
Vertex-Weighted Matching in
Two-Directional Orthogonal Ray Graphs

C. Gregory Plaxton ?

Department of Computer Science
University of Texas at Austin

plaxton@cs.utexas.edu

Abstract. Let G denote an n-vertex two-directional orthogonal ray
graph. A bicolored 2D representation of G requires only O(n) space,
regardless of the number of edges in G. Given such a compact represen-
tation of G, and a (possibly negative) weight for each vertex, we show how
to compute a maximum weight matching of G in O(n log2 n) time. The
classic problem of scheduling weighted unit tasks with release times and
deadlines is a special case of this problem, and we obtain an O(n log n)
time bound for this special case. As an application of our more general
result, we obtain an O(n log2 n)-time algorithm for computing the VCG
outcome of a sealed-bid unit-demand auction in which each item has two
associated numerical parameters (e.g., third-party “quality” and “seller
reliability” scores) and each bid specifies the amount an agent is will-
ing to pay for any item meeting specified lower bound constraints with
respect to these two parameters.

1 Introduction

Certain natural classes of graphs can be represented using a constant number of
words of storage for each vertex, and no additional storage for each edge, since
the edges are represented implicitly: Given the representation of two vertices
u and v, it is possible to determine in constant time whether there is an edge
between u and v. For example, consider the class of bipartite graphs where
each “left vertex” corresponds to a unit job (i.e., a job requiring one unit of
processing time) with a specified integer release time and deadline, each “right
vertex” corresponds to a unit-time slot on a shared resource with a specified
integer timestamp, and there is an edge between left vertex u and right vertex
v if and only if the timestamp of the slot associated with v lies in the interval
specified by the release time and deadline of the job associated with u. Such a
bipartite graph is said to be “convex”.

For such “compactly representable” classes of graphs, it is interesting to re-
visit the complexity of fundamental graph problems. By working directly with

? Department of Computer Science, University of Texas at Austin, 2317 Speedway,
Stop D9500, Austin, Texas 78712–1757. This research was supported by NSF Grant
CCF–1217980.

2

the compact representation, we seek to outperform traditional algorithms de-
signed for the standard adjacency list representation. In this paper, we revisit
the complexity of vertex-weighted matching problems on certain compactly rep-
resentable classes of bipartite graphs. All of the algorithms that we develop have
time complexity that is quasilinear (i.e., within a polylogarithmic factor of linear)
in the number of vertices.

Matching algorithms for convex bipartite graphs have received significant
attention in the literature. In the following discussion, U denotes the set of
left vertices, and V denotes the set of right vertices, of a given convex bi-
partite graph. Glover presented a simple greedy algorithm [8] for maximum-
cardinality convex bipartite matching that admits an O(|V | + |U | log |U |)-time
implementation using an elementary priority queue data structure. Later, van
Emde Boas used a fast priority queue to obtain an O(|V |+ |U | log log |U |)-time
implementation of Glover’s algorithm [21]. Lipski and Preparata [10] used Tar-
jan’s fast union-find data structure [20] to devise a different algorithm running
in time O(|U | + |V |α(|V |)), where α is a functional inverse of Ackermann’s al-
gorithm. Gabow and Tarjan [6] show that this application of union-find falls
into a category admitting a linear-time implementation, thereby reducing the
Lipski-Preparata time bound to O(|U | + |V |). Another line of work focused on
eliminating the dependence of the running time on |V | [7, 15], at the expense of
introducing a mild technical assumption regarding the input representation. This
research culminated in the O(|U |)-time algorithm of Steiner and Yeomans [19].

