
Copyright

by

Chinmayi Krishnappa

2011

The Dissertation Committee for Chinmayi Krishnappa
certifies that this is the approved version of the following dissertation:

Unit-Demand Auctions:

Bridging Theory and Practice

Committee:

C. Greg Plaxton, Supervisor

Anna Gal

Adam Klivans

Peter Stone

Sriram Vishwanath

Unit-Demand Auctions:

Bridging Theory and Practice

by

Chinmayi Krishnappa, B.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011

For MOM

Who taught us by example, that no situation exempts you from being

cheerful, kind, and hardworking.

Acknowledgments

I am indebted to my advisor, Greg Plaxton, for being a constant source

of inspiration, guidance, and support throughout my years as a PhD student.

He has been infinitely patient when I have (often) slacked off at work and

has come to my rescue every time I thought I had reached a dead-end. His

perseverance in battling any problem for hours has inspired me to work harder,

and his exuberance when we make a breakthrough has often left me questioning

my own levels of passion. Everything I know about formal writing, I have learnt

from Greg. I hope this dissertation goes some way in expressing my gratitude

for all that he has done for me.

I would like to thank my committee members — Anna Gal, Adam

Klivans, Peter Stone, and Sriram Viswanath, for their valuable comments and

feedback. I am also grateful to the CS department staff — Gloria, Lydia, and

Katherine, for being extremely nice to me, and for going out of their way to

ensure that I was meeting every departmental deadline.

I am blessed with a loving family who tell me that they are proud of

me regardless of my achievements. Thank you Dad, for your encouragement

and unshakeable (sometimes irrational?) faith in my abilities! Mom, I owe

everything to you. You are without doubt the strongest woman I’ve known

to date. Thank you for all the effort you put into providing us with the best

v

of education and for encouraging us to dream big. I love you. You are my

strongest source of inspiration and the best role model I could ask for.

A special thank you to my brother Chirayu. To me, you are more than

any super-hero! I can’t thank you enough for all the sound advice that you

have generously doled out over the years. You always have a logically sound

solution to any problem I may have. I guess I hit the jackpot with you – I am

truly lucky to have you in my life and in a role that has no ifs and buts, or an

expiry date.

My life in Austin has been enriched by a wonderful set of friends who

ensured that I enjoyed myself despite any setbacks at work. I will miss you all

greatly and I hope we remain friends for a long time. I will fondly remember the

hot cups of coffee, the long walks, and the fun conversations, both professional

and social, that we have shared over the years.

Finally, I am grateful for the PhD experience. I am happy to have lived

it in my own unique way. It has brought the realization that as daunting as it

may seem, a dissertation is but a modest contribution. I hope the future has

only bigger and better things in store.

vi

Unit-Demand Auctions:

Bridging Theory and Practice

Publication No.

Chinmayi Krishnappa, Ph.D.

The University of Texas at Austin, 2011

Supervisor: C. Greg Plaxton

Unit-demand auctions have been well studied with applications in sev-

eral areas. In this dissertation, we discuss new variants of the unit-demand

auction that are motivated by practical applications. We design mechanisms

for these variants that have strong properties related to truthfulness, efficiency,

scalability, and privacy. The main contributions of this dissertation can be di-

vided into two parts.

In the first part, we introduce a new variant of the classic sealed-bid

unit-demand auction in which each item is associated with a put option; the

put option of an item gives the seller the right to sell the item at a speci-

fied strike price to a specified bidder, regardless of market conditions. We

motivate our unit-demand auction setting by discussing applications to the

reassignment of leases, and to the design of multi-round auctions. For the

classic sealed-bid unit-demand framework, the VCG mechanism provides a

vii

truthful auction with strong associated guarantees, including efficiency and

envy-freedom. For an item in our auction, the strike price of the associated

put imposes a lower bound on the auction price. Due to these lower bound

constraints on auction prices, we find that the VCG mechanism is not suitable

for our setting. Instead, our work draws on two fundamental techniques, one

from the realm of mechanism design for numerical preferences — the dynamic

unit-demand approximate auction of Demange, Gale, and Sotomayor — and

one from the realm of mechanism design for ordinal preferences — the Top

Trading Cycles algorithm — to obtain a natural auction that satisfies the lower

bound constraints on auction prices. While we cannot, in general, achieve ei-

ther efficiency or envy-freedom in our setting, our auction achieves suitably

relaxed versions of these properties. For example, this auction is envy-free for

all bidders who do not acquire an item via the exercise of a put. We provide

a polynomial time implementation of this auction. By breaking ties in an

appropriate manner, we are able to prove that this auction is truthful.

In the second part, we specify rules for a dynamic unit-demand auction

that supports arbitrary bid revision. In each round, the dynamic auction

takes a tentative allocation and pricing as part of the input, and allows each

bidder — including a tentatively allocated bidder — to submit an arbitrary

unit-demand bid. Each round of our dynamic auction is implemented via a

single application of the sealed-bid unit-demand auction proposed in the first

part. We show that our dynamic auction satisfies strong properties related

to truthfulness and efficiency. Using a certain privacy preservation property

viii

of each round of the auction, we show that the overall dynamic auction is

highly resistant to shilling. We present a fast algorithm for implementing

the proposed auction. Using this algorithm, the amortized cost of processing

each bidding operation is upper bounded by the complexity of solving a single-

source shortest paths problem on a graph with nonnegative edge weights and a

node for each item in the auction. We also propose a dynamic price adjustment

scheme that discourages sniping by providing bidders with incentives to bid

early in the auction.

ix

Table of Contents

Acknowledgments v

Abstract vii

Chapter 1. Introduction 1

1.1 Overview . 1

1.2 A Sealed-Bid Unit-Demand Auction with Put Options 4

1.2.1 A two-phase approach. 7

1.3 A Dynamic Unit-Demand Auction Supporting Arbitrary Bid
Revision . 9

1.4 Related Work . 17

1.5 Organization . 21

Chapter 2. Background 24

2.1 Basic Definitions . 25

2.2 Solution Concept . 26

2.2.1 Nash equilibrium . 26

2.2.2 Bayesian-Nash equilibrium 27

2.2.3 Dominant strategy equilibrium 28

2.3 Quasi-Linear Mechanism . 28

2.4 Social Choice Function . 29

2.4.1 Allocative efficiency . 29

2.4.2 Pareto efficiency . 30

2.4.2.1 Weak Pareto efficiency 30

2.4.2.2 The core and the weak core 31

2.4.3 Budget balance . 31

2.5 Direct-Revelation Mechanism 32

2.6 Incentive-Compatibility . 32

x

2.7 Revelation Principle . 32

2.8 Voluntary Participation . 33

2.9 Vickrey-Clarke-Groves Mechanisms 33

2.9.1 The Clarke pivot pricing rule 34

2.10 The Vickrey auction . 35

Chapter 3. Preliminaries 36

3.1 Agents and Items . 36

3.2 Bid-Graphs . 37

3.3 Configurations . 38

3.4 Agent Colors . 41

3.5 Walrasian Configurations . 42

3.6 White Configurations . 53

3.7 Quiescent configurations . 58

3.8 ECCs . 59

Chapter 4. Solution Concept 62

4.1 Informal Description . 63

4.2 Semi-Walrasian Configurations 65

4.3 Equilibrium Conditions . 66

Chapter 5. Bottom-Level Auction 68

5.1 Preliminaries . 69

5.2 Description . 69

5.3 The Raise Operation . 69

5.4 Properties . 75

5.5 Commutativity of Raise Operations 79

Chapter 6. Mid-Level Auction 98

6.1 A Restricted Class of Bidding Strategies 99

6.1.1 Properties . 100

6.2 A Determinized Raise Operation 115

6.3 Description . 116

xi

Chapter 7. Top-Level Auction 120

7.1 First Phase . 121

7.2 Second Phase . 121

7.3 Properties . 123

7.4 Truthfulness . 125

Chapter 8. A Sealed-Bid Unit-Demand Auction with Put Op-
tions 129

8.1 Preliminaries . 130

8.2 Description . 130

8.3 Properties . 131

8.4 Truthfulness . 134

8.5 Efficiency . 144

8.6 Privacy Preservation . 148

8.7 Scalability . 152

Chapter 9. A Dynamic Unit-Demand Auction Supporting Ar-
bitrary Bid Revision 155

9.1 Description . 156

9.2 Auxiliary Definitions . 157

9.3 Properties . 158

9.3.1 Truthfulness . 159

9.3.2 Efficiency . 159

9.3.3 Shill-resistance . 163

9.4 Scalability . 171

Chapter 10. Sniping Fees 173

10.1 Static Price Adjustments . 173

10.2 Dynamic Price Adjustments 175

Chapter 11. Concluding Remarks 179

Bibliography 182

Vita 188

xii

Chapter 1

Introduction

Online auctions have become increasingly popular over the last decade.

