

Proof. Assume threshold∗(raise(X,u), α, v0) < threshold∗(X,α, v0) for some item v0 in items(X).
Let X0 be an ECC of the form add(X,u0, v0,min(v0)) and let α0 be a target such that (1) α0(u′) =
α(u′) for any agent u′ in agents(X), and (2) threshold∗(raise(X,u), α, v0) < α0(u0) + min(v0) <
threshold∗(X,α, v0). Note that X0 is quiescent. We have threshold∗(X,α) = threshold∗(X,α0),
and threshold∗(raise(X,u), α) = threshold∗(raise(X,u), α0); thus, threshold∗(raise(X,u), α0, v0) <
α0(u0) + min(v0) < threshold∗(X,α0, v0).

Let (X1, α1) = bottom(X0, α0); since α0(u0) + min(v0) < threshold∗(X,α0, v0), by Lemma 4.23
we find that u0 belongs to unmatched(X1). Since X0 is quiescent and u belongs to unmatched(X0),
we have u belongs to white(X0), and by repeated application of Lemma 4.8, we find that u0 belongs
to white(X1). We conclude that α1(u0) = 0.

By Fact 4.5, we have bottom(raise(X0, u), α0) = bottom(X0, shift(α0, u, 1)), and by Fact 4.7, we
have bottom(X0, shift(α0, u, 1)) = bottom(X1, shift(α1, u, 1)).

Since threshold∗(raise(X,u), α0, v0) < α0(u0)+min(v0), by Lemma 4.23, we find that u0 belongs
to matched(raise(X0, u), α0), and since we established above that α1(u0) = 0, we have u0 does not
belong to matched(X1, shift(α1, u, 1)). Since bottom(raise(X0, u), α0) = bottom(X1, shift(α1, u, 1)),
this yields a contradiction. Thus, we have threshold∗(X, shift(α, u, 1)) ≤ threshold∗(raise(X,u), α).

Lemma 4.25. For any quiescent ECC X0 of the form add(X,u, β) and any target α, if u does not
belong to matched(X0, α), then threshold∗(X0, α) = threshold∗(X,α).

Proof. Let (X ′, α′) = bottom(X,α) and let (X ′0, α
′
0) = bottom(X0, α). By Fact 4.6, we have

bottom(X0, α) = bottom(add(X ′, u, β), α′). By repeated application of Lemma 4.24, it follows that
threshold∗(X ′0, α

′
0) ≥ threshold∗(X ′, α′). Suppose threshold∗(X ′, α′, v1) < threshold∗(X ′0, α

′
0, v1)

for some v1 in items(X). Let X1 = add(X0, u1, v1,min(v1)) for some agent u1, and let α1 be a
target such that (1) threshold∗(X ′, α′, v1) < (α1(u1) + min(v1), u1) < threshold∗(X ′0, α

′
0, v1), and

(2) α1(u′) = α(u′) for any u′ in agents(X0). Note that threshold∗(X0, α0) = threshold∗(X0, α1).
Similarly, threshold∗(X1, α0) = threshold∗(X1, α1).

Let X2 = add(X,u1, v1,min(v1)); then X1 = add(X2, u, β). Let (X ′2, α
′
2) = bottom(X2, α1);

by Fact 4.6, we find that bottom(X1, α1) = bottom(add(X ′2, u, β), α′2). By Lemma 4.23, since
min(v0) + α1(u1) > threshold∗(X ′, α′, v1) and threshold∗(X ′0, α

′
0) ≥ threshold∗(X ′, α′), u0 is in

29

matched(X ′2, α
′
2). By Lemma 4.24, we have threshold∗(X ′2, α

′
2) ≥ threshold∗(X,α1), and since u

is not in matched(X0, α1), we have u does not belong to matched(X1, α1); thus u1 belongs to
matched(X1, α1).

Since u belongs to enabled(X1), by Fact 4.6, it follows that bottom(add(X ′0, u1, v1,min(v1)), α′1) =
bottom(X1, α1). By Lemma 4.23, since min(v0)+α0(u0) < threshold∗(X ′0, α

′
0, v1), agent u0 does not

belong to matched(X ′0, α
′
1); thus u and u1 do not belong to matched(X1, α1), a contradiction.

For any quiescent ECC X, any target α, and any item v in items(X), we define price(X,α, v)
as potential(X ′, v) where (X ′, α′) = bottom(X,α), and we define price(X,α) as the function that
maps every item v in items(X) to price(X,α, v).

For any quiescent ECC X, any target α, and any item v in items(X), we define price∗(X,α, v)
as (price(X,α, v), u0), where u0 is the maximum agent in agents(X,α, v). In addition, we define
price∗(X,α) as the function that maps each item v in items(X) to price∗(X,α, v).

Lemma 4.26. For any quiescent ECC X and any target α, we have price∗(X,α) ≤ threshold∗(X,α).

Proof. Assume that there exists an item v in items(X) such that price∗(X,α, v) > threshold∗(X,α, v).
Let (X ′, α′) = bottom(X,α). Let X0 = add(X ′, u, v,min(v)) for some agent u, and let α0 be a
target such that (1) threshold∗(X,α, v) < α0(u)+min(v) < price∗(X,α, v), and (2) α0(u′) = α′(u′)
for any agent u′ in agents(X). Note that X0 is quiescent. It is easy to see that threshold∗(X,α) =
threshold∗(X ′, α′) = threshold∗(X ′, α0); thus threshold∗(X ′, α0, v) < α0(u) + min(v).

We have bottom(X0, α0) = bottom(add(X ′, u, v,min(v)), subst(α′, u, α0(u))); thus, by repeated
application of Fact 4.2, we have price∗(X0, α0) ≥ price∗(X ′, α′) ≥ price∗(X,α). Thus, threshold∗(X ′, α0, v) <
α0(u) + min(v) < price∗(X0, α0, v).

Let (X ′0, α
′
0) = bottom(X0, α0). By Lemma 4.23, since α0(u)+min(v) > threshold∗(X ′, α0, v) we

find that u belongs to matched(X ′0). Since u belongs to unmatched(X0), we find that u belongs to
white(X0); thus, by repeated application of Lemma 4.8, we have u belongs to white(X ′0). However,
since α0(u) + min(v) < price∗(X,α, v), it follows that u belongs to nonwhite(X ′0), thus yielding a
contradiction. Thus, price∗(X,α) ≤ threshold∗(X,α).

Lemma 4.27. Let X0 be a quiescent ECC and let u0 be an agent in unmatched(X0). Let X1

be a quiescent ECC of the form subst(X0, u0, u1), where u1 < u0. Then for any target α such
that α(u0) = α(u1), we have gap(X ′0, u0) = gap(X ′1, u1), where (X ′0, α

′
0) = bottom(X0, α) and

(X ′1, α
′
1) = bottom(X1, α).

Proof. Let β = bid(bid-graph(X0), u) and let X be the ECC such that X0 = add(X,u, β). Observe
that X and X1 are quiescent. Let (X ′, α′) = bottom(X,α). By Fact 4.6, we have bottom(X0, α) =
bottom(add(X ′, u0, β), α′) and bottom(X1, α) = bottom(subst(X0, u0, u1), α′). We refer to the in-
stance of the bottom-level auction with inputs X0 and α as execution A and we refer to the instance
of the bottom-level auction with inputs X1 and α as execution B. By Lemma 4.20, raise invocations
of executions A and B can be reordered such that agents u0 and u1 exhaust their raise invocations
before any other agent invokes the function raise. If u0 and u1 are unmatched when they exhaust
their raise invocations, then by the description of the bottom-level auction, agents u0 and u1 have
zero utility in executions A and B respectively, and they continue to have zero utility for the rest
of the corresponding executions; thus gap(X ′0, u0) = gap(X ′1, u1) = 0.

For the remainder of this proof, we may assume that consider the following cases at least
one of agents u0 and u1 is matched by a raise invocation in either execution A or execution
B. Let k be the first round in which either u0 or u1 is matched and let Xk and X ′k be the
output ECCs of round k of executions A and B. By repeated application of Lemma 4.11, we have
gap(Xk, u0) = gap(X ′k, u1) = 0, and either Xk = subst(X ′k, u1, u0), or raise(Xk, u0) = raise(X ′k, u1).

30

First we consider the case whereXk = subst(X ′k, u1, u0). In this case, u0 belongs to matched(Xk)∩
white(Xk) and u1 belongs to matched(X ′k)∩white(X ′k); thus, by Lemma 4.21 we have gap(X ′0, u0) =
gap(X ′1, u1).

Next we consider the case where Xk 6= subst(X ′k, u1, u0). If agents u0 and u1 have exhausted
their raise invocations, then by the description of the bottom-level auction, they continue to have
zero utility for the rest of the auction; if u0 and u1 have one or more pending raise invocations,
then by Lemma 4.11, raise(Xk, u0) = subst(raise(X ′k, u0), u1, u0), and by Lemma 4.21, we have
gap(X ′0, u0) = gap(X ′1, u1).

Lemma 4.28. Let X be a quiescent ECC of the form add(X0, u, β) and for each item v in items(X),
let Xv = add(X0, u, v, z) where z = β(v). Then for any target α, agent u belongs to matched(X,α)
if and only if u belongs to matched(Xv, α) for some item v in items(X).

Proof. We refer to the bottom-level auction instance with inputs (X,α) as execution A, and for
each item v, we refer to the bottom-level auction instance with input (Xv, α) as execution Av. We
represent the output of round i of execution A by (Xi, αi), and for any v in V , we represent the
output of round i of execution Av by (Xv,i, αv,i). Note that agent u is unmatched and therefore
enabled in all rounds of all executions under consideration. By Lemma 4.20, we choose to defer the
raise invocations of agent u in each execution to a round j in which u is the only enabled agent.
Further, we choose to allow the same agent to invoke raise in each round of every execution.

We now allow agent u to exhaust its raise invocations in rounds j to k of all executions, where
k = j + α(u). We consider the following two cases.

• Case (1) : (β(v) + α(u), u) < threshold∗(X,α(u), v) for every item v in items(X).