In terms of vertex-weighted matching algorithms for convex bipartite graphs,
most prior research has focused on the “left-weighted” special case in which all
of the right vertices have zero weight, which corresponds to the classic problem
of scheduling weighted unit jobs with release times and deadlines. (In the no-
tation of Section 2, this corresponds to the LMWM and LMWMCM problems,
which are essentially equivalent.) Dekel and Sahni [5] present a parallel algo-
rithm for left-weighted convex bipartite matching that uses O(|U |2) processors
and O(log2 |U |) time, and which is based on a sequential algorithm with O(|U |2)
complexity. Brodal et al. [2] present a data structure based on the Dekel-Sahni
algorithm for the problem of maintaining a maximum cardinality matching in
a dynamic convex bipartite graph. Lipski and Preparata [10] use the matroid
greedy framework to develop a left-weighted convex bipartite matching algo-
rithm with time complexity O(|U |2 + |U | · |V |). Plaxton [13] discusses a similar
algorithm based on the matroid greedy framework, and shows how to implement
this algorithm in O(|U | log |U |+|V | log2 |V |) time using a data structure based on
augmented trees. With additional preprocessing, and making the same technical
assumption regarding the input representation as in Steiner and Yeomans [19],
Plaxton improves this bound to O(|U | + k log2 k), where k ≤ min{|U |, |V |} de-
notes the size of a maximum cardinality matching.

Katriel [9] presents an O(|E| + |V | log |U |)-time algorithm for the right-
weighted special case of vertex-weighted matching in convex bipartite graphs.
(Here E denotes the edge set of the graph.) Katriel obtains the same time bound
algorithm for the general vertex-weighted matching problem in convex bipartite

3

graphs, under the restriction that the input graph G = (U, V,E) admits a match-
ing of size |U |. Since the input size is Θ(|U |+ |V |), and |E| could be as large as
Θ(|U | · |V |), these algorithms have quadratic complexity.

In this paper, we present quasilinear vertex-weighted matching algorithms for
a class of bipartite graphs that properly contains the class of convex bipartite
graphs. The bipartite graphs that we study admit a representation in which each
vertex (left or right) has an x-value and a y-value, and there is an edge from a
left vertex u to a right vertex v if and only if the x-value of u is at most the x-
value of v and the y-value of u is at most the y-value of v. Such a bipartite graph
is called a two-dimensional orthogonal ray graph, or 2DORG (see Section 4 for
a more formal definition). It is easy to see how to represent a convex bipartite
graph as a 2DORG: Using the job-slot terminology introduced earlier, we can set
the x-value (resp., y-value) of each left vertex to the release time (resp., negation
of the deadline) of the associated job, and we can set the x-value (resp., y-value)
of each right vertex to the timestamp (resp., negation of the timestamp) of the
associated slot. On the other hand, the class of 2DORGs is substantially richer
than the class of convex bipartite graphs. For example, it is known that the
class of 2DORGs properly contains the class of interval bigraphs, which in turn
properly contains the class of convex bipartite graphs [16].

We now discuss the key techniques underlying our results. A starting point
for our work is the elegant linear-time algorithm of Chang [3] for computing a
maximum cardinality matching (MCM) of a chordal bipartite graph. The class
of chordal bipartite graphs properly contains the class of 2DORGs [16]. Chang’s
algorithm runs in O(m + n) time on an input graph with m edges and n ver-
tices. Recall that in the present work we are seeking running times that are
quasilinear in n. We obtain an O(n log n)-time implementation of Chang’s al-
gorithm by making use of a suitably augmented binary search tree (BST). Our
augmented BST data structure may be viewed as a special case of the priority
search tree data structure of McCreight [11]. (For a good introduction to the
topic of augmented BST data structures, see Cormen et al. [4, Chapter 14].)

Most of the technical work in our paper is geared towards leveraging the afore-
mentionedO(n log n)-time MCM algorithm for 2DORGs to obtain anO(n log2 n)-
time vertex-weighted matching algorithms for 2DORGs. Here we exploit the
vertex-weighted matching framework of Spencer and Mayr [18]. This is a divide-
and-conquer framework for reducing vertex-weighted matching to unweighted
matching. The framework is valid for general (bipartite or nonbipartite) graphs.
As in the case of Chang’s algorithm discussed in the previous paragraph, the
original Spencer-Mayr framework is not geared towards obtaining running times
that are quasilinear in the number of vertices. Rather, the original framework
seeks fast running times for general graphs; these bounds depend on m and n and
are not quasilinear in n, even for sparse graphs. We identify a small number of
basic primitives that suffice to support the Spencer-Mayr framework, and show
how to implement each of these primitives in O(n log n) time on 2DORGs. One
such primitive is the O(n log n)-time MCM algorithm discussed in the previous
paragraph. Given a current matching, another key primitive identifies all of the