The overwhelming majority of online auctions are single-item auctions: mul-

tiple bidding agents bid to win a single item. In contrast, the field of combi-

natorial auction design, which enjoys a rich history in the academic literature,

is concerned with the sale of multiple items in a single auction. In such auc-

tions, agents are not limited to submitting single-item bids; for example, some

combinatorial auctions permit bids on bundles of items. Many different com-

binatorial auctions have been studied in the literature. However, auctions

involving multiple items, and especially auctions involving multiple distinct

items, are not widely encountered in practice. Significant deterrents to the

widespread adoption of combinatorial auctions include increased bid complex-

ity and the computational difficulty of determining a suitable allocation and

pricing of the items.

1.1 Overview

In this dissertation, we study unit-demand auctions. A unit-demand

auction is a restricted kind of combinatorial auction in which an agent is al-

1

lowed to make a separate offer on each of a number of items, with the guarantee

that at most one of these offers will be accepted.

Consider the following concrete example of a real-world auction sce-

nario. The developer of a new high-rise condominium project wishes to sell

all of its units to the public. In this setting, each agent may assign a different

value to each unit, depending on factors such as floor plan, elevation, and view.

An agent in this auction is said to have unit-demand preference if the agent

is seeking to purchase at most one unit. In a unit-demand auction, the bid

of an agent takes the form of a unit-demand preference function: The agent

specifies an offer for each of a subset of items, with the understanding that the

bid can win at most one item. Typical online auction houses do not support

such unit-demand bids. Instead, if many items are to be sold, each is sold in

a separate auction. The resulting sequence of single-item auctions forces an

agent with unit-demand preferences to guess whether or not to bid on each

successive item, since the agent does not know the eventual selling prices of

the items. This guesswork degrades the efficiency of the allocation of items

to agents, where the efficiency of an allocation is defined as the sum, over all

items v, of the value assigned to v by the agent to which v is allocated. The

main reason to contemplate selling many items within a single unit-demand

auction, or within any form of combinatorial auction, is to reduce the need

for such guesswork, thereby enhancing efficiency. By improving efficiency, one

has the potential to improve the quality of the outcome for both buyers and

sellers alike.

2

Most online auction sites are dynamic. A dynamic auction proceeds in

rounds. At the beginning of each round, new bid data (bid revision requests

and new bids) is received, and an update rule is applied to adjust the tentative

outcome (allocation and pricing). The tentative outcome is made public at the

end of each round. Dynamic auctions facilitate value discovery — agents use

their observations of the tentative outcomes published by the auction thus far

to guide their bidding behavior in the following rounds. By enhancing value

discovery, dynamic auctions make it easier to allocate items to the agents who

value them the most. Several important considerations are associated with

designing a dynamic auction. It is important that agents in a dynamic auction

are allowed to flexibly change their bids across rounds. If a dynamic auction is

overly restrictive with respect to bid revision, then there is a significant chance

that agents will limit their participation to the last round of the auction. It is

also desirable to provide agents in a dynamic auction with some strategy-proof

guarantees. As with restricted bid revision, strategic bid considerations can

have the potential to discourage agents from bidding early in the auction.

In the standard sealed-bid unit-demand context, one can apply the

well-known Vickrey-Clarke-Groves (VCG) mechanism [41, 7, 16] to obtain an

auction that is truthful, efficient, and envy-free [42]. In this dissertation,

we analyze variants of the unit-demand auction in both the sealed-bid and

dynamic settings. The first contribution of this dissertation is a variant of the

standard sealed-bid unit-demand auction in which each item is associated with

a “put” option; a put option of an item models an initial tentative allocation

3

and pricing of the item. For the second contribution of this dissertation, we

use the results on the sealed-bid unit-demand auction from the first part to

design a dynamic unit-demand auction that supports arbitrary bid revision.

Below we provide an informal sketch of our proposed auctions. A for-

mal presentation of the auctions is provided in the following chapters of this

dissertation.

1.2 A Sealed-Bid Unit-Demand Auction with Put Op-
tions

In this section, we provide an overview of our proposed sealed-bid unit-

demand auction. A formal presentation of this auction is available starting

at Chapter 3 and continuing upto Chapter 8 wherein we describe the auction

and establish its properties.

A put option is a commitment between two parties — the “holder” of

the put and the “target” of the put. The holder of the put possesses the right

to sell a specified asset to the target of the put at a specified “strike price”,

regardless of the current market prices.

For the first contribution of this dissertation, we consider a new variant

of the classic sealed-bid unit-demand auction in which each item is associated

with a predetermined put option that expires when the auction terminates.

The holder of an item’s put is the seller of the item and the target is an agent

in the auction under the constraint that no agent is the target of more than

one put. We restrict attention to the case of no side-payments — the outcome

4

of the auction consists of an allocation and pricing of the items, and each agent

who is allocated an item pays the item’s price to the seller of the item.

This auction setting finds motivation in several applications, some of

which are described below. As a first application, we introduce the following

“Lease Exchange” problem. Consider a number of leased apartments and a

number of agents who have unit demand preferences for renting the apart-

ments. The lessees of some apartments seek to break their current leases.

We would like to reallocate and reprice the apartments such that each lessor

receives at least the monthly rent being paid by the current lessee for the re-

mainder of the lease term. The lease exchange problem can be modeled as an

instance of a unit-demand auction with put options in the following way. Each

apartment is an item in our auction. The lessor of each apartment holds a

put of the apartment whose target is the current lessee and whose strike price

is equal to the current monthly rent of the apartment. In practice, a lease

involves many other important considerations including varying lease terms

and lessee specific adjustments that have been ignored in our simple example.

Such factors are easily handled by allowing lessors to specify additive amounts

for each option and incorporating these amounts into the bidding based on

the options chosen by each agent. We formulate a suitable solution concept

for this auction setting and we design a truthful auction that implements this

solution concept.

In combinatorial auction design, it is often useful to follow a two-phase

approach e.g. the clock-proxy auction proposed by Ausubel et al. [5]. A second

5

application of our auction is in implementing the second phase of a two-phase

combinatorial auction. In general, our auction is a suitable candidate for

implementing the last round of any dynamic unit-demand auction.

A natural third application of our auction is in the design of a dy-

namic unit-demand auction in which each round is resolved using our proposed

sealed-bid unit-demand auction. In the first round of the dynamic auction, the

seller of each item holds a put whose target is a dummy agent and whose strike

price is equal to the reserve price of the item. In each subsequent round, each

item is associated with a put whose target is the agent who is tentatively allo-

cated to the item from the previous round, and whose strike price is the price

of the item determined by the auction in the previous round. Such a dynamic

auction generalizes the eBay auction to the unit-demand setting.

As previously discussed, in the standard sealed-bid unit-demand con-

text, the VCG mechanism provides an auction that is truthful, efficient, and

envy-free [42]. For an item in our setting, the strike price of the item imposes

a lower bound on the auction price of the item — by exercising the item’s put,

the seller of the item can ensure that the auction price is at least as high as

the strike price. Due to these lower bound constraints on auction prices, we

find that the VCG mechanism is not well-suited for our setting.

Moreover, in our setting, we cannot guarantee the strong properties

that are achieved by the VCG mechanism in the classic setting. For example,

consider an auction instance in which no agent bids on a particular item. The

auction would be forced to allocate the item to the target of its put at its

6

associated strike price even if such an allocation violates the envy-freedom

property of the target. Accordingly, we formulate a new solution concept that

is appropriate for our setting (see Chapter 4).

1.2.1 A two-phase approach.

We construct a two-phase auction that draws on two fundamental tech-

niques, one from the realm of mechanism design for numerical preferences

— the dynamic unit-demand approximate auction of Demange et al. [10] —

and one from the realm of mechanism design for ordinal preferences — the

Top Trading Cycles (TTC) algorithm [37]. In what follows, we will refer to

the dynamic unit-demand approximate auction of Demange et al. as DGS-

approximate. The DGS-approximate auction is an ascending-price auction

that proceeds in rounds. In each round, agents that are not tentatively allo-

cated are consulted in round-robin order and given the opportunity to either

select an item, or pass. If an unallocated agent u selects an item v, the tenta-

tive price of item v is increased by a parameter δ, and the tentative allocation

is updated to reflect that item v is allocated to agent u. The DGS-approximate

algorithm terminates when all of the unallocated agents pass.

Informally, the first phase of our auction corresponds to the following

proxy version of DGS-approximate. We fix an initial tentative allocation and

pricing of the items as follows: each item is allocated to the target of its put

and has a price equal to the strike price of its put. We associate with each agent

u, a proxy agent u′ who employs the following strategy to bid on behalf of u in

7

each round of DGS-approximate: if the tentative price on every item exceeds

u’s offer on the item, then u′ passes; otherwise, u′ selects an item with the

highest utility for u (difference between u’s offer on the item and the tentative

price of the item). On termination of the auction, we identify as “unhappy”

each agent who is allocated to an item, but strictly prefers some other item

at the current prices. It is easy to see that the set of unhappy agents are a

subset of the agents in the initial tentative allocation. We note that in the

limit as δ approaches zero, the proxy based DGS-approximate auction achieves

a relaxed form of efficiency: the auction is efficient if the unit-demand bid of

each unhappy agent is replaced with a single offer on its allocated item equal

to the strike price of the item. The proxy based DGS-approximate auction

also achieves a relaxed form of envy-freedom — the auction is envy-free for all

agents other than the set of unhappy agents.