By Lemma 4.23, since (β(v) +α(u), u) < threshold∗(X,α(u), v) for every item v in items(X),
we find that u does not belong to matched(Xv, α) and thus u belongs to unmatched(Xv,k)
for every item v in items(X). Assume that u belongs to matched(X,α); thus, u belongs to
matched(Xk). Let α′ be a target such that α′(u′) = αk(u′) for any u′ in agents(Xk) and
for any agent of the form uv where v is an item in items(X), we have (β(v) + α(u), u) <
(α′(uv) + min(v), uv) < threshold∗(X,α, v). By Lemma 4.24, we have threshold∗(X,α) ≤
threshold∗(Xk, α

′); thus, we have (β(v)+α(u), u) < (α′(uv)+min(v), uv) < threshold∗(Xk, α
′, v)

for any item v in items(X). Let X ′ be an ECC that is constructed from Xk as follows:
initialize X ′ = Xk, and for each item v in items(X), set X ′ = add(X ′, uv, v,min(v)). Con-
sider the execution A′ of the bottom-level auction with input (X ′, α′), and for any round
i of execution A′, let (X ′i, α

′
i) represent the output of round i of execution A′. We now

use Lemma 4.20, to allow all agents in ∪v∈items(X)uv to exhaust their raise invocations.
If m is the last round of the raise invocations by agents in ∪v∈items(X)uv, then by Lem-
mas 4.23, since (α′(uv) + min(v), uv) < threshold∗(Xk, α

′, v) for every item v, we find that
agent uv belongs to unmatched(X ′m) for every v in items(X), and by Lemma 4.25, we have
threshold∗(X ′m, α

′
m) = threshold∗(Xk, αk). Since every agent uv belongs to unmatched(X ′m)

and X ′m is quiescent, we have potential(X ′m, v) ≥ (α′(uv) + min(v), uv) for every item v
in items(X); thus by Fact 4.2, we have price∗(X ′, α′, v) ≥ (α′(uv) + min(v), uv) for ev-
ery item v. Since (β(v) + α(u), u) < (α′(uv) + min(v), uv) for every item v, we have
price∗(X ′, α′, v) ≥ (β(v) +α(u), u) for every item v. However, by repeated use of Lemma 4.8,
agent u is white at the end of execution A′, and by our assumption that u belongs to
matched(X,α), we have price∗(X ′, α′, v) < (β(v) + α(u), u) for some item v; this yields a
contradiction. Thus, we have u does not belong to matched(X,α).

• Case (2) : (β(v) + α(u), u) > threshold∗(X,α, v) for some item v in items(X).

31

By Lemma 4.23, since (β(v) + α(u), u) > threshold∗(X,α, v) for some item v in items(X),
we find that u belongs to matched(Xv, α) for some item v in items(X). Assume that u does
not belong to matched(X,α). Consider the execution A′ defined as in Case 1 above. By
Lemma 4.25, we have threshold∗(Xk, αk) = threshold∗(X ′m, α

′
m). By Lemma 4.26, we have

price∗(X ′m, α
′
m) ≤ threshold∗(Xk, αk). Thus, there exists some item v in items(X) such that

u belongs to unmatched(X ′m) and (β(v) + α(u), u) > price∗(X ′m, α
′
m, v); this violates the

quiescent property of X ′m. Thus, u belongs to matched(X,α).

We conclude that agent u belongs to matched(X,α) if and only if u belongs to matched(Xv, α)
for some item v in items(X), as required.

Lemma 4.29. Let X be a quiescent ECC of the form add(X0, u, β), let α be a target, and for each
item v in items(X), let Xv = add(X0, u, v, z), where z = β(v). Then, we have gap(X ′, u) +α′(u) =
maxv∈items(X){gap(X ′v, u)+αv′(u)}, where (X ′, α′) = bottom(X,α) and (X ′v, α

′
v) = bottom(Xv, α)

for each item v in items(X).

Proof. By Lemma 4.27, if (X∗, α∗) = bottom(add(X0, u
′, β), α) for any agent u′, then gap(X ′, u) =

gap(X∗, u′). Thus, without loss of generality, we can assume that u > u′ for any agent u′ in
agents(X). By Lemma 4.28, u belongs to matched(X ′) if and only if u belongs to matched(X ′v) for
some v in items(X0). Thus, if u belongs to unmatched(X ′), we have gap(X ′, u) = gap(X ′v, u) = 0
for all v in items(X).

We now focus on the case where u belongs to matched(X ′). Let z be the largest integer such
that u belongs to matched(shift(X ′, u,−z)). By Fact 4.7, we have (X ′, α′) = (X ′′, shift(α′′, u, z))
where (X ′′, α′′) = bottom(shift(X,u,−z), α); thus gap(X ′, u) + α′(u) = gap(X ′′, u) + α′′(u) + z.
By Lemma 4.28, agent u belongs to matched(X ′′v) for some item v in items(X), where (X ′′v , α

′′
v) =

bottom(shift(Xv, u,−z), α). By Fact 4.7, we have (X ′v, α
′
v) = bottom(X ′′v , shift(α′v, u, z)); thus we

have gap(X ′v, u) +α′v = gap(X ′′v , u) +α′′v(u) + z. Since u belongs to white(X)∩white(Xv), we have
α′′(u) = α′′v(u) = 0. To complete the proof, it remains to be shown that gap(X ′′v , u) = gap(X ′′v , u).

We refer to the bottom-level auction instance with inputs (shift(X,u,−z), α) as execution A,
and for each item v, we refer to the bottom-level auction instance with input (shift(Xv, u,−z), α)
as execution Av. We represent the output of round i of execution A by (Xi, αi), and for any
v in V , we represent the output of round i of execution Av by (Xv,i, αv,i). Since u belongs to
unmatched(X), it follows that u belongs to enabled(X)∩ enabled(Xv). By Lemma 4.20, we choose
to allow agent u to first exhaust its raise invocations in all executions. Since u > u′ for any
agent u′ in agents(X), it follows that for each round j in which u invokes raise, either u belongs to
unmatched(Xj)∩unmatched(Xv,j) or there exists a first round j such that u belongs to matched(X ′j)
and u belongs to matched(X ′v,j) for some item v in items(X). Since z was chosen to be the largest
integer such that u belongs to matched(shift(X ′, u,−z)), we have gap(Xj , u) = gap(Xv,j , u) = 0,
and thus gap(X ′′, u) = gap(X ′′v , u) = 0.

Lemma 4.30. Let X ′ be a quiescent ECC of the form add(X,u, β) and let (X ′′, α′′) = bottom(X ′, α)
for some target α. Let ∆ denote the maximum, over all items v in items(X), of β(v) + α(u) −
threshold(X,α, v), and let V denote the set of all items v in items(X) such that β(v) + α(u) −
threshold(X,α, v) = ∆. Let u0 denote the minimum, over all items v in V of the second component
of the pair given by threshold∗(X,α, v). Then the following conditions hold:

• If the pair (∆, u) < (0, u0), then agent u belongs to unmatched(X ′′), and threshold∗(X ′, α) =
threshold∗(X,α).

32

• If the pair (∆, u) > (0, u0), then agent u belongs to matched(X ′′) and, (1) for every configura-
tion χ in X ′′, there exists an item v in V such that match(χ, v) = u, and (2) potential(X ′′, v) =
threshold(X,α, v) for any item v in V .

Proof. First, we show that u belongs to matched(X ′′) if and only if (∆, u) > (0, u0).
Let v0 be any item in items(X); thus, we find that β(v0) + α(u) − threshold(X,α, v0) = ∆.

If (∆, u) < (0, u0), then by adding threshold(X,α, v0) to the first component of both pairs, we
find that (β(v0) + α(u), u) < (threshold(X,α, v0), u0). Similarly, if (∆, u) > (0, u0), we find that
(β(v0) + α(u), u) > (threshold(X,α, v0), u0). By Lemma 4.23, it follows that agent u belongs to
matched(add(X,u, v0, β(v0)), α) if and only if (β(v0) + α(u), u) > (threshold(X,α, v0), u0), and by
Lemma 4.28, we find that agent u belongs to matched(X ′′) = matched(X ′, α) if and only if there
exists some item v′ in items(X) such that agent u belongs to matched(add(X,u, v′, β(v′)), α); thus,
we find that agent u belongs to matched(X ′′) if and only if (∆, u) > (0, u0).

Next we show that if u does not belongs to matched(X ′′), then threshold∗(X ′, α) = threshold∗(X,α).
The result follows directly from Lemma 4.25.

Finally, we show that if u belongs to matched(X ′′), then (1) and (2) stated above hold. By
Lemma 4.29, if u belongs to matched(X ′′), then gap(X ′′, u) = max v∈items(X){gap(X ′v, u)}, where
X ′v is equal to bottom(add(X,u, v, β(v)), α), and by Lemma 4.23, we have max v∈items(X){gap(X ′v, u)} =
∆; thus gap(X ′′, u) = ∆. Let v0 be any item in V . By Lemma 4.26, we have potential(X ′′, v0) ≤
threshold(X,α, v0), and since gap(X ′′, u) = ∆, we have potential(X ′′, v0) ≥ threshold(X,α, v0);
thus potential(X ′′, v0) = threshold(X,α, v0) and condition (1) holds. Now consider any item v not
in V . By definition, we have

β(v) + α(u)− threshold∗(X,α, v) < ∆. (3)

By Lemma 4.26, we have
potential(X ′′, v) ≤ threshold∗(X,α, v). (4)

By subtracting (4) from (3), we have β(v) + α(u) − potential(X ′′, v) < ∆; since u belongs to
white(X ′′), agent u attains its highest utility by being matched to some item in V in every config-
uration of X ′′ and condition (2) holds.

4.6 Determinized bottom-level auction

We have been dealing with ECCs in the discussion of the bottom-level auction in the previous
sections. Our top-level auction of Section 5 works with configurations; accordingly, we define a
suitable determinization of the bottom-level auction.

For any quiescent configuration χ and any agent u in enabled(χ), we would like to define
raise(χ, u) as a specific configuration in raise([χ], u) such that for any agent u0 in enabled(χ), if u
does not belong to matched(χ)∩unmatched(raise(χ, u0)), then raise(raise(χ, u0), u) = raise(raise(χ, u), u0).
In order to do so, we determinize the choice of the augmenting path in function augment defined in
Section 4.1. Specifically, we pick a lexicographically first (with respect to item identifiers) shortest
path.