4

vertices that can be reached from some unmatched left vertex via an alternating
path of unmatched and matched edges. As in the case of our MCM algorithm for
2DORGs, our O(n log n)-time 2DORG implementation of the latter primitive is
based on augmented BSTs. Once we establish that all of the primitives associ-
ated with the Spencer-Mayr framework admit O(n log n)-time implementations
on 2DORGs, we find that the resulting divide-and-conquer recurrence solves
to give an overall running time of O(n log2 n) for vertex-weighted matching in
2DORGs.

A practical motivation for the work of the present paper is to better un-
derstand the class of sealed-bid unit-demand auctions for which it is possible to
compute a suitable outcome in time that is quasilinear in the number of vertices.
In certain real-time applications of combinatorial auctions, it is crucial to employ
mechanisms with low time complexity. For example, in the realm of sponsored
search auctions, each search query triggers a combinatorial auction in which a
(potentially large) number of bidders vie for a collection of ad slots; such an auc-
tion needs to be resolved rapidly so that the search results can be provided in a
timely manner. We use our vertex-weighted matching algorithm for 2DORGs to
compute a VCG allocation for a certain class of sealed-bid unit-demand auctions
in O(n log2 n) time, and we show how to compute the VCG prices in O(n log n)
additional time.

The remainder of the paper is organized as follows. Section 2 provides some
basic definitions and lemmas. Section 3 introduces ordered and elimination-
ordered representation schemes. Section 4 presents our main result, anO(n log2 n)-
time algorithm to compute a maximum weight matching of any n-vertex 2DORG.
Due to space limitations, some details are omitted from this conference version.
The companion technical report [14] includes all of the material in the present
version plus four appendices. Appendix A of [14] reviews the relevant aspects of
the Spencer-Mayr vertex-weighted matching framework, and adapts this frame-
work to our setting. Appendix B of [14] presents an O(n log n)-time algorithm
for the special case of left-weighted matching on convex bipartite graphs. Ap-
pendix C of [14] presents several useful lemmas. Appendix D of [14] describes an
O(n log2 n)-time algorithm for computing the VCG outcome of a 2DORG-related
class of sealed-bid unit-demand auctions.

2 Preliminaries

A matching of a graph G = (V,E) is a subset E′ of E such that the 2|E′|
endpoints of the edges in E′ are all distinct. A maximum cardinality matching
(MCM) of G is a matching M of G such that |M | ≥ |M ′| for all matchings M ′ of
G. If each edge of G has an associated weight, we define the weight of a matching
M , denoted w(M), as the sum of the weights of its associated edges. A maximum
weight matching (MWM) of G is a matching M of G such that w(M) ≥ w(M ′)
for all matchings M ′ of G. A maximum weight MCM (MWMCM) of G is an
MCM M of G such that w(M) ≥ w(M ′) for all MCMs M ′ of G.

5

This paper addresses matching problems on vertex-weighted graphs. The
vertex weights induce edge weights; we are primarily interested in the case where
the weight of an edge between a vertex u and a vertex v is taken to be the sum
of the weights of u and v. A matching M of a vertex-weighted graph is an MWM
(resp., MWMCM) of G if it is an MWM (resp., MWMCM) of the corresponding
edge-weighted graph.

A graph G is bipartite if the vertex set of G can be partitioned into two sets
U and V such that every edge of G has one endpoint in U and one endpoint
in V . In the present paper, we address bipartite graph problems where a par-
ticular bipartition of the vertices is specified as part of the input. Throughout
the remainder of the paper, we use the term bipartite graph to refer to a triple
(U, V,E) where U is a set of “left” vertices, V is a set of “right” vertices, and
every edge in E has one endpoint in U and one endpoint in V .