The second phase of our auction corresponds to a single application

of the TTC algorithm on a suitably defined instance of the house allocation

problem [37, 36]. The second phase of our auction affects only the allocation,

and keeps the item prices unchanged. The proposed two-phase auction com-

putes an outcome in the weak core and achieves the relaxed forms of efficiency

and envy-freedom that are described with respect to the first phase. Alterna-

tively, by employing the TC≺ algorithm of Jaramillo and Manjunath [19] in

the second phase, we achieve Pareto-efficiency of our two-phase auction. The

TC≺ algorithm runs in polynomial time and produces a strategy-proof and

Pareto-efficient outcome for the house allocation problem in the absence of

8

strict preferences.

The two-phase approach proposed above has two shortcomings. Firstly,

the auction is not truthful for any positive value of δ. Secondly, the δ parameter

associated with the DGS-approximate auction leads to a trade-off between

speed and efficiency in the first phase. The running time of the first phase

increases as δ diminishes (it takes O(1/δ) time to increase the item prices by

a constant). Furthermore, for large values of δ, the auction is not efficient,

even in the relaxed form discussed above. We address these shortcomings in

our work. We provide a polynomial time implementation of the first phase

auction (see Section 8.7). By carefully breaking ties, we successfully obtain

a truthful first phase auction (see Lemma 8.4.9). The composition of two

truthful auctions is not necessarily truthful. We successfully show that the

two-phase auction obtained by composing the truthful first and second phases

is also truthful (see Lemma 8.4.10).

1.3 A Dynamic Unit-Demand Auction Supporting Ar-
bitrary Bid Revision

In this section, we provide an overview of our proposed dynamic unit-

demand auction. We use the results of the sealed-bid auction referred to

in Section 1.2 to provide a formal presentation of our dynamic auction in

Chapter 9.

We noted earlier, that in the standard sealed-bid framework, the VCG

mechanism yields a truthful auction with an efficient allocation and envy-free

9

pricing [42]. However, the majority of auction sites, including the popular

site eBay, are dynamic. In a dynamic auction, bidding takes place in multiple

rounds. In each round, new bid data (bid revision requests and new bids)

is received, and an update rule is applied to adjust the tentative outcome

(allocation and pricing). The tentative outcome is made public at the end of

each round. This dynamic price feedback enables agents to concentrate their

value discovery efforts on the most relevant items.

Unit-demand bids are much more expressive than traditional single-

item bids, and bid formulation is correspondingly more complex. Accordingly,

in a dynamic auction, there is a significant chance that a tentatively allocated

agent may wish to revise one or more bid components. If a unit-demand

auction imposes undue constraints on bid revision, or if the semantics of bid

revision introduce additional strategic considerations, then agents may be re-

luctant to submit unit-demand bids or may only choose to submit bids in the

last round of the auction. Such an artificial reduction in the number of bids

directly undercuts the main value propositions of dynamic auctions, namely

value discovery and improved efficiency.

For the second contribution of this dissertation, we specify rules for a

dynamic unit-demand auction that supports arbitrary bid revision. We note

that each round of a dynamic auction is essentially a sealed-bid auction. A

guiding principle that we follow in the design of our auction is to use the

same sealed-bid auction to resolve each round of the dynamic auction. This

principle is natural and also rules out certain trivial solutions, e.g, an auction

10

that postpones all of its processing to the last round. In order to motivate the

design of our auction, we analyze the special case of our auction setting for a

single item. In what follows, we discuss the design of a dynamic single-item

auction supporting arbitrary bid revision.

As a natural first approach, we consider using the well-known Vickrey

auction to resolve each round. However, it is easy to see that such a dynamic

auction discards information on the tentative outcome of each round and is

essentially equivalent to running the Vickrey auction exactly once in the last

round, after all of the bids have been received. Thus, this approach destroys

value discovery, a key feature of dynamic auctions.

Next we consider resolving each round of a dynamic single-item auction

in the style of the California auction [38] formulated by Steiglitz. The Cali-

fornia auction is a dynamic single-item auction that in each round, allocates

the item to the highest bidding agent and posts the second highest bid seen

up to that round as the tentative price of the item. The California auction

is efficient, satisfies envy-freedom, and retains straightforward bidding in an

ex-post Nash equilibrium. The eBay auction is an example of the California

auction. We note that each round of the California auction can be viewed as

an instance of the Vickrey auction with a reserve price, where in each round,

the reserve price of the item is set equal to the tentative price of the item

from the previous round. In order to support arbitrary bid revision, in each

round, we associate the item with the tentatively allocated agent of the previ-

ous round as a reserve agent: if every agent bids less than the tentative price

11

of the item in a round, then the item remains allocated to the reserve agent

in that round.

It is straightforward to see that when arbitrary bid revision is allowed,

the California auction ceases to be efficient. Additionally, truthful bidding is

no longer an ex-post Nash equilibrium of the auction. For example, consider

an instance of the California auction with an item v and agents u0 and u1.

Agent u0 values item v at 20 units in round i and at 10 units in a later round

j. Agent u1 values item v at 19 units in round i and at 20 units in round j.

If agent u1 bids truthfully, then agent u1 wins item v for 19 units in round

j. However, by choosing not to bid in round i and by submitting a bid of 20

units in round j, agent u1 stands to win item v for a lower price of 10 units

in round j. Nonetheless, while the overall auction is not truthful, it can be

shown that each individual round of this auction is truthful.

Sealed-bid auctions exhibit strong properties related to truthfulness

and efficiency; yet, the overwhelming majority of online auctions continue to

be dynamic. The popularity of dynamic auctions suggests that value discov-

ery is one of the most important requirements of online auctions. As we dis-

cussed earlier, value discovery becomes increasingly important with increased

bid complexity. From our discussion of the dynamic single-item auction setting

above, it follows that there is an inherent tradeoff between flexibility of bid

revision and the attainability of desirable properties such as truthfulness and

efficiency. We find that the strong properties of truthfulness and efficiency are

lost when arbitrary bid revision is introduced, even in the restricted single-item

12

case. We generalize this trade-off to the unit-demand setting in the design of

our proposed dynamic auction.

In keeping with our approach of using the same sealed-bid auction to

resolve each round of the dynamic auction, we seek to identify a suitable sealed-

bid unit-demand auction that generalizes the California auction to the unit-

demand setting. In our discussion of the California auction, we observed that

each round of the California auction with arbitrary bid revision is equivalent

to an instance of the Vickrey auction where each item is associated with a

reserve price and a reserve agent. Such a Vickrey auction with reserves can be

viewed as a Vickrey auction in which the item is associated with a put option

held by the item’s seller, with the reserve agent being the target of the put

and the reserve price being the strike price of the put. The put option of the

item gives the seller of the item the right to sell the item to the reserve agent

at the reserve price, regardless of market conditions.

Our proposed dynamic auction proceeds as follows. Each round of our

dynamic auction is resolved using an instance of the sealed-bid unit-demand

auction with put options proposed as a first contribution of this dissertation.

Each item is associated with a put option held by the item’s seller. In the first

round, the target of each item’s put is the seller of the item and the strike

price is the reserve price of the item. In each subsequent round, the target

and strike price of an item’s put are given by the tentatively allocated agent

and the tentative price of the item from the previous round.

Since each round of our dynamic auction is resolved using the sealed-

13

bid unit-demand auction with put options, the outcome of each round satisfies

all of the equilibrium properties associated with the sealed-bid auction (see

Section 4.3). For example, like the sealed-bid auction, each round of our

dynamic auction is truthful (see Section 9.3.1). In Section 9.3 we establish

various properties of our dynamic auction that hold over multiple rounds of

the auction. In the description of our auction, we resolve each round using

the same sealed-bid auction. However, the technical claims of Section 9.3 hold

more generally for dynamic auctions in which each round is resolved using any

sealed-bid auction that satisfies certain subsets of the equilibrium properties

detailed in Section 4.3.

With regard to efficiency, recall that in the absence of bid revision,

the California auction produces an efficient allocation in each round. In the

absence of bid revision, our dynamic auction mimics the behavior of the Cali-

fornia auction, and hence achieves the same efficiency guarantee. When agents

are allowed to revise their bids in an arbitrary manner, such an efficiency guar-

antee cannot be achieved without sacrificing other key properties. Since we

do not wish to sacrifice these properties, we instead achieve the following re-

laxed form of efficiency achieved by the sealed-bid unit-demand auction with

put options — while the current allocation need not be efficient with respect

to the current revision of each bid, it is guaranteed to be efficient with re-

spect to a suitable combination of previous and current revisions. We derive

additional efficiency related properties pertaining to multiple rounds of our

auction in Section 9.3. We show that if an agent is envy-free in a round of

14

the auction, then for any sequence of subsequent rounds in which the agent’s

preference does not change and the agent does not submit a bid revision, the

agent continues to remain envy-free (see Theorem 9.3.1). We also show that

for any sequence of rounds in which an agent is not envy-free, does not sub-

mit a bid revision, and does not change its preference, the auction can only

make progress towards achieving efficiency with respect to the most recent

bid revision of the agent (see Theorem 9.3.2). We believe that our efficiency-

related guarantees are essentially the strongest that can be achieved without

sacrificing other properties.