We view the bottom-level auction as taking a pair (χ, α) as input, where χ is a quiescent
configuration and α is a target, and updating this pair over a sequence of rounds. A general
round of the auction with input (χ0, α0) is defined as follows: if enabled(χ0) = ∅, then the auction
terminates; if the minimum agent in matched(χ0) ∩ enabled(χ0) = ε then the minimum agent in
enabled(χ0) invokes raise; otherwise, the minimum agent in matched(χ0) ∩ enabled(χ0) invokes
raise. We define bottom(χ, α) as the output of the bottom-level auction when given the pair (χ, α)
as input.

33

Below we provide determinized versions of some key lemmas of the bottom-level auction that
were discussed in previous sections.

Lemma 4.31. For any configuration χ′ of the form raise(χ, u′), and any agent u in nonwhite(χ),
either (1) u belongs to unmatched(χ′), or (2) u belongs to nonwhite(χ′), and there exists an item
v in items(χ) such that potential(χ, v) = potential(χ′, v) and match(χ, v) = match(χ′, v) = u.

Proof. Let X ′ = raise([χ], u′). By definition, χ′ belongs to X ′. The result follows from Lemma 4.7.

Lemma 4.32. For any quiescent configuration χ and any agent u in enabled(χ), if χ′ = raise(χ, u),
then

gray(χ) ⊆ nonblack(χ′) ∧ white(χ) ⊆ white(χ′).

Proof. Let X ′ = raise([χ], u). By definition, χ′ belongs to X ′. The result follows from Lemma 4.8.

Lemma 4.33. For any quiescent configuration χ and any agent u in enabled(χ), we have enabled(χ)−
u ⊆ enabled(raise(χ, u)).

Proof. Let X ′ = raise([χ], u). By definition, raise(χ, u) belongs to X ′. The result follows from
Lemma 4.9.

Lemma 4.34. For any quiescent configuration χ, any quiescent configuration χ′ of the form
subst(χ, u, u′), and any target α such that α(u) = α(u′), if u belongs to matched(χ) ∩ white(χ),
then gap(χ0, u) = gap(χ1, u

′), where (χ0, α0) = bottom(χ, α) and (χ1, α1) = bottom(χ′, α).

Proof. LetX = [χ] and letX ′ = [χ′]. Let (X0, α0) = bottom(X,α) and let (X1, α1) = bottom(X ′, α).
By definition, χ0 belongs to X0 and χ1 belongs to X1. The result follows from Lemma 4.21.

Lemma 4.35. Let χ be a quiescent configuration and let χ′ be a quiescent configuration of the form
subst(χ, u, u′) such that for any agent u′′ in agents(χ), we have u′′ < u if and only if u′′ < u′. Let
α and α′ be targets such that α(u) = α′(u′) and α(u′′) = α′(u′′) for any agent u′′ in agents(χ)− u.
If (χ0, α0) = bottom(χ, α) and (χ1, α1) = bottom(χ′, α′), then gap(χ0, u) + α0(u) = gap(χ1, u

′) +
α1(u′).

Proof. LetX = [χ] and letX ′ = [χ′]. Let (X0, α0) = bottom(X,α) and let (X1, α1) = bottom(X ′, α′).
By definition, χ0 belongs to X0 and χ1 belongs to X1. The result follows from Lemma 4.22.

Lemma 4.36. Let χ′ be a quiescent configuration of the form add(χ, u, β) and let (χ′′, α′′) =
bottom(χ′, α) for some target α. Let ∆ denote the maximum, over all items v in items(χ), of
β(v) + α(u) − threshold(χ, α, v), and let V denote the set of all items v in items(χ) such that
β(v) + α(u) − threshold(χ, α, v) = ∆. Let u0 denote the minimum, over all items v in V of the
second component of the pair given by threshold∗(χ, α, v). Then the following conditions hold:

• If the pair (∆, u) < (0, u0), then agent u belongs to unmatched(χ′′), and threshold∗(χ′, α) =
threshold∗(χ, α).

• If the pair (∆, u) > (0, u0), then agent u belongs to matched(χ′′) and, (1) for every configura-
tion χ in χ′′, there exists an item v in V such that match(χ, v) = u, and (2) potential(χ′′, v) =
threshold(χ, α, v) for any item v in V .

Proof. Let X = [χ] and let X ′ = [χ′]. Let (X ′′, α′′) = bottom(X ′, α). By definition, χ′′ belongs to
X ′′. The result follows from Lemma 4.30.

34

Lemma 4.37. For any quiescent configuration χ and any agents u0 and u1 in enabled(χ), we have

raise(raise(χ, u0), u1) = raise(raise(χ, u1), u0).

Proof. By the definition of the function raise that takes an ECC as an argument, either u0 does
not belong to matched(χ) ∩ unmatched(raise([χ], u1)), or u1 does not belong to matched(χ) ∩
unmatched(raise([χ], u0)). The result follows from the definition of the function raise that takes a
configuration as argument.

5 Top-Level Auction

The top-level auction is our proposed sealed bid unit-demand auction with put options and proceeds
in two phases. The first phase corresponds to running an instance of the bottom-level auction and
the second phase corresponds to solving an instance of the house allocation problem [13]. We
establish strong properties related to truthfulness, efficiency, and privacy for our auction.

We provide a formal description of the first and second phases of the top-level auction in
Sections 5.1 and 5.2. Here we briefly mention some of the high-level ideas underlying the design of
the first phase. To ensure that the price of an item v does not decrease, at the outset of the first
phase, we tentatively impose the following obligation on the agent u who is the target of item v’s
put: Agent u will remain allocated to v at the strike price of v. Next, we drop the bids of all agents
sufficiently until equilibrium properties 1, 2, and 3 of Section 2.4 are satisfied. The first phase
then proceeds to update the tentative allocation and pricing in an iterative manner by invoking the
bottom-level auction. In section 5.7, we discuss a fast implementation of this iterative procedure. In
our fast implementation, each iteration either permanently releases an initially tentatively allocated
agent from its obligation, or eliminates an unallocated agent whose unit-demand bid is too low to
ever be allocated. The latter property ensures termination of the first phase.

5.1 First phase

For any configuration χ, we define targets(χ) as the set of all targets α such that there ex-
ists a quiescent configuration χ0 satisfying the following conditions: (1) shift(χ0, α) = χ, (2)
white(χ0) ∩ matched(χ0) = white(χ) ∩ matched(χ), and (3) for any agent u in unmatched(χ) we
have items(χ0, u) = ∅. For any configuration χ, we define target(χ) as the unique pointwise mini-
mum target in targets(χ).

Consider any instance of the top-level auction with a configuration χ as input and let χ =
shift(χ0, target(χ)). Recall from Section 2.4, that each item v in items(χ) is associated with a
put whose strike price is min(v), and whose target is the agent match(χ, v). The output of the
first phase of the top-level auction, denoted top′(χ), is given by shift(χ′, α′), where (χ′, α′) =
bottom(χ0, target(χ)).

5.2 Second phase

The second phase of the top-level auction affects only the allocation and uses a single application of
either the TTC algorithm [13] or the TC≺ algorithm of Jaramillo and Manjunath [9] to exchange
items within a certain subset of the allocated agents.

For any configuration χ = (G,M,Φ), we define an instance of the house allocation problem on
χ as follows. Each agent in black(χ) represents a house owner and the item matched to u in M
represents the house owned by u. Each agent u in black(χ) is associated with a preference ordering

35

over the items as follows, where β = bid(χ, u): for any pair of items v and v′, if β(v) − Φ(v) >
β(v′)−Φ(v′), then agent u prefers item v over item v′; ties, if any, are broken using item identifiers.

For any configuration χ, we define top′′(χ) as the configuration obtained by using the TTC
algorithm to resolve the house allocation problem defined on χ. Alternatively, the second phase
of the top-level auction can be implemented using the polynomial time TC≺ algorithm. The TC≺

algorithm has a slower running time than the TTC algorithm but yields an outcome with stronger
efficiency-related properties than the TTC algorithm. (see Section 5.5 for details.)

For any instance of the top-level auction with configuration χ as input, the second phase of
the top-level auction takes the configuration χ′ = top′(χ) as input and produces the configuration
top′′(χ′) as output. For any instance of the top-level auction with configuration χ as input, we
define top(χ) as top′′(top′(χ)).

Recall that equilibrium properties 1, 2, and 3 of Section 2.4 are satisfied by the first phase
of the top-level auction. In the second phase, item prices and the allocation of non-black agents
remain unchanged. Thus, it is easy to see that equilibrium properties 1, 2, and 3 are retained in
the second phase. The second phase involves resolving an instance of the house allocation problem
on the subset of black agents; thus, by definition, equilibrium properties 4(a) and 4(b) are satisfied.
Finally, it follows from known results on the TC≺ (TTC) algorithm that the solution computed in
the second phase is in the (weak) core. This establishes equilibrium property 5 of Section 2.4.

Fact 5.1. For any configuration χ′ of the form top′′(χ) where χ = (G,M,Φ) and χ′ = (G,M ′,Φ′),
we have Φ′ = Φ, unmatched(χ′) = unmatched(χ), and white(χ) ⊆ white(χ′).

Fact 5.2. For any configuration χ = (G,M,Φ), if top(χ) = (G,M ′,Φ′), then Φ′ ≥ Φ.

5.3 Properties

The following lemmas establish basic properties of the top-level auction.

Lemma 5.1. For any configuration χ and any targets α0 and α1 in targets(χ) such that χ =
shift(χ0, α0) = shift(χ1, α1), we have bottom(χ0, α0) = bottom(χ1, α1).

Proof. Let χ = shift(χ∗, α∗), where α∗ = target(χ). Since α∗ is the pointwise minimum target
in targets(χ), we have α0(u) ≥ α∗(u) for any agent u in agents(χ). Let S be the set of agents
u in agents(χ) such that α0(u) > α∗(u). By the definitions of targets(χ) and α∗, for any agent
u in S, we find that u belongs to enabled(χ0) and raise(χ0, u) = shift(χ0, u0, 1); by repeated
use of this fact and Lemma 4.37, agents in S can commute their raise invocations forward until
each agent u in S has α∗(u) pending raise invocations and the resulting configuration is χ∗; thus,
bottom(χ0, α0) = bottom(χ∗, α∗). By a similar argument, we have bottom(χ1, α1) = bottom(χ∗, α∗).
Thus, bottom(χ0, α0) = bottom(χ1, α1).