The primary goal of this paper is to develop fast MWM algorithms for certain
classes of vertex-weighted bipartite graphs. We analyze our algorithms in the
RAM model, and we assume that each vertex weight can be represented using a
constant number of machine words. It will prove to be useful to first develop fast
algorithms for simpler problems in which the weights of either the left vertices,
or the right vertices, are effectively zeroed out. With this in mind, we define an
LMWM (resp., RMWM) of a vertex-weighted bipartite graph G as an MWM
of the corresponding edge-weighted graph where the weight of an edge between
a left vertex u and a right vertex v is given by the weight of u (resp., v). The
terms LMWMCM and RMWMCM are defined analogously.

It is easy to see that we can compute an LMWM of a given bipartite graph
G = (U, V,E) by first deleting all of the negative-weight left vertices, and then
computing an LMWM of the resulting bipartite graph.

Given a matching M of a bipartite graph G that is not an MCM of G, Berge’s
lemma [1, Theorem 1] implies the existence of a matching M ′ of G such that
|M ′| = |M | + 1 and the set of vertices matched in M is properly contained in
the set of vertices matched in M ′. Applying this idea repeatedly, we find that if
M is a matching of a bipartite graph G = (U, V,E), there is an MCM M ′ of G
that matches all of the vertices matched in M . It follows that if every left vertex
has nonnegative weight, then any LMWMCM is an LMWM.

Combining the observations of the two preceding paragraphs, we see that an
LMWM of a given bipartite graph G = (U, V,E) can be obtained by deleting all
of the negative-weight left vertices, and then computing an LMWMCM of the
resulting bipartite graph. Thus the LMWM and LMWMCM problems are essen-
tially the same. In the remainder of the paper, we discuss only the LMWMCM
problem. Symmetric remarks hold for the RMWM and RMWMCM problems.

Spencer and Mayr [18] attribute the following lemma, which is straightfor-
ward to prove, to Mendelsohn and Dulmage [12]; Spencer and Mayr also provide
a proof.

Lemma 1. Let M and M ′ be two MCMs of a bipartite graph G = (U, V,E).
Then there is an MCM of G that matches the set of left vertices matched in M
to the set of right vertices matched in M ′.

6

Lemma 1 plays an important role in the Spencer-Mayr vertex-weighted match-
ing framework discussed in Appendix A of [14], since it yields a reduction from
the problem of vertex-weighted bipartite matching to the restricted case in which
only the vertices on one side of the bipartition have nonzero weight. This reduc-
tion is restated below using the terminology of the present paper.

Lemma 2. Let M be an LMWMCM of a vertex-weighted bipartite graph G =
(U, V,E), let U ′ be the set of left vertices of G that are matched in M , and let
G′ be the subgraph of G induced by U ′ ∪ V . Then any RMWMCM of G′ is an
MWMCM of G.

Proof. Immediate from Lemma 1. ut

For any class C of graphs, and any integers m and n, we let Cm,n denote the
set of all graphs in C with at most m edges and at most n vertices.

A representation scheme ξ for a class C of graphs specifies a set reps(ξ,G)
of possible representations for any given graph G in the class.

Let ξ denote a representation scheme for a class C of graphs. Scheme ξ is
said to have space complexity at most f(m,n) if, for any graph G in Cm,n,
the space used by any representation in reps(ξ,G) is at most f(m,n). Thus, for
example, the standard adjacency list representation scheme has space complexity
O(m + n). Scheme ξ is said to have MCM complexity at most f(m,n) if there
is an f(m,n)-time algorithm which, given any representation in reps(ξ,G) of
a graph G in Cm,n, computes an MCM of G. The MWM (resp., LMWMCM,
RMWMCM, MWMCM) complexity of ξ is defined similarly, except that the
input to the f(m,n)-time algorithm also specifies the vertex weights.