An important consideration in the design on a dynamic auction is its

vulnerability to “shill” bidding. If the seller of an item can deduce the maxi-

mum price that the agent who is tentatively allocated to the item is willing to

pay for the item, then the seller can extract this price without forfeiting sale

of the item by submitting a shill offer just below the agent’s offer. Dynamic

auctions are known to be particularly susceptible to shill bidding [38]. Thus,

a goal of our dynamic auction is to ensure bid privacy for tentatively allo-

cated agents. We establish bid privacy of an agent u in our dynamic auction

with respect to the grand coalition of all agents in the auction except agent u.

We assume that in each round of our auction, the grand coalition learns the

matching and allocation published in the round, the bid of every agent in the

round except the bid of agent u, and whether agent u submitted a bid in the

round. We show that our dynamic auction is resistant to shilling by such a

grand coalition of agents. Specifically, we show that for any sequence of rounds

15

in which agent u does not submit a bid revision, the grand coalition of agents

cannot shill agent u by more than one unit without risking forfeiture of sale in

one of the rounds (see Theorem 9.3.3). Since the running time of our auction

is independent of the monetary units used, each unit can be considered to be

as low as one cent, thus making our auction highly resistant to shilling.

With respect to scalability, our fast implementation of the proposed dy-

namic auction (see Section 9.4) processes each bidding operation (i.e., new bid

or bid revision) using an amortized constant number of Hungarian [24] aug-

mentations, thereby matching the asymptotic complexity associated with the

sealed-bid auction, which uses a single augmentation to process each new bid.

The worst-case time complexity of such an augmentation is upper bounded

by the cost of running a single-source shortest paths computation on a graph

where the number of nodes is proportional to the number of items, and where

the number of edges is proportional to the total number of “active” bid com-

ponents of the tentatively allocated agents. (A component of a unit-demand

bid is considered active if the associated offer is at least the current price of

the associated item.)

In supporting arbitrary bid revision in the unit-demand setting, our dy-

namic auction successfully achieves the properties that the California auction

achieves with arbitrary revision. For any bid revision operation, our dynamic

auction immediately admits a closest approximation to the revised bid, and

as prices change over rounds, our auction continually admits closer and closer

approximations to the revised bid. An important feature of our auction is

16

that in the special case where bid revisions are “consistent” – such revisions

involve raising all components of the unit-demand bid by the same amount –

the outcome of our auction is equivalent to the celebrated VCG outcome. For

the above mentioned reasons, we believe that our proposed dynamic auction

is an appropriate generalization of the California auction to the unit-demand

setting.

An issue of practical concern in dynamic auctions is “sniping”. Snip-

ing refers to agents holding off on submitting bids until close to the end of

the auction. Such late bidding impedes the value discovery process, thereby

degrading efficiency. We propose a dynamic price adjustment scheme that

encourages agents to bid early in the auction, thus discouraging sniping (see

Chapter 10). With this proposed price adjustment scheme, our auction contin-

ues to satisfy all of the strong theoretical properties established for the basic

version of our auction.

1.4 Related Work

The theory of two-sided matchings has a rich history. In recent work,

Fujishige and Tamura [13] show the existence of a stable matching in a general-

ized many to many matching model with upper and lower bounds on payments.

The model proposed by Fujishige and Tamura generalizes various previous

two-sided matching models; see [13] for a discussion of the relevant literature.

Like much of the prior work in this line of research, the work of Fujishige

and Tamura does not address issues related to incentive compatibility. In

17

applying the theory of two-sided matchings to the design of auctions, a funda-

mental challenge is to identify two-sided matching models where truthfulness

is achievable. Aggarwal et al. [1] address this challenge for a special case of

Fujishige and Tamura’s model with applications to sponsored search auctions.

Specifically, for the unit-demand auction setting with agent and item specific

minimum and maximum prices, Aggarwal et al. provide a truthful auction that

computes an agent optimal stable matching. Similarly, for the setting consid-

ered in the present work, our central focus is to obtain a truthful auction.

In the auction of Aggarwal et al., each agent submits a value and a

maximum price that the agent is willing to pay for each item. We observe

that the algorithm of Aggarwal et al. can be used to implement the first phase

of our auction in the special case where each agent that is the target of a put

values the associated item strictly below than the strike price of the put. This

special case of our auction can be modeled in the framework of Aggarwal et

al. as follows: For each item and agent pair where the agent is the target of

the item’s put, we submit a value of infinity and a maximum price equal to

the strike price of the put; for every other agent and item pair, we submit the

agent’s offer for the item as the value and maximum price; we set the reserve

price of each item to the strike price of its put.

Recall the lease exchange problem that was discussed in Section 1.2. A

lessee may sometimes value his leased apartment below its current rent. In such

cases, the first phase of our auction can be implemented using the algorithm of

Aggarwal et al. [1] as described above. However, it is not difficult to see that

18

a lessee’s value for his leased apartment may in certain cases be higher than

the current rent. Note that the decision to put the apartment in the auction

may not rest with the lessee; in such situations, the lessee may be willing to

pay a higher rent to retain his current apartment. Even in situations where

the lessee decides to put the apartment in the auction, it is not uncommon to

have lessees who are willing to risk winning their current apartments at higher

monthly rates.

Demange et al. [10] present two dynamic unit-demand auctions: an

“exact” auction, which we refer to as DGS-exact, and an “approximate” auc-

tion, which we refer to as DGS-approximate. In each round, the DGS-exact

auction elicits the demand (i.e., set of preferred items at the current prices) of

each agent. If there is an overdemanded set of items, a minimal overdemanded

set is found, and the prices of all items in the set are incremented by one. If no

overdemanded set can be found, the DGS-exact auction terminates and each

item is allocated to an agent who demands it. Observe that the DGS-exact

auction implicitly supports a limited form of bid revision: An agent is free to

revise its unit-demand bid as long as the demands specified in all preceding

rounds remain consistent with the revision.

Recognizing the highly restrictive nature of the form of bid revision per-

mitted by the DGS-exact auction, Demange et al. propose the DGS-approximate

auction. Like DGS-exact, DGS-approximate is an ascending-price auction.

(We remark that Mishra and Parkes [29] describe exact and approximate de-

scending price auctions corresponding to DGS-exact and DGS-approximate.)

19

Agents that are not tentatively allocated are consulted in round-robin order

and given the opportunity to either select an item, or pass. If an unallocated

agent u selects an item v, the tentative price of item v is increased by a pa-

rameter δ, and the tentative allocation is updated to reflect that item v is

allocated to agent u. The DGS-approximate algorithm terminates when all of

the unallocated agents pass. The DGS-approximate auction has several short-

comings in comparison with our dynamic unit-demand auction: the auctioneer

is required to specify a value for the parameter δ; the outcome is guaranteed to

be approximately efficient/truthful, even in the absence of bid revision; there

is a tradeoff between the quality of the approximation and the running time

of the algorithm; and the bid revision framework is restrictive, since it does

not allow for trading of items between tentatively allocated agents.

Gul and Stacchetti [18] present a dynamic auction that generalizes the

DGS-exact auction for the setting in which agents demand bundles of items.

Gul and Stacchetti show that their auction converges to the smallest Walrasian

prices, and that their auction is strategy-proof if the smallest Walrasian prices

correspond to the VCG payments. Gul and Stacchetti’s auction, like the DGS-

exact auction, supports a limited form of bid revision: An agent is free to

revise its bid on a bundle as long as the demands on the bundle specified in

all preceding rounds remain consistent with the revision.

General combinatorial auctions support more complex preferences than

unit-demand preferences, such as preferences for bundles of items. Unfortu-

nately, for many combinatorial auctions, the problem of finding an efficient al-

20

location is NP-hard. The computational intractability of general combinatorial

auctions motivates the study of specialized combinatorial auctions. Rothkopf

et al. discuss special cases (including unit-demand) of combinatorial auctions

where the problem of finding an efficient allocation can be solved in polyno-

mial time [35]. Various generalizations of unit-demand have been considered

in the literature, including work on dynamic auctions for homogeneous [3, 6]

and heterogeneous [4, 9, 28, 34] commodities.

1.5 Organization

We present and analyze our auctions in layers. In the following chap-

ters, we present five unit-demand auctions — the bottom-level auction, the

mid-level auction, the top-level auction, our proposed sealed-bid unit-demand

auction with put options, and our proposed dynamic unit-demand auction.

Each round of the dynamic auction is resolved as an instance of our pro-

posed sealed-bid unit-demand auction. As discussed above, the sealed-bid

unit-demand auction consists of two phases. The first phase, which affects

both the allocation and pricing, is defined in terms of the mid-level auction.

The second phase affects only the tentative allocation, and involves resolving

a single instance of a suitably designed house allocation problem to exchange

items within a certain subset of the tentatively allocated agents.

The design of the first phase of our sealed-bid unit-demand auction

constitutes a key technical component of this dissertation and the associated

analysis is quite involved. For example, it is a major challenge to prove that

21

the first phase of our sealed-bid auction is truthful. A second major challenge

is to justify the correctness of our fast implementation. In order to overcome

these challenges, we carry out a layered analysis of our sealed-bid auction.