Lemma 5.2. Let χ be any configuration and let χ∗ be the configuration such that χ = shift(χ∗, target(χ)).
If (χ0, α0) = bottom(χ∗, target(χ)), then unmatched(top′(χ)) ⊆ white(top′(χ)) and nonwhite(top′(χ)) ⊆
nonwhite(χ0).

Proof. Let α∗ = target(χ). By definition, we have top′(χ) = shift(χ0, α0). Since χ0 is quiescent, we
have unmatched(χ0) ⊆ white(χ0) and for any agent u in unmatched(χ0), we find that agents(χ0, u)∩
nonwhite(χ0) = ∅. Moreover, these facts imply that by definition of the bottom-level auction, we
have α0(u) = 0 for any agent u in white(χ1); we conclude that u belongs to white(shift(χ0, α0)),
where top ′(χ) = shift(χ0, α0).

It remains to show that nonwhite(top ′(χ)) ⊆ nonwhite(χ0). Consider any agent u in nonwhite(top′(χ));
since α0(u) ≥ 0, we conclude that u belongs to nonwhite(χ0).

36

Lemma 5.3. For any configuration χ and any agent u in nonwhite(top′(χ)), the following con-
ditions hold: (1) u belongs to nonwhite(χ), (2) there exists an item v in items(χ) such that
potential(χ, v) = potential(top′(χ), v), and (3) match(χ, v) = match(top′(χ), v) = u.

Proof. Let χ = shift(χ∗, α∗), where α∗ = target(χ), and let (χ0, α0) = bottom(χ∗, α∗). By def-
inition, we have top′(χ) = shift(χ0, α0). By Lemma 5.2, u belongs to nonwhite(χ0); since χ0

is quiescent, we find that u belongs to matched(χ0); further, since top ′(χ) = shift(χ0, α0), there
exists an item v in items(χ) such that potential(top ′(χ), v) = potential(χ0, v) and match(χ, v) =
match(top′(χ), v). By repeated application of Lemma 4.31, we find that u belongs to nonwhite(χ∗),
potential(χ∗, v) = potential(χ0, v) and match(χ∗, v) = match(χ0, v) = u. By the description of the
top-level auction it follows that u belongs to nonwhite(χ), potential(χ, v) = potential(χ∗, v), and
match(χ, v) = u. These facts imply that u belongs to nonwhite(χ) and there exists an item v in
items(χ) such that potential(χ, v) = potential(top′(χ), v), and match(χ, v) = match(top ′(χ), v) =
u.

Lemma 5.4. For any configuration χ, we have nonwhite(top(χ)) ⊆ nonwhite(χ) and unmatched(χ)∪
white(χ) ⊆ white(top(χ)).

Proof. Let χ = shift(χ∗, α∗) where α∗ = target(χ), and let (χ0, α0) = bottom(χ∗, α∗). We have
unmatched(χ) = unmatched(χ∗)∩white(χ∗) and white(χ)∩matched(χ) = white(χ∗)∩matched(χ∗);
thus unmatched(χ) ∪ white(χ) ⊆ white(χ∗). By repeated application of Lemma 4.32, we have
white(χ∗) ⊆ white(χ0), and since top′(χ) = shift(χ0, α0), we have white(χ∗) ⊆ white(top′(χ)).
Finally, by Fact 5.1, we have white(top ′(χ)) ⊆ white(top(χ)). Thus, we have unmatched(χ) ∪
white(χ) ⊆ white(top(χ)). By Fact 5.1, we have white(top′(χ)) ⊆ white(top(χ)); thus nonwhite(top(χ)) ⊆
nonwhite(top′(χ)).

Lemma 5.5. Let χ0 and χ1 be configurations and let α0 and α1 be targets such that (1) configura-
tions χ0 and χ1 are quiescent, and χ = shift(χ0, α0) = shift(χ1, α1), (2) white(χ0)∩matched(χ0) =
white(χ1) ∩matched(χ1) = ∅, and (3) for any agent u in unmatched(χ), we have items(χ0, u) =
items(χ1, u) = ∅. Then, we have bottom(χ0, α0) = bottom(χ1, α1).

Proof. Let α∗ be the target such that for any agent u in agents(χ), we have α∗(u) = min(α0(u), α1(u)),
and let χ = shift(χ∗, α∗); thus α0(u) ≥ α∗(u). Let S be the set of agents u in agents(χ) such that
α0(u) > α∗(u). By the definitions of α0 and α∗, for any agent u in S, we find that u belongs to
enabled(χ0) and raise(χ0, u) = shift(χ0, u0, 1); by repeated use of this fact and Lemma 4.37, agents
in S can commute their raise invocations forward until each agent u in S has α∗(u) pending raise in-
vocations and the resulting configuration is χ∗; thus, bottom(χ0, α0) = bottom(χ∗, α∗). By a similar
argument, we have bottom(χ1, α1) = bottom(χ∗, α∗). Thus, bottom(χ0, α0) = bottom(χ1, α1).

Lemma 5.6. The second phase of the top-level auction is truthful.

Proof. Consider any configuration χ′ of the form top′′(χ). We first The second phase of the top-level
auction, which is implemented using an application of the TTC algorithm or the TC≺, updates
only the matching of black agents. By known results on the truthfulness of the TTC and TC≺

algorithms, the second phase of the top-level auction is truthful for agents in black(χ). By Fact 5.1,
we have potential(top′′(χ)) = potential(χ); thus no agent u in nonblack(χ) can achieve a utility
higher than gap(χ, u) by submitting a false bid. Thus, the second phase of the top-level auction is
truthful.

Lemma 5.7. For any configuration χ0 of the form subst(χ, u, β), if β 6= bid(bid-graph(χ), u), then
either top′(χ0) = subst(top′(χ), u, β) or u belongs to white(top′(χ)) ∩ white(top′(χ0)).

37

Proof. Let χ = shift(χ∗, target(χ)) and let χ0 = shift(χ0
∗, target(χ0)). By definition, we have

top′(χ) = shift(χ′, α′) where (χ′, α′) = bottom(χ∗, target(χ)) and we have top ′(χ0) = shift(χ′0, α
′
0)

where (χ′0, α
′
0) = bottom(χ0

∗, target(χ0)). We consider the following cases. First we consider the
case where u belongs to white(χ∗) ∩ white(χ0

∗). By repeated application of Lemma 4.32, we find
that u belongs to white(χ′), and since α′(u) ≥ 0, we find that u belongs to white(top′(χ)) ∩
white(top′(χ0)).

Next we consider the case where u belongs to nonwhite(χ∗) ∩ nonwhite(χ0
∗). It follows from

the description of the bottom-level auction, that either u is unmatched in the same round of both
bottom-level auction instances and hence u belongs to white(top′(χ))∩white(top ′(χ0)), or u remains
matched throughout to the same item in both auction instances and top′(χ0) = subst(top′(χ), u, β).

Finally we look at the case where u either belongs to nonwhite(χ∗) or belongs to nonwhite(χ∗0).
Without loss of generality, assume that u belongs to nonwhite(χ∗). It follows from the description
of the bottom-level auction, that either u is unmatched in some round of the auction instance with
input (χ∗, target(χ)) and hence u belongs to white(top′(χ))∩white(top′(χ0)), or u remains matched
throughout in the auction instance with input (χ∗, target(χ)) and hence gap(top′(χ), u) = gap(χ, u).
It follows that top′(χ0) = subst(top′(χ), u, β).

Lemma 5.8. For any configuration χ0 of the form subst(χ, u, β), if β 6= bid(bid-graph(χ), u), then
either top′0(χ0) = subst(top′0(χ), u, β) or u belongs to white(top′0(χ)) ∩ white(top′0(χ0)).

Proof. The proof is identical to the proof of Lemma 5.7 for the case where u belongs to nonwhite(χ∗)∩
nonwhite(χ0

∗).

5.4 Truthfulness

A sealed-bid auction is said to be truthful if it is a weakly dominant strategy for every agent in
the auction to bid truthfully. Formally, we say the first phase of the top-level auction is truthful
if it satisfies the following condition: for any configuration χ and any agent u in agents(χ), if
χ′ = subst(χ, u, β) for some bid β in bids(bid-graph(χ)), then gap(top(χ), u) ≥ gap(χ′′, u), where
χ′′ = subst(top(χ′), u, bid(χ, u)).

For any configuration χ, we define top′0(χ) as follows. Let χ0 be a quiescent configuration and
let α0 be a target such that χ = shift(χ0, α0), white(χ0) ∩matched(χ0) = ∅, and for any agent u
in unmatched(χ), we have items(χ0, u) = ∅. We define top′0(χ) as the configuration shift(χ′, α′),
where (χ′, α′) = bottom(χ0, α0). The uniqueness of top′0(χ) is established by Lemma 5.5.

The auction that takes an configuration χ as input and produces top′0(χ) as output does not
immediately incorporate bid revision requests of tentatively allocated agents at the beginning of
each round. We find it useful to first establish Lemma 5.11 on the truthfulness of top ′0(χ) in
Section 5.4.1. We then use the claims of Section 5.4.1 to establish Lemma 5.21 on the truthfulness
of the top-level auction.

5.4.1 Truthfulness of top ′0

The goal of this section is to establish Lemma 5.11 on the truthfulness of the auction that takes
a configuration χ as input and produces the configuration top ′′(top′0(χ)) as output. We establish
Lemma 5.9 based on the claim of Lemma 4.36 of Section 4.5. Lemma 5.10 follows from Lemma 5.9.
The proof of Lemma 5.11 follows from Lemma 5.10 and known results on the truthfulness of the
TTC and TC≺ algorithms.

38

Lemma 5.9. For any configuration χ, any agent u in agents(χ) where bid(bid-graph(χ), u) = β′,
and any configuration χ′ of the form subst(χ, u, β) where β is a bid in bids(bid-graph(χ)), we have

gap(top′0(χ), u) ≥ gap(subst(top′0(χ′), u, β′), u).