We say that a class C of graphs is hereditary if any induced subgraph of a
graph in C also belongs to C. A representation scheme for a hereditary class
C of graphs has induced subgraph complexity at most f(m,n) if there is an
f(m,n)-time algorithm which, given any representation in reps(ξ,G) of a graph
G = (V,E) in Cm,n, and any specified subset V ′ of V , computes a representation
in reps(ξ,G′) where G′ denotes the subgraph of G induced by V ′.

Lemma 3. Let ξ denote a representation scheme for a hereditary class of bipar-
tite graphs. If ξ has induced subgraph, LMWMCM, and RMWMCM complexity
at most f(m,n), then ξ has MWMCM complexity O(f(m,n)).

Proof. Immediate from Lemma 2. ut

Let ξ be a representation scheme for a class C of bipartite graphs. Scheme
ξ is said to have left-to-right search complexity at most f(m,n) if there exists
an f(m,n)-time algorithm which, given any representation in reps(ξ,G) of a
graph G in Cm,n, and any matching M of G, computes the set of all vertices
that are reachable from some unmatched left vertex via an alternating path
of unmatched and matched edges. The right-to-left search complexity of ξ is
defined symmetrically. The search complexity of ξ is at most f(m,n) if the left-
to-right search complexity and right-to-left search complexity of ξ are each at
most f(m,n).

7

3 Ordered Representation Schemes

An ordering of a bipartite graph G specifies a total order over the set of left
vertices of G, and a total order over the set of right vertices of G.

A representation of a bipartite graph G is ordered if it specifies an ordering
of G, and allows the relative order of any two left (resp., right) vertices to be
determined in constant time. A representation scheme ξ for a class C of bipartite
graphs is ordered if for everyG in C, every representation in reps(ξ,G) is ordered.

Let ξ be an ordered representation scheme for a hereditary class C of bipar-
tite graphs. We say that ξ has left-to-right delete-min complexity f(n) if there
exists an f(n)-time algorithm A which, given a representation R in reps(ξ,G)
for some graph G in C with at most n vertices, and a left vertex u of G, performs
the following operation, which we denote delete-min(u): (1) if u has one or more
incident edges, then letting v denote the least right vertex adjacent to u (with
respect to the total order defined over the right vertices), and letting G′ denote
G with right vertex v removed, A returns v and modifies R to obtain a repre-
sentation in reps(ξ,G′); (2) if u has no incident edges, then A returns nil and
leaves R unchanged. The right-to-left delete-min complexity of ξ is defined sym-
metrically, along with the associated operation delete-min(v). The delete-min
complexity of ξ is at most f(n) if the left-to-right and right-to-left delete-min
complexity of ξ are each at most f(n). The following lemma is straightforward.

Lemma 4. Let ξ be an ordered representation scheme for a hereditary class of
bipartite graphs. If ξ has left-to-right (resp., right-to-left) delete-min complexity
f(n), then ξ has left-to-right (resp., right-to-left) search complexity O(nf(n)).
Thus if ξ has delete-min complexity at most f(n), then ξ has search complexity
O(nf(n).

A bipartite graph is chordal bipartite if each cycle of length at least six has a
chord. (Remark: A chordal bipartite graph need not be chordal because chordless
cycles of length four are permitted.) The class of chordal bipartite graphs has
been extensively studied, and various alternative characterizations are known.
One such characterization is that a bipartite graph G is chordal bipartite if and

only if G is
[

1 1
1 0

]
-free, which means that G admits an ordering such that for

any pair of left vertices u and u′ such that u < u′, and any pair of right vertices
v and v′ such that v < v′, if u is adjacent to v, u is adjacent to v′, and u′ is
adjacent to v, then u′ is adjacent to v′. In the present paper, we refer to such an
ordering as an elimination ordering.

A representation of a chordal bipartite graph G is elimination-ordered if it
specifies an elimination ordering of G. A representation scheme ξ for a class C of
chordal bipartite graphs is elimination-ordered if for every graph G in C, each
representation in reps(ξ,G) is elimination-ordered.