We first present and analyze the top-level auction, which is a basic, slow

variant of our sealed-bid auction. The top-level auction, like our sealed-bid

auction, is defined in terms of the mid-level auction. The mid-level auction is

a determinized, proxy version of the bottom-level auction. The bottom-level

auction is dynamic with each round of the auction corresponding to an agent

raising all of its offers by exactly one unit.

Our proposed sealed-bid unit-demand auction and our proposed dy-

namic unit-demand auction are presented in [23] and [22] respectively.

The remainder of this dissertation is organized as follows. In Chapter 2,

we discuss some background material. In Chapter 3, we provide a foundation

for the technical presentation to follow. In Chapter 4, we propose a novel solu-

tion concept for our sealed-bid unit-demand auction. In Chapters 5, 6, and 7,

we present the bottom-level, mid-level, and top-level auctions respectively. In

Chapter 8, we present our proposed sealed-bid unit-demand auction with put

options, establish various properties related to truthfulness, efficiency, and bid

privacy, and discuss a polynomial-time implementation. In Chapter 9, we

present our proposed dynamic auction, establish various properties of the auc-

tion related to truthfulness, efficiency, and shill-resistance, and discuss a fast

implementation. In Chapter 10 we present a scheme that discourages sniping

by encouraging early bidding. In Chapter 11 we offer some concluding remarks

22

and discuss extensions of our dynamic auction.

23

Chapter 2

Background

Game theory [12, 33] is the branch of economics that deals with the

study of agents and their interactions in strategic settings. Game theory has

numerous applications in a wide variety of fields including finance, computer

science, and politics. For instance, in computer science, game theoretic mod-

els are used to solve problems in network congestion, routing, and resource

sharing.

Mechanism design [26, 40] is that branch of game theory that is con-

cerned with implementing a system-wide common goal in the presence of self-

interested agents. In mechanism design, the rules of a game are designed such

that agents are incentivized to not strategize but to play in accordance with

their true preferences. In general, a mechanisms may not be computationally

feasible. For instance, in a combinatorial auction with multiple items being

sold concurrently, the range of possible outcomes is huge, and finding a welfare

maximizing outcome can be NP-hard.

Algorithmic mechanism design is concerned with the tractability of

mechanisms and the design of computationally feasible mechanisms. Algo-

rithmic mechanism design techniques are routinely used in the design of com-

24

binatorial auctions [27, 44]. An auction for a set of items can be viewed as

a game in which bidding agents strategize to win their favorite items at the

lowest prices. Each bidding agent in the auction has some private value for the

items which may not be equal to the public bid that the agent submits to the

auction. A common goal of auction design is to compute a value maximizing

outcome; such an outcome corresponds to an allocation of items to agents who

value them the most.

Below we discuss some common mechanism design terms and definitions

that are used in this dissertation.

2.1 Basic Definitions

Let U = ∪0≤i≤Nui be the set of agents in a game, and let O be the

set of outcomes associated with the game. For any agent ui in U and any

outcome o in O, agent ui’s preference for outcome o is given by a utility function

utility(o, ui). For any pair of outcomes o and o′ in O, agent ui prefers outcome

o over outcome o′ if utility(o, ui) > utility(o′, ui).

A strategy of an agent ui in U is a complete specification of the action

taken by agent ui at every point in the game. For any agent ui in U , the set

Σi represents the set of all strategies that are available to agent ui. A strategy

profile s of the agents in U is a joint strategy (s0, . . . , sN) where si is a strategy

in the set Σi. For any strategy profile s = (s0, . . . , sN), we define s−i as the

strategy profile (s0, . . . , si−1, si+1, . . . , sN) representing the joint strategy of all

agents except the agent ui.

25

A mechanism defines a mapping from the set of strategy profiles Σ0 ×

. . . × ΣN to the set of outcomes O. Recall that we defined the utility of an

agent in a game as a function of the outcome of the game. Alternately, we can

define the utility of an agent in a game as a function of the strategy profile

that determines the outcome. Thus, for any agent ui in U , and any strategy

profile s of the game, we define utility(s, ui) to be equal to utility(o, ui), where

o is the outcome of the mechanism with strategy profile s.

2.2 Solution Concept

A solution concept of a game is a formal prediction of the strategies

that will be played by each agent in the game. Thus, a solution concept pre-

dicts the final outcome of a game. Equilibrium solution concepts are the most

commonly studied solution concepts in mechanism design. An equilibrium

solution concept predicts the strategies that will be adopted by agents in equi-

librium. Some well known equilibrium solution concepts are discussed below.

For the auctions described in this dissertation, our goal is to find dominant

strategy equilibria (see Section 2.2.3 below).

2.2.1 Nash equilibrium

One of the most popular solution concepts is that of a Nash equilib-

rium [32]. A strategy profile is said to be a Nash equilibrium of a game if

each agent maximizes his utility by playing his equilibrium strategy, given

that every other agent in the game is also playing his equilibrium strategy.

26

Let U represent the set of agents in a game. A strategy profile s =

(s0, . . . , si, . . . , s|U |) ∈
∏

0≤i≤|U |Σi is a Nash equilibrium of the game if for any

agent ui in U , and any strategy profile s′ = (s0, . . . , s
′
i, . . . , s|U |) we have

utility(s, ui) ≥ utility(s′, ui).

Finding a Nash equilibrium is associated with making strong assump-

tions on the common knowledge shared amongst agents in the game — each

agent is assumed to know the Nash equilibrium strategies of every other agent

in the game. It was shown by Nash that every finite game is associated with

at least one Nash equilibrium. A game that is associated with more than one

Nash equilibrium runs the risk of agents choosing different equilibria. In a

game with multple Nash equilibria, agents must co-ordinate in order to choose

the same Nash equilibrium.

2.2.2 Bayesian-Nash equilibrium

In a Bayesian-Nash equilibrium, an agent is assumed to know the dis-

tribution of preferences for all other agents. With these assumptions on agent

preferences, in a Bayesian-Nash equilibrium, an agent maximizes his expected

utility by playing his equilibrium strategy. A Bayesian-Nash equilibrium makes

fewer assumptions than a Nash equilibrium on the common knowledge shared

amongst agents, but is less robust than the dominant strategy equilibrium

described in the following section.

27

2.2.3 Dominant strategy equilibrium

In a dominant strategy equilibrium, each agent maximizes his utility

by playing his dominant equilibrium strategy, irrespective of the strategies of

the other agents.

Let U be the set of agents in a game and let s = (s0, . . . , si, . . . , s|U |) be

a strategy profile in
∏

0≤i≤|U |Σi. We say si is a dominant strategy for agent

ui if for any strategy profile s′ = (s′0, . . . , si, . . . , s
′
|U |) in

∏
0≤i≤|U |Σi, we have

utility(s, ui) ≥ utility(s′, ui)

Unlike a Nash equilibrium, a dominant strategy equilibrium makes no

assumptions regarding an agent’s knowledge of the strategies of the other

agents in a game. Thus, a dominant strategy equilibrium is a stronger solution

concept and is more desirable in practice than a Nash equilibrium.

2.3 Quasi-Linear Mechanism

An agent is said to have quasi-linear preferences if its utility can be

expressed as v(o, ui) − p(o, ui), where v(o, ui) represents agent ui’s valuation

for outcome o, and p(o, ui) represents the payment made by the agent to the

mechanism. Thus, a quasi-linear mechanism defines an outcome rule and a

payment rule. A mechanism where agents have quasi-linear preferences is a

quasi-linear mechanism.

28

2.4 Social Choice Function

As discussed earlier, mechanism design seeks to compute a common

social choice in the presence of self-interested agents. By definition, a mecha-

nism maps a strategy profile to an outcome. A social choice function maps the

private preferences of agents to an outcome. We say that a mechanism imple-

ments a social choice if, in equilibrium (Nash equilibrium, dominant strategy

equilibrium, etc), the mechanism computes the outcome corresponding to the

social choice function. In general, designing a mechanism that computes a de-

sired social choice is difficult because agents can choose to misrepresent their

preferences. Thus, the goal of mechanism design is to design strategies and an

outcome rule such that, despite agents being self-interested, the mechanism

is successful in computing the desired social choice. Below we discuss some

important properties of social choice functions.

2.4.1 Allocative efficiency

A social choice function is allocatively efficient if it produces a value

maximizing outcome; i.e. an outcome with value

max
o∈O

∑
ui∈U

v(o, ui)

A mechanism is allocatively efficient if it implements an efficient social choice

function.

29

2.4.2 Pareto efficiency

A social choice function is Pareto efficient if its outcome is such that no

other outcome is strictly preferred (in terms of utility) by at least one agent

and weakly preferred by all other agents. Formally, a social choice function is

Pareto efficient if there does not exists an agent ui and an outcome o in the

set of outcomes O such that utility(o, ui) > utility(o∗, ui) and

utility(o, uj) ≥ utility(o∗, uj) ∀uj ∈ U \ ui

where o∗ is the outcome associated with the social choice function. A mech-

anism is said to be Pareto efficient if it implements a Pareto efficient social

choice function.