Proof. Let χ = shift(χ0, α0), where χ0 is a quiescent configuration and α0 is a target such that
white(χ0) ∩matched(χ0) = ∅, and for any agent u in unmatched(χ), we have items(χ0, u) = ∅. By
definition, top′0(χ) = shift(χ′0, α

′
0), where (χ′0, α

′
0) = bottom(χ0, α0). Note that threshold∗(χ, α0) =

threshold∗(χ, α0). Similarly, let χ′ = shift(χ1, α1), where χ1 is a quiescent configuration and α1

is a target such that white(χ1) ∩ matched(χ1) = ∅, and items(χ1, u) = ∅ for any agent u in
unmatched(χ). By definition, top′0(χ′) = shift(χ′1, α

′
1), where (χ′1, α

′
1) = bottom(χ1, α1).

Let βT = bid(bid-graph(χ), u) and let χ′′ = subst(χ′1, u, βT). Assume that gap(top ′0(χ), u) <
gap(subst(top′0(χ′), u, βT), u); thus gap(χ′0, u) + α′0(u) < gap(χ′′, u) + α′1(u).

We first consider the case where u belongs to unmatched(χ). By repeated application of
Lemma 4.32, we find that u belongs to white(χ′0) ∩ white(χ′1) and α′0(u) = α′1(u) = 0; thus,
by our assumption, gap(χ′0, u) < gap(χ′′, u). Since gap(χ′0, u) < gap(χ′′, u) and u belongs to
white(χ′0), we have gap(χ′′, u) ≥ 1; thus u belongs to matched(χ′1). By Lemma 4.37, we choose
to defer the raise invocations of u until a round in which u is the only remaining enabled agent
with pending raise invocations. Let (χa, αa) be the input of the first round in which u invokes
the function raise in the bottom-level auction instance with input (χ0, α0), and let χ′a be the con-
figuration such that χa = add(χ′a, u, βT). Let (χb, αb) be the input of the first round in which
u invokes the function raise in the bottom-level auction instance with input (χ1, α1), and let
χb
′ be the configuration such that χb = add(χ′b, u, β). Let S′ be the set of items v in items(χ)

for which β(v) − threshold∗(χ′b, αb, v) is maximized. By Lemma 4.36, we have potential(χ′1, v) =
threshold∗(χ′b, αb, v); thus, gap(χ′1, u) = β(v) − threshold∗(χ′b, αb, v) and gap(χ′′1, u) = βT (v) −
threshold∗(χ′b, αb, v). By Lemma 4.36, gap(χ′0, u) = max v∈items(χ)(βT (v) − threshold∗(χ′a, αa, v));
since threshold∗(χ′b, αb) = threshold∗(χ′a, αa), we have gap(χ′0, u) ≥ gap(χ′′, u); a contradiction.
Thus, it follows that gap(subst(top′0(χ′), u, βT), u) ≤ gap(top ′0(χ), u).

Next we consider the case where agent u belongs to matched(χ). Since matched(χ0)∩white(χ0) =
matched(χ1) ∩ white(χ1) = ∅, the definition of the function shift implies that there exists an item
v in items(χ) such that match(χ0, v) = match(χ1, v) = u. Since u belongs to nonwhite(χ0) ∩
nonwhite(χ1), by the description of the bottom-level auction, either match(χ′0, v) = match(χ′1, v) =
u, or u is unmatched in some round of the bottom-level auction instances with inputs (χ0, α0) and
(χ1, α1). In the case where match(χ′0, v) = match(χ′1, v) = u, it is easy to see that gap(top ′0(χ), u) ≥
gap(subst(top ′0(χ′), u, βT), u). In the case where u is unmatched in some round of the bottom-level
auction instances with inputs (χ0, α0) and (χ1, α1), the analysis is similar to the previous case in
which u belongs to unmatched(χ).

Thus, we have gap(top ′0(χ), u) ≥ gap(subst(top′0(χ′), u, bid(bid-graph(χ), u)), u).

Lemma 5.10. Any auction that takes an configuration χ as input and produces the configuration
top′0(χ) as output is truthful.

Proof. Follows from Lemma 5.9 and the definition of truthfulness.

Lemma 5.11. Any auction that takes an configuration χ as input and produces the configuration
top′′(top′0(χ)) as output is truthful.

Proof. For any configuration χ0, let f(χ0) denote top′′(top ′0(χ0)). Consider any instance of the
top-level auction with configuration χ as input and let u be an agent in agents(χ). Let β =
bid(bid-graph(χ), u) and let βT 6= β be the truthful bid of u. Let χT = subst(χ, u, βT). We are

39

required to show that gap(subst(f(χ), u, βT), u) ≤ gap(f(χT), u). By Lemma 5.8, it follows that
either agent u belongs to white(top′0(χ)) ∩ white(top ′0(χT)) or top′0(χT) = subst(top′0(χ), u, βT).

First, we consider the case where u belongs to white(top ′0(χ))∩white(top′0(χT)). By Fact 5.1, we
have potential(f(χ)) = potential(top′0(χ)) and u belongs to white(f(χ)); thus we have gap(f(χ), u) =
gap(top ′0(χ), u) and gap(f(χT), u) = gap(top ′0(χT), u). By Lemma 5.9 that gap(subst(top′0(χ), u, βT), u) ≤
gap(top ′0(χT), u); thus, we have gap(subst(f(χ), u, βT), u) ≤ gap(χT , u).

Next, we consider the case where top′0(χT) = subst(top′0(χ), u, βT). By Lemma 5.6, the second
phase of the top-level auction is truthful; thus, we have gap(subst(f(χ), u, βT), u) ≤ gap(f(χT), u).
Thus, any auction that takes an configuration χ as input and produces the configuration f(χ) =
top ′′(top′0(χ)) as output is truthful.

5.4.2 Truthfulness of the top-level auction

The goal of this section is to establish Lemma 5.21 on the truthfulness of the the top-level auction.
We first establish that for any configuration χ and any white agent u in top′(χ), agent u has
the same utility in top′(χ) as it does in top′0(χ) (see Lemma 5.18). Lemmas 5.19 and 5.20 follow
easily from Lemma 5.18. We use Lemmas 5.20 and known results on the truthfulness of the TTC
algorithm to establish Lemma 5.21.

Lemma 5.12. For any configuration χ′ of the form subst(χ, u, u′), if u is an agent in matched(χ)∩
white(χ), then gap(top′(χ), u) = gap(top′(χ′), u′).

Proof. Let target(χ) = α and let target(χ′) = α′. We first show that α = α′. Since u belongs to
matched(χ)∩white(χ), we have α(u) = 0, and since α is the pointwise minimum target in targets(χ)
and u′ does not belong to agents(χ), we have α(u′) = 0. Similarly, we have α′(u′) = α′(u) = 0.
Since α and α′ are the pointwise minimum targets in targets(χ) and targets(χ′) respectively, we
have α(u′′) = α′(u′′) for any agent u′′ in agents(χ)− u. It follows that α = α′.

Let top ′(χ) = shift(χ′0, α
′
0) where (χ′0, α

′
0) = bottom(χ0, α) and let top′(χ′) = shift(χ′1, α

′
1)

where (χ′1, α
′
1) = bottom(χ1, α). By Lemma 4.34, we have gap(χ0, u) = gap(χ1, u

′). Further, since
α(u) = α(u′) = 0, we have α′0(u) = α′1(u′) = 0. Thus, gap(top′(χ), u) = gap(top′(χ′), u′).

Lemma 5.13. Let χ be a configuration and let χA be the quiescent configuration such that χ =
shift(χA, target(χ)). Let u be an agent in matched(χ)∩white(χ), and let z be an integer such that
u belongs to gray(shift(χA, u,−z)). If u is the minimum agent in agents(χ), then gap(top′(χ), u) =
gap(χB, u) + αB(u), where (χB, αB) = bottom(shift(χ′A, u,−z), shift(target(χ), u, z)).

Proof. Let (χ′B, α
′
B) = bottom(χA, target(χ)). We refer to the executions of the bottom-level auc-

tion with inputs (shift(χ′A, u,−z), shift(target(χ), u, z)) and (χA, target(χ)) as executions R and R′

respectively. Let (χi, αi) and (χ′i, α
′
i) be the outputs of round i of executions R and R′ respectively.

By Lemma 4.37, the raise invocations of enabled agents commute. Thus, by repeated application
of Lemma 4.37, executions R and R′ can be reordered such that for any round i, if S is a nonempty
set of agents in enabled(χi) ∩ enabled(χ′i) such that αi(u′) = α′i(u

′) > 0, then some agent u′ in S
invokes raise in round i+ 1 of executions R and R′. For any round i, we define the predicate P (i)
to hold if (χ′i, α

′
i) = (shift(χi, u,−z), shift(αi, u, z)).

First we consider the case where P (i) holds for every round of executions R and R′. In this case,
we have (χ′B, α

′
B) = (shift(χB, u,−z), shift(αB, u, z)). Thus, we have gap(top ′(χ), u) = gap(χ′B, u)+

α′B = gap(χB, u) − z + αB(u) + z. Since u belongs to white(top(χ)), we have α′B(u) = 0. Thus,
gap(top′(χ), u) = gap(χ′B, u) + α′B.

40

Next we consider the case where there exists a first round k such that P (k) does not hold. In
this case, it is easy to see that either u belongs to unmatched(χk) or u belongs to unmatched(χ′k);
further, since u belongs to nonwhite(χ′k), we find that u belongs to unmatched(χk). Let u′ be the
agent in matched(χ′k−1) ∩ unmatched(χ′k). We now allow u to exhaust all its raise invocations in
rounds (k+1) · · ·(k+z) of execution B; thus, we have αB(u) = 0. Since u belongs to white(top ′(χ)),
we have agents(χ′j , u) 6= ∅ for some round j of execution B where (k + 1) ≤ j ≤ (k + z), and thus,
u′ = victim(χ′j , u). It is straightforward to see that for any round j > k of execution R, we have
χj = χj+z; thus, χ′B = χB. Since α(u) = 0, we have α′B(u) = 0, and we established above that
αB(u) = 0. Thus, gap(top′(χ), u) = gap(χB, u) = gap(χB, u) + αB(u0).