Three lemmas related to elimination-ordered representation schemes are stated
and proven in Appendix C of [14]. Lemma 11 of [14] is based on the MCM al-
gorithm of Chang [3]. Lemmas 12 and 13 of [14] are useful for dealing with
negative vertex weights.

8

4 Two-Directional Orthogonal Ray Graphs

A bipartite graph G = (U, V,E) is called an orthogonal ray graph (ORG) if there
exists a horizontal ray (i.e., a closed half-line parallel to the x-axis) corresponding
to each left vertex, and a vertical ray (i.e., a closed half-line parallel to the y-
axis) corresponding to each right vertex, such that a left vertex u is adjacent
to a right vertex v if and only if the two corresponding rays intersect. If all of
the horizontal rays go in the same direction (e.g., to the right), and all of the
vertical rays go in the same direction (e.g., down), then we say that the ORG is
a two-directional ORG (2DORG)

Various equivalent characterizations of the class of 2DORGs are known.
Shrestha, Tayu, and Ueno [16] show that a graph is a 2DORG if and only if

G admits a biadjacency matrix that is
[
∗ 1
1 0

]
-free. In the notation of the present

paper, this is equivalent to saying that G admits an ordering for which, for all
pairs of left vertices u and u′ such that u < u′, and all pairs of right vertices v
and v′ such that v < v′, if u is adjacent to v′ and u′ is adjacent to v, then u′

is adjacent to v′. Notice that such an ordering is an elimination ordering, and
hence every 2DORG is chordal bipartite. On the other hand, not every chordal
bipartite graph is a 2DORG [17, Lemma 3.4.11].

Soto [17, Lemma 3.4.9] notes that a bipartite graph is a 2DORG if and only
if it is a bicolored 2D-graph, that is, there exists a red point in the plane for each
left vertex, and a blue point in the plane for each right vertex, such that there
is an edge from left vertex u to right vertex v if and only if each component
of the red point associated with u is at most the corresponding component
of the blue point associated with v. This characterization suggests a natural
bicolored 2D representation of a 2DORG in which each vertex is represented
by a red or blue point in the x-y plane. (The original definition also suggests
such a representation, where the point corresponding to a vertex is given by the
endpoint of the corresponding ray.)

Soto [17, Lemma 3.4.1] also points out that every bicolored 2D-graph admits
a bicolored rook representation, that is, a bicolored 2D representation satisfying
the following additional constraints, where n denotes the number of vertices in
the graph: (1) no two of the n points share a common x-value, or a common
y-value; (2) the points are all drawn from the set [n]2, where n denotes the
number of vertices and [n] denotes {i | 0 ≤ i < n}. Furthermore, as shown by
Soto, such a bicolored rook representation can be obtained from any bicolored
2D representation in O(n log n) time using a straightforward sorting procedure.

We now define a useful elimination-ordered representation scheme, denoted
ξ∗, for the class of 2DORGs. Under scheme ξ∗, our representation of an n-vertex
2DORG G consists of a bicolored 2D representation plus two additional data
structures. Like a bicolored rook representation, we require the bicolored 2D
representation of G to satisfy the constraint that no two of the n points share
a common x-value, or a common y-value. However, we do not require all of the
points to be drawn from [n]2; instead, we enforce the relaxed requirement that
each coordinate is an integer that can be stored in a constant number of machine

9

words. Before describing the two additional data structures associated with our
representation, we define an ordering of G and prove that it is an elimination
ordering. We define a total order < over the set of left vertices as follows: u < u′

if and only if y(u′) < y(u). We define a total order < over the set of right vertices
as follows: v < v′ if and only if x(v) < x(v′). The following lemma establishes
that this ordering is an elimination ordering.

Lemma 5. Let G = (U, V,E) be a 2DORG, and let R belong to reps(ξ∗, G). If
u < u′, v < v′, (u, v′) belongs to E, and (u′, v) belongs to E, then (u′, v′) belongs
to E.