2.4.2.1 Weak Pareto efficiency

A social choice function is weakly Pareto efficient if there does not exists

an agent ui and an outcome o in the set of outcomes O such that

utility(o, ui) > utility(o∗, ui) ∀ui ∈ U

where o∗ is the outcome associated with the social choice function. A mech-

anism is said to be weakly Pareto efficient if it implements a weakly Pareto

efficient social choice function. In other words, a mechanism is weakly Pareto

efficient its outcome is such that no other outcome is strictly preferred by all

agents.

30

2.4.2.2 The core and the weak core

The core of a game is the set of all Pareto-efficient outcomes. Consider

a game with a set of agents U and a set of outcomes O.

The weak core is the set of all outcomes o∗ in O such that for any subset

of agents U0 of U , there does not exists an outcome o in O for which

utility(o, ui) > utility(o∗, ui)∀ui ∈ U0

In other words, an outcome is in the weak core if no other outcome is strictly

preferred by all members of any coalition.

2.4.3 Budget balance

A social choice function is budget balanced if there are no net trans-

fers either out of or into the system; that is, if the social choice function

computes an outcome o, then
∑

ui∈U p(o, ui) = 0. A social choice function

is weakly budget balanced if there are no net transfers out of the system, i.e∑
ui∈U p(o, ui) ≥ 0. A mechanism is (weakly) budget balanced if it implements

a (weakly) budget balanced social choice function.

We do not discuss the budget balance property in the following chapters

of this dissertation. However, we note that all of the auctions presented in this

dissertation are weakly budget balanced.

31

2.5 Direct-Revelation Mechanism

In a direct-revelation mechanism, agent strategies are limited to di-

rectly reporting their preferences to the mechanism. A single-item auction in

which agents submit bids to win the item is an example of a direct-revelation

mechanism. Note however, that in a direct-revelation mechanism, agents can

choose to strategically misreport their preferences.

2.6 Incentive-Compatibility

A direct-revelation mechanism is incentive-compatible if the equilib-

rium strategy (Nash, Bayesian-Nash, dominant etc.) of each agent is to report

their true preferences. A strategy proof or truthful mechanism is a mechanism

that is incentive-compatible in dominant strategy equilibrium.

2.7 Revelation Principle

According to the revelation principle [14, 15, 30, 31], any mechanism

that implements a particular social choice function under equilibrium has an

equivalent incentive-compatible direct-revelation mechanism that implements

the same social choice function.

The revelation principle has powerful implications in mechanism de-

sign — it is usually sufficient to restrict attention to the study of incentive-

compatible direct-revelation mechanisms.

32

2.8 Voluntary Participation

A mechanism satisfies voluntary participation or individual-rationality

if the expected utility of an agent from participating in the mechanism is at

least as high as the agent’s utility from not participating in the mechanism.

2.9 Vickrey-Clarke-Groves Mechanisms

The Vickrey-Clarke-Groves mechanisms, also referred to as the VCG

mechanisms, are a general class of direct-revelation mechanisms proposed by

Vickrey [41], Clarke [7], and Groves [16] for agents with quasi-linear prefer-

ences. The VCG mechanisms are the only direct-revelation mechanisms that

are strategy-proof and efficient [15], and the only efficient, Bayesian Nash

mechanisms [21, 43].

Consider a direct-revelation mechanism with a set of agents U . Let

s denote the strategy profile reported by the agents in U , and let o be the

outcome of the mechanism in response to strategy profile s. We know that

the agents in U have quasi-linear preferences; it follows that the utility of any

agent ui in U is of the following form

utility(o, ui) = v(o, ui)− p(o, ui)

where v(o, ui) is the valuation of agent ui for outcome o, and p(o, ui) is the

payment made by agent ui to the mechanism.

33

The VCG outcome is the outcome o∗ in O such that

∑
ui∈U

v(o∗, ui)

is maximized.

The VCG price paid by an agent ui is given by

p(o∗, ui) = hi(s−i)−
∑

,j 6=i,uj∈U

v(o∗, uj)

where o∗ is the VCG outcome, and hi is a function of the reported strategies

of all agents except the agent ui. The family of VCG mechanisms arise from

the different choices of function hi.

2.9.1 The Clarke pivot pricing rule

The Clarke pivot pricing rule is a specific VCG pricing rule that achieves

individual rationality and weak budget-balance under quite general conditions.

A VCG mechanism with the Clarke pivot pricing rule is referred to as the

pivotal mechanism.

In a pivotal mechanism, the term hi(s−i) in the VCG pricing for an

agent ui is given by

hi(s−i) =
∑

uj∈U\ui

v(o∗−i, uj)

where o∗−i is the VCG outcome when agent ui is removed from the mechanism.

Informally, each agent in the Pivotal mechanism is charged the opportunity

cost introduced by the agent to the remaining agents in the mechanism. exce

34

2.10 The Vickrey auction

The Vickrey auction [41] is a well-known sealed-bid single-item auction.

The Vickrey auction is the special case of the pivotal mechanism for a single

item. If ui and uj are agents with the highest and second highest bids of bi

and bj respectively, then in the Pivotal mechanism, the item is sold to agent

ui for a price equal to bj. Since the price of the item is equal to the second

highest bid, the Vickrey auction is also referred to as the the “second-price”

auction.

35

Chapter 3

Preliminaries

In this chapter, we present definitions and notation that will be useful

through the remainder of this dissertation. We introduce a number of basic

types and their auxiliary functions, and present a number of associated pre-

liminary lemmas. The results of Sections 3.5 and 3.6 follow from standard

results in the literature [17, 42]; the purpose of including these sections is to

provide a self-contained presentation.

3.1 Agents and Items

We refer to the bidders in our auction as agents. In order to break

ties among agents, we identify each agent with a binary string. We define the

maximum over an empty set of agents as the empty agent ε.

An item v in our auction is a pair where the first component is a binary

string identifier, denoted id(v), and the second component is an integer lower

bound on the price of v, denoted min(v). We allow the price of an item in our

auction to be negative in order to support procurement-type auctions.

36

3.2 Bid-Graphs

A bid-graph encapsulates a set of items and a set of agents having

unit-demand bids on the items.

Formally, a bid-graph is an edge-weighted complete bipartite graph

G = (U, V, w), where U is a set of agents, V is a set of items, w is a function

from the set U × V to the set of integers, and the following conditions are

satisfied:

1. the cardinality of U is at least the cardinality of V

2. for any agent u in U , agent u is nonempty

3. for any pair of distinct items v and v′ in V , we have id(v) 6= id(v′).

For any bid-graph (U, V, w), the function w encodes the unit-demand

bids of the agents in U . In general, an agent’s unit-demand bid may not include

an offer for every item in the bid-graph. In this dissertation, we assume that

an agent’s unit-demand bid includes an integer offer for every item in the big-

graph, and we choose to represent the absence of an offer by a negative integer

that is sufficiently large in magnitude.

For any set of items V , we define a (unit-demand) bid on V as a function

that maps each item in V to an integer. In the definitions that follow, let

G = (U, V, w) be a bid-graph. We define bids(G) as the set of all possible bids

on the set V . For any agent u in U , we define bid(G, u) as the bid β in bids(G)

such that β(v) = w(u, v) for any item v in V .

37

For any nonempty agent u not in U , and any bid β in bids(G), we define

add(G, u, β) as the bid-graph G′ = (U + u, V, w′) where bid(G′, u) = β and

bid(G′, u′) = bid(G, u′) for any agent u′ in U . For any nonempty agent u not in

U , any item v in V , and any integer z, we define add(G, u, v, z) as add(G, u, β),

where β is the bid in bids(G) such that β(v) = z and β(v′) = min(v′)− 1 for

any item v′ in V − v.

For any any agent u in U , and any integer z, we define shift(G, u, z) as

the bid-graph (U, V, w′) where w′(u, v) = w(u, v) + z for any item v in V , and

w′(u′, v) = w(u′, v) for any agent u′ in U − u and any item v in V .

For any any agent u in U , and any bid β in bids(G), we define subst(G, u, β)

as the bid-graph G′ = (U, V, w′) where bid(G′, u) = β, and bid(G′, u′) =

bid(G, u′) for any agent u′ in U − u.

3.3 Configurations

A configuration encapsulates a bid-graph along with an associated out-

come (allocation and pricing of the items).

A configuration χ is a triple (G,M,Φ), where G = (U, V, w) is a bid-

graph, M is a maximum cardinality matching (MCM) ofG, and Φ is a potential

function that maps each item v in V to an integer Φ(v) such that Φ(v) ≥

min(v). In the definitions that follow, let χ = (G,M,Φ) be a configuration

where G = (U, V, w).

The function agents(χ) is the set U and the function items(χ) is the

38

set V . We say χ is efficient if M is a maximum weight MCM (MWMCM) of

G.

We define matched(χ) as the subset of agents in U that are matched

in M , and we define unmatched(χ) as the set of agents in U \ matched(χ).

For any item v in V , we define match(χ, v) as the agent u in U such that

the edge (u, v) belongs to M . For any agent u in U , we define gap(χ, u) as

w(u, v)− Φ(v) if match(χ, v) = u, and as zero otherwise.