For any configuration χ, any agent u in matched(χ)∩white(χ), and any agent u′ such that u < u′ and
there exists no agent u′′ in agents(χ) such that u′ < u′′ < u, we define split(χ, u, u′) as the configu-
ration add(shift(χ, u,−z), u′, β) where z is the integer such that max-gap(shift(χ, u,−z), u) = −1,
and β = bid(bid-graph(χ), u).

Lemma 5.14. Let χ′ be a configuration of the form split(χ, u, u′) and let χ = shift(χA, target(χ)).
For any integer z such that u belongs to gray(shift(χA, u,−z)), we have gap(top′(χ′), u′) = gap(χB, u)+
αB(u) where (χB, αB) = bottom(shift(χA, u,−z), shift(target(χ), u, z)).

Proof. Let χ′′ = shift(χA, u,−z∗), where z∗ is the integer such that max-gap(χ′′, u) = −1. Let α =
target(χ). By the definition of the function split , we find that u belongs to matched(χ)∩white(χ);
thus, α(u) = 0. Note that u belongs to white(shift(χ′′, u, 1)); thus, z∗ ≤ z. By repeated application
of Fact 4.5, it follows that (χB, αB) = bottom(χ′′, shift(target(χ), u, z∗)). Let χ′A be the quiescent
configuration such that χ′ = shift(χ′A, target(χ′)) and let (χ′B, α

′
B) = bottom(χ′A, target(χ′)).

We refer to the bottom-level auction instance with inputs (χ′′, shift(target(χ), u, z∗)) as execu-
tion A and we refer to the bottom-level auction instance with inputs (χ′A, target(χ′)) as execution
B. By Lemma 4.37, we can assume that the same agent invokes raise in both executions when-
ever possible. From the description of the bottom-level auction, we find that either u becomes
unmatched in the same round of both executions, or u remains matched in both executions until
u′ is the only remaining enabled agent with pending raise invocations in execution B.

We first consider the case where u is unmatched in the same round of both executions. In
this case, we immediately process the raise invocations of agent u in execution A and agent u′ in
execution B. If χB and χ′B are the resultant configurations of executions A and B after agents u
and u′ have exhausted their raise invocations, then by Lemma 4.35, we have gap(χ′B, u

′)+α′B(u′) =
gap(χB, u) + αB(u), and the proof is complete.

Next we consider the case where u remains matched to some item v in both executions, all
enabled agents have exhausted their raise invocations in execution A, and u′ is the only remaining
enabled agent with pending raise invocations in execution B. We now allow agent u′ to exhaust
its raise invocations. While u remains allocated for the rest of execution B, the potential of v
remains unchanged; thus u′ attains its highest utility of gap(χB, u) + αB(u). If u is unmatched
by some raise invocation, then the auction terminates with the potential of item v unchanged,
and with u′ attaining its highest utility of gap(χB, u) + αB(u). Thus, we have gap(top′(χ′), u′) =
gap(χB, u) + αB(u)

Lemma 5.15. Let χ0 be an configuration of the form subst(χ, u, u0) where u is an agent in
white(χ) ∩matched(χ), and u0 is an agent such that u0 > u and there exists exactly one agent u′′

in agents(χ) such that u < u′′ < u0. Then gap(top′(χ′), u′) = gap(top′(χ′0), u′0) where χ′ is any
configuration of the form split(χ, u, u′) and χ′0 is any configuration of the form split(χ0, u0, u

′
0).

41

Proof. Let χA be the quiescent configuration such that χ′ = shift(χA, target(χ′)) and let χB be
the quiescent configuration such that χ′0 = shift(χB, target(χ′0)). We refer to the executions of
the bottom-level auctions with inputs (χA, target(χ′)) and (χB, target(χ′0)) as executions A and B
respectively. By Lemma 4.37, the raise invocations by enabled agents commute. Thus, we choose
to defer the raise invocations of agents in the set S = {u′, u′0, u′′} in executions A and B until S
is the only set of enabled agents. Further, we commute raise invocations in both executions such
that whenever possible, the same agent invokes raise in each round.

For any nonnegative integer i, let χi and χ′i be the output configurations of round i of executions
A andB respectively. We define the predicate sync(A,B, i) to hold if χ′i = subst(subst(χi, u, u0), u′, u′0).
We define the predicate coupled(A,B, i) to hold if there exists exactly one maximal set of items Vi
in items(χ) and agents ua in matched(χi)∩unmatched(χ′i) and ub in unmatched(χi)∩matched(χ′i)
such that for any agent uc in unmatched(χi) ∩ unmatched(χ′i) such that items(χi, u∗) ∩ Vi 6= ∅, we
have victim(χi, uc, 1) = ua and victim(χ′i, uc, 1) = ub.

Consider the first round j such that coupled(A,B, j) holds; then, by the definition of the bottom-
level auction, it is easy to see that either: (1) execution A evicts u′ in round j and execution B
evicts u′′ in round j, or (2) execution A evicts u in round j and execution B evicts u′′ in round j.
In case (1), since u′ is evicted by execution A in round j, and sync(A,B, j − 1) holds, agents u′

and u′0 have zero utility in round j, and by the definition of the bottom-level auction, u′ and u′0
continue to have zero utility for the rest of the auction; this completes the proof for case (1).

We now consider case (2). Consider each round i > j of executions A and B where some agent
u1 in agents(χ) − {u′′} invokes the function raise. If items(χi, u1) ∩ Vi 6= ∅, then it follows that
coupled(A,B, i+ 1) holds. Consider the first round k > j in which some agent u1 invokes raise and
victim(χk, u1, 1) = u′′, thus we have victim(χ′k, u1, 1) = u0. and sync(A,B, k+ 1) holds; further, it
is easy to see that sync(A,B, i) holds for every round i > k in which some agent in agents(χ) \ S
invokes the function raise.

We now look at executions A and B in a round k when u′′ is the only enabled agent with pending
raise invocations. We consider two cases. We first consider the case where sync(A,B, k− 1) holds;
in this case, u′′ is the only enabled agent with pending raise invocations in both executions A and
B; thus for any i ≥ k, if coupled(A,B, i) holds, then condition (1) holds where execution A evicts u′

and execution B evicts u′′ and the proof follows from the analysis of case (1) discussed above. Next,
we consider the case where coupled(A,B, k − 1) holds; in this case execution A has terminated,
and u′′ is the only enabled agent with pending raise invocations in execution B, and agents u′′

and u′ are matched in executions A and B respectively. While u′′ and u′ remains allocated for the
rest of executions A and B, the potentials of items on P remain unchanged; thus u′ and u′0 both
attain zero utility. If u′ is unmatched by some raise invocation of execution B, then execution B
terminates and thus, agents u′ and u′0 attain zero utility.

Lemma 5.16. Let χ0 be an configuration of the form subst(χ, u, u0) where u is an agent in
white(χ)∩matched(χ). Then gap(top′(χ′), u′) = gap(top′(χ′0), u′0) where χ′ is any configuration of
the form split(χ, u, u′) and χ′0 is any configuration of the form split(χ0, u0, u

′
0).

Proof. Without loss of generality, we can assume that u < u0. If there is no agent u1 in agents(χ)
such that u < u1 < u0, then the result follows by repeated application of Lemma 4.35. If there
is an agent u1 in agents(χ) such that u < u1 < u0, then the result follows by induction using
Lemma 5.15.

Lemma 5.17. For any configuration χ and any agent u in matched(χ)∩white(χ), if configuration
χ′ is of the form subst(χ, u, u′), then gap(top′(χ), u) = gap(top′(χ′), u′).

42

Proof. Let χ0 be an configuration of the form split(χ, u, u0) and let χ1 be an configuration of the
form split(χ′, u′, u1). By Lemma 5.14, we have gap(top′(χ), u) = gap(top′(χ0), u0) and gap(top′(χ′), u′) =
gap(top ′(χ1), u1). Since χ′ = subst(χ, u, u′), by Lemma 5.16, we have gap(top′(χ0), u0) = gap(top ′(χ1), u1).
Thus, we have gap(top′(χ), u) = gap(top′(χ′), u′).

Lemma 5.18. For any configuration χ such that χ = shift(χ0, target(χ)), any agent u in matched(χ)∩
white(χ), and any integer z such that u belongs to gray(shift(χ0, u,−z)), we have gap(top′(χ), u) =
gap(χ1, u) + α1(u) where (χ1, α1) = bottom(shift(χ0, u,−z), shift(target(χ), u, z)).

Proof. Let u′ be an agent such that u′ < u′′ for every agent u′′ in agents(χ). Let χ′1 be a configura-
tion and let α′1 be a target such that (χ′1, α

′
1) = bottom(shift(subst(χ0, u, u

′), u′,−z), shift(target(χ), u′, z)).
By Lemma 5.13, we have gap(χ′1, u

′) + α′1(u′) = gap(top′(subst(χ, u, u′)), u′).
By Lemma 5.17, we have gap(χ1, u) + α1(u) = gap(χ′1, u

′) + α′1(u′). By Lemma 5.12, we
have gap(top′(χ), u) = gap(top′(subst(χ, u, u′)), u′). Thus, we have gap(top ′(χ), u) = gap(χ1, u) +
α1(u).

Lemma 5.19. For any configuration χ, any agent u in agents(χ), and any configuration χ′ of the
form subst(χ, u, β) where β is a bid in bids(bid-graph(χ)), we have

gap(top′(χ), u) ≥ gap(subst(top′(χ′), u,bid(bid-graph(χ), u)), u).

Proof. The analysis for agents in unmatched(χ) is identical to the analysis for unmatched agents
in the proof of Lemma 5.9, and the analysis for agents in matched(χ)∩ nonwhite(χ) is identical to
the analysis for matched nonwhite agents in the proof of Lemma 5.9.