Proof. We need to prove that x(u′) ≤ x(v′) and y(u′) ≤ y(v′).
Since (u′, v) belongs to E, we have x(u′) ≤ x(v). Since v < v′, we have

x(v) < x(v′). Hence x(u′) < x(v′).
Since (u, v′) belongs to E, we have y(u) ≤ y(v′). Since u < u′, we have

y(u′) < y(u). Hence y(u′) < y(v′). ut

We now describe the two additional data structures associated with our rep-
resentation ofG under scheme ξ∗. These data structures may be viewed as special
cases of the priority search tree data structure of McCreight [11]. The first is a
red-black tree that stores all of the left vertices in increasing order with respect
to the total order <. This red-black tree is augmented (see [4, Chapter 14] for an
introduction to augmented binary search trees) by maintaining, at each node α,
an integer “min” field equal to the minimum, over all left vertices u stored in the
subtree rooted at node α, of x(u). It is straightforward to maintain the min field
while supporting the standard dictionary operations in logarithmic time. This
data structure allows us to support the delete-min(v) operation in logarithmic
time, where v is an arbitrary right vertex.

The second data structure is a similar red-black tree that stores all of the
right vertices in increasing order with respect to the total order <. This red-black
tree is augmented by maintaining, at each node α, an integer “max” field equal
to the maximum, over all right vertices v stored in the subtree rooted at node α,
of y(v). As in the case of the first data structure, it is straightforward to maintain
the max field supporting the standard dictionary operations in logarithmic time.
This second data structure allows us to support the delete-min(u) operation in
logarithmic time, where u is an arbitrary left vertex.

Lemma 6. The representation scheme ξ∗ for the class of 2DORGs has space
and induced subgraph complexity O(n), delete-min complexity O(log n), search
and MCM complexity O(n log n), and LMWMCM, RMWMCM, MWMCM, and
MWM complexity O(n log2 n).

Proof. The O(n) bound on space complexity is immediate from the definition
of ξ∗. For the O(n) bound on induced subgraph complexity, notice that we can
form each of the two augmented red-black tree data structures associated with a
specified induced subgraph as follows: (1) traverse the corresponding red-black
tree for the original graph to extract the desired sorted sequence of vertices; (2)

10

arrange this sorted sequence of vertices into a perfectly balanced red-black tree
structure (e.g., the same structure as is achieved in a binary heap); (3) fill in the
values of the auxiliary fields in a bottom-up manner.

As indicated in our description of ξ∗, the two augmented red-black tree struc-
tures allow us to support arbitrary delete-min(u) and delete-min(v) operations
in logarithmic time. Thus the delete-min complexity of ξ∗ is O(log n).

Lemma 4 implies that the search complexity of ξ∗ isO(n log n), and Lemma 11
of [14, Appendix C] implies that the MCM complexity of ξ∗ is O(n log n).

Applying Lemma 8 of [14, Appendix A] with f(m,n) = O(n log n), we find
that the LMWMCM and RMWMCM complexity of ξ∗ is O(n log2 n). Applying
Lemma 3 with f(m,n) = O(n log2 n), we find that the MWMCM complexity of
ξ∗ is O(n log2 n).

It remains to bound the MWM complexity of ξ∗. Let C denote the class of all
2DORGs, and let C ′ denote the class of all graphsG′ of the form extend(G,U ′, V ′)
where G = (U, V,E) belongs to C, U ′ is a subset of U , and V ′ is a subset of V .
By applying Lemma 13 of [14, Appendix C] with f0(m,n) = f1(m,n) = O(n),
f2(m,n) = f3(m,n) = O(n log n), and f4(n) = f5(n) = O(log n), we find
that there is an elimination-ordered representation scheme with dummies ξ′

for C ′ with space and induced subgraph complexity O(n), search complexity
O(n log n), and delete-min complexity O(log n). Thus, reasoning in the same
manner as we did above for ξ∗, we find that ξ′ has MCM complexity O(n log n),
and LMWMCM, RMWMCM, and MWMCM complexity O(n log2 n).