We say that an agent u in U satisfies voluntary participation if gap(χ, u)

is nonnegative, and that u satisfies envy-freedom if gap(χ, u) ≥ w(u, v)−Φ(v)

for all items v in V . We say χ is Walrasian if every agent u in U satisfies

voluntary participation and envy-freedom.

For any item v in V , we define amount(χ, v) as w(match(χ, v), v),

and we define amount(χ) as the function that maps each item v in V to

amount(χ, v). We define positive(χ) as the set of agents u in U such that

gap(χ, u) > 0 and we define the set nonpositive(χ) as U \ positive(χ).

For any bid β in bids(G), we define max-gap(χ, β) as the maximum

over all items v in V , of β(v) − Φ(v). For any bid β in bids(G), we define

pseudo-demand(χ, β) as the set of all items v in V such that β(v) − Φ(v) =

max-gap(χ, β).

For any bid β in bids(G), we define demand(χ, β) as pseudo-demand(χ, β)

if max-gap(χ, β) ≥ 0, and as the empty set ∅ otherwise. For any item v in V ,

we define bids(χ, v) as the set of all bids β in bids(G) such that v belongs to

39

demand(χ, β).

For any agent u in U , we define max-gap(χ, u) as max-gap(χ, bid(G, u)),

we define pseudo-demand(χ, u) as pseudo-demand(χ, bid(G, u)), and we define

demand(χ, u) as demand(χ, bid(G, u)).

For any nonempty agent u not in U , and any bid β in bids(G), we

define add(χ, u, β) as the configuration (add(G, u, β),M,Φ). Similarly, for

any nonempty agent u not in U , any item v in V , and any integer z, we define

add(χ, u, v, z) as the configuration (add(G, u, v, z),M,Φ).

For any agent u in U and any bid β in bids(G), we denote the con-

figuration (subst(G, u, β),M,Φ) by subst(χ, u, β). For any agent u in U and

any nonempty agent u′ not in U , we define subst(χ, u, u′) as the configuration

obtained from χ by replacing all occurrences of agent u with agent u′.

For any agent u in U and any integer z, we define shift(χ, u, z) as the

configuration subst(χ, u, β) where β is the bid in bids(G) such that β(v) =

w(u, v) + 1 for any item v in V .

We now characterize a suitable directed graph on χ and formulate a

reachability condition on this directed graph. We define digraph(χ) as the

directed graph (U ∪ V,A), where A is the set of arcs that includes for each

edge (u, v) in U × V such that w(u, v) ≥ w(u, v′) for every item v′ in V − v:

1. an arc (v, u) if edge (u, v) is in M

2. an arc (u, v) if edge (u, v) is not in M .

40

For any agent u in unmatched(χ), we define items(χ, u) as the set of

items v in V such that there exists a directed path from agent u to item v in

digraph(χ). In the terminology of the Hungarian algorithm, the set items(χ, u)

is the set of items reachable from agent u in the Hungarian tree rooted at u.

3.4 Agent Colors

We identify special classes of configurations (e.g. Walrasian configura-

tions) by adopting a suitable coloring scheme of the agents. Every agent in a

configuration is colored white, gray, or black according to certain rules. Infor-

mally, a non-black agent satisfies voluntary participation and envy-freedom,

and a white agent satisfies a certain tie-breaking convention described below.

For any configuration χ, the color of any agent u in agents(χ) is de-

termined as follows. We first consider the case where agent u belongs to

matched(χ). In this case, let v be the item such that match(χ, v) = u. If v

does not belong to pseudo-demand(χ, u), then agent u is black. If v belongs

to demand(χ, u), then agent u is white. Otherwise, agent u is gray. Next,

we consider the case where agent u belongs to unmatched(χ). In this case,

if max-gap(χ, u) > 0, then agent u is black. If max-gap(χ, u) = 0, and there

exists some item v in items(χ, u) such that either match(χ, v) is non-white, or

match(χ, v) < u and gap(χ,match(χ, v)) = 0, then agent u is gray. Otherwise,

agent u is white.

We define white(χ) as the set of white agents in χ. The sets gray(χ),

black(χ), nonblack(χ), and nonwhite(χ) are defined similarly.

41

1. u belongs to white(χ), or

2. u belongs to nonwhite(χ) and for all items v in items(χ), we have β(v) <

Φ(v)− 1, where β = bid(G, u).

3.5 Walrasian Configurations

One of the most common notions of equilibrium in auctions is the

Walrasian equilibrium. In Section 3.3, we defined a Walrasian configurations

as a configuration in which every agent satisfies voluntary participation and

envy-freedom. In this section, we formalize the notion of Walrasian configu-

rations in terms of agent colors.

A configuration χ = (G,M,Φ) is Walrasian if matched(χ) ⊆ white(χ)

and unmatched(χ) ⊆ nonblack(χ). A bid-graph G is Walrasian if it admits a

Walrasian configuration of the form (G,M,Φ).

The following is a list of definitions and lemmas related to Walrasian

configurations.

Lemma 3.5.1. For any bid-graph G′ of the form add(G, u, β), if bid-graph G

is Walrasian then the bid-graph G′ is Walrasian.

Proof. Since G is Walrasian, there exists some Walrasian configuration of the

form (G,M,Φ). It follows that M is an MWMCM of G, and thus there exists

some MWMCM M ′ of G′. Koopmans and Beckmann [20] and Leonard [25]

show the existence of prices satisfying the Walrasian properties in the unit-

42

demand setting; thus, there exists some Walrasian configuration of the form

(G′,M ′,Φ′).

Lemma 3.5.2. If χ = (G,M,Φ) is a Walrasian configuration, then M is an

MWMCM of G.

Proof. By definition, every agent in matched(χ) is white; thus for every item

v in items(χ), we have w(match(χ, v), v) ≥ Φ(v). Similarly, for every agent u

in unmatched(χ) and every item v in items(χ), we have w((u, v)) ≤ Φ(v). It

follows that any MCM of G with higher weight than M must match the set

of agents in matched(χ).

Suppose there exists an MCMM ′ ofG that matches agents in matched(χ)

and has higher weight than M . Since every agent in matched(χ) is white, it

follows that w((u, v))−Φ(v) ≥ w((u, v′))−Φ(v′), where v and v′ are the items

matched to u in M and M ′ respectively. Thus,
∑

(u,v)∈M

w((u, v)) − Φ(v) ≥∑
(u′,v)∈M ′

w((u′, v))− Φ(v). Thus, M ′ cannot be of higher weight than M .

[Definition] For any Walrasian bid-graph G, we define potentials(G) as

the set of all potential functions Φ such that there exists a Walrasian config-

uration of the form (G,M,Φ).

Lemma 3.5.3. Let (G,M,Φ) be a Walrasian configuration where bid-graph

G = (U, V, w), and let M∗ be an MWMCM of G. Let P be a path in the

undirected graph (U ∪ V,M ⊕M∗). Let A denote the set of edges of P that

43

are in M and let B denote the set of edges of P that are in M∗. Then the

configuration (G,M − A+B,Φ) is Walrasian.

Proof. Let path P be defined by the sequence of vertices u0, v0, u1, v1, ···vk−1, uk.

We use the fact that (G,M,Φ) is Walrasian to derive the following equations.

w((uk, vk−1)) ≥ Φ(vk−1), (3.1)

w((u0, v0)) ≤ Φ(v0), (3.2)

w((ui, vi−1))− Φ(vi−1) ≥ w((ui, vi))− Φ(vi) (3.3)

for all i such that 0 < i < k. Rewriting inequalities 3.1 and 3.2 as w((uk, vk−1))−

Φ(vk−1) ≥ 0 and 0 ≥ w((u0, v0)) − Φ(v0), respectively, and then adding the

latter inequalities to those obtained from 3.3, we find that the potential terms

all cancel out, and we are left with the inequality
∑

0<i≤k w((ui, vi−1)) ≥∑
0≤i<k w((ui, vi)). Since M and M∗ are both MWMCMs, the above inequality

is tight. It follows that all of the inequalities we summed in order to obtain

the above inequality are also tight. In other words, we have

w((uk, vk−1)) = Φ(vk−1), (3.4)

w((u0, v0)) = Φ(v0), (3.5)

and

w((ui, vi−1))− Φ(vi−1) = w((ui, vi))− Φ(vi) (3.6)

for all i such that 0 < i < k. Armed with the above equations, we are now

ready to establish that (G,M ′,Φ) is Walrasian.

44

First we show that for all edges e = (u, v) in M ′ \M , w(e) ≥ Φ(v). The

latter claim follows immediately from Equations 3.5 and 3.6. Next we show

that for all nodes v such that (uk, v) belongs to M ⊕M∗, w((uk, v)) ≤ Φ(v).

(Notice that uk is the only node that is matched under M and unmatched

under M ′.) For v = vk−1, the desired inequality holds tightly by Equa-

tion 3.4. For v 6= vk−1, Walrasian property of (G,M,Φ) implies w((uk, vk−1))−

Φ(vk−1) ≥ w((uk, v)) − Φ(v), so the desired inequality follows from Equa-

tion 3.4.