We now consider any agent u in matched(χ)∩white(χ). Let χ = shift(χ0, target(χ)) and let z be
any integer such that u belongs to gray(shift(χ0, u,−z)). By Lemma 5.18, we have gap(top′(χ), u) =
gap(χ1, u) + α1(u) where (χ1, α1) = bottom(shift(χ0, u,−z), shift(target(χ), u, z)). Thus, u obtains
the same utility as it would have obtained if its bid had been shifted down sufficiently to make u
gray; it follows that we can restrict attention to bottom-level auction instances that have no white
matched agents in their input configurations. Let χ = shift(χ1, α1), where χ1 is the configuration
obtained by shifting down the bid of every white agent in χ0 such that white(χ1)∩matched(χ1) = ∅.
If (χ′1, α

′
1) = bottom(χ1, α1), then by definition, we have top ′0(χ) = shift(χ′1, α

′
1). The proof now

follows from Lemma 5.9.

Lemma 5.20. The first phase of the top-level auction is truthful.

Proof. Follows from Lemma 5.19 and the definition of truthfulness.
We use Lemma 5.20 and Lemma 5.6 on the truthfulness of the second phase to establish

Lemma 5.21.

Lemma 5.21. The top-level auction is truthful.

Proof. By Lemma 5.20 and Lemma 5.6, the first and second phases of the top-level auction are
individually truthful. We now show that the top-level auction which combines the two phases is
truthful. Consider any instance of the top-level auction with configuration χ as input and let u
be an agent in agents(χ). Let β = bid(bid-graph(χ), u) and let βT 6= β be the truthful bid of u.
Let χT = subst(χ, u, βT). We wish to show that gap(subst(top(χ), u, βT), u) ≤ gap(top(χT), u). By
Lemma 5.7, either u belongs to white(top′(χ))∩white(top′(χT)) or top ′(χT) = subst(top ′(χ), u, βT).

First, we consider the case where u belongs to white(top′(χ))∩white(top ′(χT)). By Fact 5.1, we
have potential(top(χ)) = potential(top′(χ)) and u belongs to white(top(χ)); thus gap(top(χ), u) =
gap(top ′(χ), u) and gap(top(χT), u) = gap(top′(χT), u). Further, it follows from Lemma 5.19

43

that gap(top ′(χ), u) ≤ gap(subst(top ′(χT), u, βT), u). Thus, we conclude that gap(top(χ), u) ≤
gap(subst(top(χT), u, βT), u).

Next, we consider the case where top ′(χT) = subst(top ′(χ), u, βT). By Lemma 5.6 on the truth-
fulness of the second phase of the top-level auction, we have gap(top(χ), u) ≤ gap(subst(top(χT), u, βT), u).

5.5 Efficiency

Recall that put options impose lower bound constraints on item prices. As a result, we cannot in
general achieve efficiency in our auction setting. Lemmas 5.24 and 5.25 establish a relaxed form
of efficiency for our auction — the outcome is efficient if the target of every put that is exercised
satisfies voluntary participation and envy-freedom.

For any configuration χ such that unmatched(χ) ⊆ white(χ) and any agent u in nonwhite(χ),
we define admissible(χ, u) as the set of all bids β in bids(bid-graph(χ)) such that u belongs to
white(subst(χ, u, β)). For any configuration χ such that unmatched(χ) ⊆ white(χ), we define
admissible(χ) as the set of all possible configurations that can be obtained from χ by replacing the
bid of every agent u in black(χ) by a bid in admissible(χ, u).

Lemma 5.22. For any configuration χ and any agent u in matched(top(χ)) ∩ nonwhite(top(χ)),
if u belongs to white(subst(χ, u, β)) for some bid β in bids(bid-graph(χ)), then u belongs to
white(subst(top(χ), u, β)).

Proof. By Lemma 5.3, there exists an item v in items(χ) such that potential(top(χ), v) = potential(χ, v)
and match(χ, v) = match(top(χ), v) = u. Let β be any bid in admissible(χ, u). By definition,
β(v) − potential(χ, v) ≥ β(v′) − potential(χ, v′) for any item v′ in items(χ). By Lemma 5.2, it
follows that potential(top(χ), v′) ≥ potential(χ, v). Thus, β(v) − potential(top(χ), v) ≥ β(v′) −
potential(top(χ), v′) for any item v′ in items(χ). Thus, β belongs to admissible(top(χ), u).

Lemma 5.23. If χ is an configuration such that unmatched(χ) ⊆ white(χ), then any configuration
in admissible(χ) is white.

Proof. Let χ′ be any configuration in admissible(χ). By the definition of admissible(χ), for every
agent u in nonwhite(χ), we have bid(χ′, u) belongs to admissible(χ, u); thus we have nonwhite(χ) ⊆
white(χ′). Further, for any agent u in white(χ), we have bid(χ, u) = bid(χ′, u), and thus u belongs
to white(χ′). Thus, configuration χ′ is white.

Lemma 5.24. For any configuration χ and any agent u in agents(χ), if u belongs to nonwhite(top(χ)),
then u belongs to nonwhite(χ) and admissible(χ, u) ⊆ admissible(top(χ), u).

Proof. By Lemma 5.2, we have nonwhite(top(χ)) ⊆ nonwhite(χ). Thus, u belongs to nonwhite(χ).
Let β be any bid in admissible(χ, u); then by definition, u belongs to white(subst(χ, u, β)). By
Lemma 5.22, u belongs to white(subst(top(χ), u, β)). Thus, β belongs to admissible(top(χ), u).

Lemma 5.25. For any configuration χ, we have unmatched(top(χ)) ⊆ white(top(χ)), and every
configuration in admissible(top(χ)) is efficient.

Proof. By definition, we have top(χ) = top ′′(top′(χ)). By Fact 5.1, unmatched(top ′(χ)) = unmatched(top(χ))
and potential(top(χ)) = potential(top′(χ)), and by Lemma 5.2 we have unmatched(top′(χ)) ⊆
white(top′(χ)); thus unmatched(top(χ)) ⊆ white(top(χ)).

Let χ′ = (G,M,Φ) be any configuration in admissible(top(χ)). By Lemma 5.23, χ′ is white,
and by Lemmas 3.12, χ′ is Walrasian; thus, it follows from Lemma 3.2 that M is an MWMCM of
G. Thus, χ′ is efficient.

44

We define a sealed-bid auction to be Pareto-efficient if it is truthful — so that no agent has an
incentive to lie — and it satisfies the strong version of Condition 5. Lemmas 5.26 and 5.27 establish
the strong and weak versions of equilibrium condition 5 of Section 2.4.

Lemma 5.26. The top-level auction is Pareto-efficient when the second phase of the auction is
implemented using the TC≺ algorithm.

Proof. Consider any configuration χ and let χ′ = top(χ). Suppose by way of contradiction that
there is a nonempty set of agents U0 who can trade their allocated items amongst themselves
such that every agent in U0 experiences an increase in utility. By definition, for any agent u in
white(χ′) and any item v in items(χ), we have gap(χ′, u) ≥ β(v) − potential(χ′, v), where β =
bid(bid-graph(χ), u). Thus, white(χ′) ∩ U0 = ∅. It follows that U0 ⊆ nonwhite(χ′); this contradicts
the Pareto-efficient property of the TC≺ algorithm. Thus, U0 = ∅ and the top-level auction is
Pareto-efficient.

Lemma 5.27. The top-level auction produces an outcome in the weak core when the second phase
of the auction is implemented using the TTC algorithm.

Proof. Consider any configuration χ and let χ′ = top(χ). Suppose by way of contradiction that
there is a nonempty set of agents U0 who can trade their allocated items amongst themselves such
that every agent in U0 experiences an increase in utility. By definition, for any agent u in white(χ′)
and any item v in items(χ), we have gap(χ′, u) ≥ β(v) − Φ′(v), where β = bid(bid-graph(X), u)
and χ′ = (G,M ′,Φ′). Thus, white(χ′) ∩ U0 = ∅. It follows that U0 ⊆ nonwhite(χ′); this is a
contradiction to the well established property that in the absence of strict preferences, the TTC
algorithm produces an outcome in the weak core. Thus, U0 = ∅.

5.6 Privacy Preservation

A motivating application of the sealed-bid unit-demand auction proposed in this paper is the
design of a dynamic unit-demand auction in which each round is implemented using the proposed
sealed-bid auction. If the seller of an item in the dynamic auction has access to the maximum
price that an agent who is tentatively allocated to the item is willing to pay for the item, then
the seller can extract this price by submitting a “shill” offer just below the agent’s offer. Many
dynamic auctions including the popular eBay auction suffer from shill bidding [14]. Thus, a goal of
our proposed dynamic auction is to ensure bid privacy for tentatively allocated agents. Below we
establish Lemmas 5.28 and 5.29 which are useful in showing a certain privacy preserving property
of the dynamic auction — no seller can artificially raise the price of an item by more than one unit
without risking forfeiture of sale. Ideally, we would want to prevent a seller from raising the price
of an item even by a single unit; however, our adoption of tie-breaking to handle degeneracy limits
our auction to giving up one unit in being shill proof.

Consider an agent u with bid β, and let u be white and allocated in an outcome of the top-level
auction. Lemma 5.28 establishes that the outcome of the top-level auction remains unchanged for
any bid β′ of u that exceeds β in all its components. Lemma 5.29 establishes that if u has a positive
utility, then the outcome of the top-level auction remains unchanged if u drops all components of
its bid by one unit. It follows from Lemmas 5.28 and 5.29 that the seller of an item cannot deduce
if the offer of an agent who wins the item exceeds the price of the item by more than one unit.

Lemma 5.28. For any configuration χ and any agent u in matched(top(χ)) ∩ white(top(χ)), we
have top(shift(χ, u, 1)) = shift(top(χ), u, 1).

45

Proof. Let χ′ = shift(χ, u, 1). Let χ = shift(χA, target(χ)) and let χ′ = shift(χ′A, target(χ′)). We
refer to the execution of the bottom-level auction with inputs χA and target(χ) as execution R and
we refer to the execution of the bottom-level auction with inputs χ′A and target(χ′) as execution
S. Let (χi, αi) and (χ′i, α

′
i) be the outputs of round i of executions R and S respectively. Let S be

the sequence of agents where the ith element of sequence S, denoted S(i), is the agent that invoked
raise in round i of execution R. Similarly, we define S′ to be the sequence of agents that invoked
raise in execution S. Let j be the round in which u makes its last raise invocation in execution R.