Lemma 13 of [14] also implies that if we are given a representation in reps(ξ∗, G)
of a graph G = (U, V,E) in C, a subset U ′ of U , and a subset V ′ of V , then
we can compute a representation in reps(ξ′, G′) where G′ = extend(G,U ′, V ′)
in O(n) time. Since ξ′ has MWMCM complexity O(n log2 n), Lemma 9 of [14,
Appendix A] implies that ξ∗ has MWM complexity O(n log2 n). ut

Theorem 1. Assume that we are given a bicolored 2D-graph representation of
an n-vertex, vertex-weighted 2DORG G such that each x-value, y-value, or weight
is an O(1)-word integer. Then an MWM of G can be computed in O(n log2 n)
time.

Proof. Since any two O(1)-word integers can be compared in constant time, we
can construct a representation in reps(ξ∗, G) in O(n log n) time. Since represen-
tation scheme ξ∗ has MWM complexity O(n log2 n) by Lemma 6, the claim of
the theorem follows. ut

References

1. C. Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences, 43:842–844, 1957.

2. G. S. Brodal, L. Georgiadis, K. A. Hansen, and I. Katriel. Dynamic matchings in
convex bipartite graphs. In Proceedings of the 32nd International Symposium on
Mathematical Foundations of Computer Science, pages 406–417, August 2007.

11

3. M.-S. Chang. Algorithms for maximum matching and minimum fill-in on chordal
bipartite graphs. In Proceedings of the 7th Annual International Symposium on
Algorithms and Computation, LNCS 1178, pages 146–155, December 1996.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

5. E. Dekel and S. Sahni. A parallel matching algorithm for convex bipartite graphs
and applications to scheduling. Journal of Parallel and Distributed Computing,
1:185–205, 1984.

6. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30:209–221, 1985.

7. G. Gallo. An O(n log n) algorithm for the convex bipartite matching problem.
Operations Research Letters, 3:313–316, 1984.

8. F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistic
Quarterly, 14:313–316, 1967.

9. I. Katriel. Matchings in node-weighted convex bipartite graphs. INFORMS Journal
on Computing, 20:205–211, 2008.

10. W. Lipski, Jr. and F. P. Preparata. Efficient algorithms for finding maximum
matchings in convex bipartite graphs and related problems. Acta Informatica,
15:329–346, 1981.

11. E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257–276,
1985.

12. N. S. Mendelsohn and A. L. Dulmage. Some generalizations of the problem of
distinct representatives. Canadian Journal of Mathematics, 10:230–241, 1958.

13. C. G. Plaxton. Fast scheduling of weighted unit jobs with release times and dead-
lines. In Proceedings of the 35th Annual International Colloquium on Automata,
Languages, and Programming, LNCS 5125, pages 222–233, July 2008.

14. C. G. Plaxton. Vertex-weighted matching in two-directional orthogonal ray graphs.
Technical Report TR–13–16, Department of Computer Science, University of Texas
at Austin, September 2013.

15. M. G. Scutellà and G. Scevola. A modification of Lipski-Preparata’s algorithm for
the maximum matching problem on bipartite convex graphs. Ricerca Operativa,
46:63–77, 1988.

16. A. M. S. Shrestha, S. Tayu, and S. Ueno. On orthogonal ray graphs. Discrete
Applied Mathematics, 158:1650–1659, 2010.

17. J. A. Soto. Contributions on Secretary Problems, Independents Sets of Rectangles
and Related Problems. PhD thesis, Department of Mathematics, Massachusetts
Institute of Technology, June 2011.

18. T. H. Spencer and E. W. Mayr. Node weighted matching. In Proceedings of
the 11th Annual International Colloquium on Automata, Languages, and Program-
ming, LNCS 172, pages 454–464, July 1984.

19. G. Steiner and J. S. Yeomans. A linear time algorithm for determining maxi-
mum matchings in convex, bipartite graphs. Computers and Mathematics with
Applications, 31:91–96, 1996.

20. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22:215–225, 1975.

21. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80–82, 1977.