We first claim that u has the same color in configurations χ and χ′ and that u is not gray
in either configuration. If u belongs to gray(χ), then by the definition of the top-level auction, u
belongs to gray(χ0) and α(u) = 0, where α = target(χ); thus, u either belongs to gray(top(χ)) or u
belongs to unmatched(top(χ)), which is a contradiction. Thus, u does not belong to gray(χ). Since
χ′ = shift(χ, u, 1), we find that u does not belong to gray(χ′); it is thus straightforward to argue
that u has the same color in configurations χ and χ′.

We now show that (1) for all i ≤ j, we have S(i) = S′(i) and χi = χ′i, and (2) S′j+1 = u.
By definition of the top-level auction, χ′0 = shift(χ0, u, 1). Further, we established above that

agent u is non-gray has the same color in configurations χ0 and χ′0. Thus, it follows from the
definition of the determinized bottom-level auction that for all i ≤ j, we have S(i) = S′(i) and
χi = χ′i. Since u belongs to matched(top(χ)) and u invoked its last raise in round j, we find
that u belongs to matched(χj) ∩ white(χj). Further, since χj = χj′ , we find that u belongs to
matched(χ′j) ∩ white(χ′j) and enabled(χj) = enabled(χ′j). Since S(j) = u, and by the definition of
the function raise, no matched agents were enabled in round j of both executions, we find that u
belongs to enabled(χj+1); it follows from these facts that S′(j + 1) = u.

Next we show that S(i) = S′(i + 1) for any i > j. We established above that u belongs to
matched(χ′j) and that u makes its last raise invocation of execution S in round j+1; thus α′j+1(u) =
0. By the definition of the function raise, we have χ′j+1 = shift(χ′j , u, 1) and enabled(χ′j) =
enabled(χ′j+1). Since χj = χ′j , we have χ′j+1 = shift(χj , u, 1) and enabled(χ′j+1) = enabled(χj);
further, we established that α′j+1(u) = 0; thus, S(i) = S′(i+ 1) for i ≥ j.

We now show that if S′(j + 2) = u′, then raise(raise(χ′j , u), u′) = raise(raise(χ′j , u
′), u). From

the preceding claim, we have S(j + 1) = u′. Since u belongs to matched(top(χ)) ∩ white(top(χ))
and u invoked its last raise in round j of execution R, it follows that u 6= victim(χj+1, u

′). Since
χ′j+1 = shift(χj , u, 1) and S′(j+2) = u′, it follows that u 6= victim(χ′j+1, u

′); thus, by the definition
of the determinized function raise, we have raise(raise(χ′j , u), u′) = raise(raise(χ′j , u

′), u).
By repeated application of the preceding argument, the last raise invocation of u in execution

S can be commuted to the last round k of execution S. Thus, it follows that (χ′k−1, α
′
k−1) =

(χB, shift(αB, u, 1)), where (χB, αB) = bottom(χA, target(χ)).
By the definition of the function raise, we have bottom(χB, target(χ′)) = (shift(χB, u, 1), αB).

By the description of the second phase of the top-level auction, it follows that top(χ′) = shift(top(χ), u, 1).

Lemma 5.29. For any configuration χ and any agent u in agents(χ), if gap(top(χ), u) > 1, then
we have gap(top(χ0), u) ≥ 1, where χ0 = shift(χ, u,−1).

Proof. Let χ = (G,M,Φ). It follows that χ0 = (G0,M,Φ), where G0 = shift(G, u,−1). Let
β = bid(G0, u). Let top(χ0) = (G0,M

′
0,Φ

′
0) and let top(χ) = (G,M ′,Φ′). We consider the

following cases.
Suppose u belongs to white(top(χ0)) ∩ matched(top(χ0)). By Lemma 5.28, it follows that

top(χ) = shift(top(χ0), u, 1). Thus, gap(top(χ0), u) ≥ 1.

46

Suppose u belongs to white(top(χ0))∩unmatched(top(χ0)). It follows that gap(top(χ0), u) = 0.
Thus, β(v) ≤ Φ′0(v) for every item v in items(χ0). However, since gap(top(χ), u) > 1, there exists an
item v in items(χ0) such that match(top(χ), v) = u and β(v)−Φ′(v) ≥ 1. Thus, gap(top(χ0), u) <
gap(χ′′, u), where χ′′ = subst(top(χ), u, β). This contradicts Lemma 5.19.

Suppose u belongs to nonwhite(top(χ0)). By Lemma 5.4, u belongs to nonwhite(χ0), and by
Lemma 5.7, we have top′(χ0) = subst(top′(χ), u, β); thus, it follows from the definition of the second
phase of the top-level auction that top(χ0) = subst(top(χ), u, β). It is now straightforward to see
that since gap(top(χ), u) > 1, we have gap(top(χ0), u) ≥ 1.

5.7 Scalability

In this section we briefly sketch a fast implementation of the top-level auction. We say that a
bid component is “active” if it is at least equal to the price (viewing the bid components and
prices as pairs, as in the discussion on white configurations in Section 3.5) of the corresponding
item. We only need to maintain information concerning the active bid components. We first define
an initial tentative pricing and allocation at the start of the auction: each item is allocated to
the seller of its put and has a price equal to the strike price of its put. The agents that are not
tentatively allocated do not have any active bid components, and so we do not need to maintain
any information concerning such agents. We do not maintain an explicit color value (black, gray,
or white) for each tentatively allocated agent. Instead, when we need to determine the color of
an agent, we do so by examining its active bid components along with the current prices of the
associated items.

We now iteratively process bids of unallocated agents. At the start of an iteration, our auction
state specifies the current pricing and allocation, the target bid of each tentatively allocated agent,
and a set of unallocated agents for which the associated bids have yet to be processed. We pick
an arbitrary unallocated agent u from the latter set, and in the style of the well-known Hungarian
algorithm for weighted bipartite matching [12], or the closely related successive shortest paths
algorithm [2, Chapter 9], we proceed to update the tentative pricing and allocation to account for
the bid of u. The high-level strategy is to grow a Hungarian tree (which involves increasing certain
prices, while maintaining the allocation) rooted at u until one of the following two conditions occurs:
(1) one or more nonwhite tentatively allocated agents enter the tree; (2) the utility of u or one or
more of the white tentatively allocated agents drops to zero.

If (2) occurs before (1), then we update the allocation via an augmentation that unallocates
(and discards) the minimum zero-utility agent, and allocates u. (If agent u is itself the minimum
zero-utility agent, then no augmentation is performed, and the allocation remains unchanged.)
Using a standard primal-dual approach, it is possible to update the pricing and allocation in time
proportional to the time required to solve a single-source shortest paths (SSSP) problem on the
active subgraph of the current bid-graph. For a directed graph with n vertices and m edges, Thorup
presents an O(m + n log logn) algorithm for the SSSP problem [15]. Thus the time complexity of
the update is close to linear in the number of active bid components.

If (1) occurs before (2), then we update the allocation via an augmentation that unallocates
the minimum nonwhite tentatively allocated agent, call it u′, and allocates u. The time complexity
for performing this update is the same as in the case of the preceding paragraph. The difference
is that here we cannot necessarily discard agent u′. In particular, if agent u′ was black before the
update, then it may still have one or more active bid components; if so, we add agent u′ to the set
of unallocated agents for which the associated bids have yet to be processed. While the size of the
latter set does not decrease (because we removed u and added u′), we are able to prove that the
number of black tentatively allocated agents has decreased by at least one. Consequently, in any

47

execution of the main auction, the total number of SSSP computations performed is at most the
total number of agents in the auction.

Recall that our main auction consists of two phases. The foregoing discussion has focused on
the implementation of the first phase. In the second phase, any black tentatively allocated agents
are given the opportunity to exchange items with one another. As discussed in Section 5.2, either
the TTC algorithm or the TC≺ algorithm is used to update the allocation, and the item prices are
left unchanged. The second phase of the top-level auction can be implemented in linear time in the
size of the active bid-graph using the TTC algorithm [13], and in polynomial time using the TC≺

algorithm [9].

6 Concluding Remarks

For the classic sealed-bid unit-demand framework, the celebrated VCG mechanism yields a truthful,
efficient, and envy-free outcome. In this paper, we introduce a generalization of the classic sealed-
bid unit-demand setting that is motivated by practical applications. We show that our auction for
this setting retains, to the extent possible, the strong properties of the VCG mechanism.

Acknowledgements. We are grateful to anonymous referees for their valuable comments and
pointers to related work.

References

[1] G. Aggarwal, S. Muthukrishnan, D. Pál, and M. Pál. General auction mechanism for search
advertising. World Wide Web, 18, 2009.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, New York, NY,
1993.

[3] L. M. Ausubel, P. Cramton, and P. Milgrom. The Clock-Proxy Auction: A Practical Combi-
natorial Auction Design. MIT Press, Cambridge, Massachusetts, 2005.

[4] H. Clarke, E. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[5] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Journal of Political Economy,
94(4):863–872, 1986.

[6] S. Fujishige and Akihisa. Tamura. A two-sided discrete-concave market with possibly bounded
side payments: An approach by discrete concave analysis. Mathematics of Operations Research,
32(1):136–155, 2007.

[7] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[8] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Economic
Theory, 87(1):95–124, 1999.

[9] P. Jaramillo and V. Manjunath. The difference indifference makes in strategy-proof allocation
of objects. Under review, 2009.

[10] T. Koopmans and M. Beckmann. Assignment problem and the location of economic activities.
Econometrica, 25:53–76, 1957.

48

[11] C. Krishnappa and C. G. Plaxton. A sealed-bid unit-demand auction with put options. Tech-
nical Report TR–11–04, Department of Computer Science, University of Texas at Austin,
February 2011.

[12] H. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 3:253–258, 1955.

[13] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Economics,
1(1):23–37, 1974.

[14] K. Steiglitz. Snipers, Shills & Sharks: eBay and Human Behavior. Princeton University Press,
Princeton, New Jersey, 2007.

[15] M. Thorup. Integer priority queues with decrease key in constant time and the single source
shortest paths problem. Journal of Computer and System Sciences, 69(3):330–353, 2004.

[16] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance,
16(1):8–37, 1961.

[17] L. Walras. Elements of Pure Economics. Allen and Unwin, 1954.

49