Finally, we show that for any edges e = (u, v) and e′ = (u, v′) such

that (u, v) belongs to M ′, w(e) − Φ(v) ≥ w(e′) − Φ(v′). We consider three

subcases. In the first subcase, assume that u is not equal to one of the ui’s,

0 ≤ i ≤ k. In this subcase, the claim follows from the Walrasian property of

(G,M,Φ). In the second subcase, assume that u = u0, which is unmatched

in M and matched via edge e = (u0, v0) in M ′. Let edge e′ = (u0, v
′) belong

to E, where v′ 6= v0. Then Equation 3.5 implies that w(e) − Φ(v0) = 0,

and the Walrasian property of (G,M,Φ) implies that w(e′) ≤ Φ(v′); hence

w(e) − Φ(v0) ≥ w(e′) − Φ(v′), as required. In the third subcase, assume that

u = ui for some i such that 0 < i < k. (We do not need to consider u = uk

because uk is unmatched in M ′.) Notice that ui is matched in M ′ via edge

e = (ui, vi). Let edge e′ = (ui, v
′) belong to E, where v′ 6= vi. If v′ = vi−1, the

required inequality w(e)−Φ(vi) ≥ w(e′)−Φ(v′) holds tightly by Equation 3.6.

Otherwise, Equation 3.6 implies that w(e) − Φ(vi) = w((ui, vi−1)) − Φ(vi−1),

the Walrasian property of (G,M,Φ) implies that w((ui, vi−1)) − Φ(vi−1) ≥

45

w(e′)−Φ(v′), and hence the required inequality w(e)−Φ(vi) ≥ w(e′)−Φ(v′)

holds.

Lemma 3.5.4. Let (G,M,Φ) be a Walrasian configuration where bid-graph

G = (U, V, w), and let M∗ be an MWMCM of G. Let C be a cycle in the

undirected graph (U ∪ V,M ⊕M∗). Let A denote the set of edges of C that

are in M and let B denote the set of edges of C that are in M∗. Then the

configuration (G,M − A+B,Φ) is Walrasian.

Proof. The proof is similar to that of Lemma 3.5.3.

Lemma 3.5.5. For any Walrasian bid-graph G, any MWMCM M of G, and

any potential function Φ in potentials(G), the configuration (G,M,Φ) is Wal-

rasian.

Proof. Let M denote the set of all MWMCMs M ′ of G such that (G,M ′,Φ)

is Walrasian. Since Φ is in potentials(G), the set M is guaranteed to be

nonempty. Fix an MWMCM M∗ in M such that |M \M∗| is minimized. It

is sufficient to prove that M = M∗. We prove this by contradiction. Assume

that |M \M∗| is equal to some positive integer k. Consider the undirected

graph G′ = (U ∪V,M ⊕M∗). Since no vertex in G′ has degree greater than 2,

it can be partitioned into isolated vertices, simple paths of positive length, and

simple cycles of positive length. Since k > 0, we are assured that G′ contains

either a simple path of positive length or a simple cycle of positive length. We

consider these two cases separately.

46

• Graph G′ contains a simple path P of positive length

Let A and B denote the sets of edges of P that are in M∗ and M

respectively. By Lemma3.5.3, the configuration (G,M ′,Φ) is Walrasian,

where M ′ = M∗ − A + B. Furthermore, |M \ M ′| = k − |A| < k,

contradicting the definition of M∗.

• Graph G′ contains a simple cycle C of positive length

Let A and B denote the sets of edges of P that are in M∗ and M

respectively. By Lemma 3.5.4, the configuration (G,M ′,Φ) is Walrasian,

where M ′ = M∗ − A + B. Furthermore, |M \ M ′| = k − |A| < k,

contradicting the definition of M∗.

Lemma 3.5.6. For any Walrasian bid-graph G, the functions in potentials(G)

form a lattice with meet and join operations given by pointwise minimum and

maximum, respectively.

Proof. LetG = (U, V, w) and let Φ0 and Φ1 be potential functions in potentials(G).

Let Φ and Φ′ be potential functions such that for any item v in V , Φ(v) =

min(Φ0(v),Φ1(v)) and Φ′(v) = max(Φ0(v),Φ1(v)). We are required to show

that configurations (G,M,Φ) and (G,M,Φ′) are Walrasian. In what follows,

we will show that (G,M,Φ) is Walrasian. By a similar argument, it follows

that (G,M,Φ′) is also Walrasian.

47

Observe that (G,M,Φ0) and (G,M,Φ1) are Walrasian; thus, for any

edge (u, v) in M , we have w((u, v)) ≥ Φ0(v) and w((u, v)) ≥ Φ1(v); thus

w((u, v)) ≥ Φ(v). Similarly, for any agent u unmatched in M and any item v

in V , we have w((u, v)) ≤ Φ0(v) and w((u, v)) ≤ Φ1(v); thus w((u, v)) ≤ Φ(v).

It now remains to be shown the following condition: for any edge (u, v) in M

and any item v′ in V − v, we have w((u, v)) − Φ(v) ≥ w((u, v′)) − Φ(v′). We

accomplish this by showing that the condition holds when Φ(v) = Φ0(v). It

follows by symmetry that the condition also holds when Φ(v) = Φ1(v). Fix an

arbitrary item v′ in V , and consider the following two cases.

• Φ(v′) = Φ0(v′).

Since (G,M,Φ0) is Walrasian, we have w((u, v))− Φ0(v) ≥ w((u, v′))−

Φ0(v′); using Φ(v) = Φ0(v) and Φ(v′) = Φ0(v′), we obtain the desired

inequality w((u, v))− Φ(v) ≥ w((u, v′))− Φ(v′).

• Φ(v′) = Φ1(v′)

By the Walrasian property of configuration (G,M,Φ1), we have w((u, v))−

Φ1(v) ≥ w((u, v′))−Φ1(v′). Since Φ(v) = Φ0(v), we have Φ0(v) ≤ Φ1(v).

Thus w((u, v)) − Φ0(v) ≥ w((u, v′)) − Φ1(v′); using Φ(v) = Φ0(v) and

Φ(v′) = Φ1(v′), we obtain the desired inequality w((u, v)) − Φ(v) ≥

w((u, v′))− Φ(v′).

[Definition] For any Walrasian bid-graph G, we define max-potential(G)

as the maximum function in potentials(G), and we define min-potential(G) as

48

the maximum function in potentials(G); the existence of these functions is

guaranteed by Lemma 3.5.6.

Lemma 3.5.7. For any bid-graph G′ of the form add(G, u, v, z) where bid-

graph G is Walrasian, there exists a unique integer z0 such that the following

conditions hold:

• If z > z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u

belongs to matched(χ).

• If z < z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u

belongs to unmatched(χ).

• If z = z0, then there exist Walrasian configurations χ = (G′,M,Φ) and

χ′ = (G′,M ′,Φ) such that agent u belongs to matched(χ)∩unmatched(χ′).

Proof. Let Φ = max-potential(G) and let M be some MWMCM of G. Since

G is Walrasian, (G,M,Φ) is Walrasian. Thus the weight of any MWMCM of

G is at least equal to
∑

v∈G Φ(v). By Lemma 3.5.1, G′ is Walrasian and by

Lemma 3.5.5, any configuration of the form (G′,M ′,Φ′) is Walrasian, where

M ′ is an MWMCM of G′ and Φ′ is in potentials(G′). It is easy to see that when

z < Φ(v), (G′,M,Φ) is Walrasian and thus u is unmatched in every Walrasian

configuration of G′. We now consider the case when z = Φ(v). There exists

some item v′ in items(χ, u) such that gap(χ,match(χ, v′)) = 0 as otherwise

Φ(v′′) can be incremented for each item v′′ in items(χ, u). In this case, by

Lemma 3.5.3, u is matched in some Walrasian configuration of G′. Further,

49

it is easy to see that if u is matched in some Walrasian configuration χ of

G′, then u is matched in every Walrasian configuration of shift(χ, u, 1). Thus,

there exists a unique z0 = max-potential(v) with the desired property.

[Definition] For any Walrasian bid-graph G = (U, V, w) and any item

v in V , we define threshold(G, v) as the unique integer z0 of Lemma 3.5.7,

and we define threshold(G) as the function that maps each item v in V to

threshold(G, v).

Lemma 3.5.8. For any Walrasian bid-graph G, we have threshold(G) =

max-potential(G).

Proof. In the proof of Lemma 3.5.7, we showed that for any item v in G,

threshold(G, v) = max-potential(v).

For any Walrasian bid-graph G = (U, V, w), we define price(G) as

min-potential(G), and for any item v in V , we define price(G, v) as Φ(v),

where Φ is equal to min-potential(G).

Lemma 3.5.9. For any bid-graph G′ of the form add(G, u, β) where bid-graph

G = (U, V, w) is Walrasian, if β(v) ≤ price(G, v) for every item v in V , then

price(G′) = price(G).

Proof. Let M be an MWMCM of G. By Lemma 3.5.5, χ = (G,M, price(G))

is Walrasian and thus the weight of M is at least
∑

v∈G price(G, v). Since

β(v) ≤ price(G, v) for every item v in V , M is an MWMCM of G′. It follows

that (G′,M, price(G)) is a Walrasian configuration. Further, if there exists a

50

potential function Φ in potentials(G′) such that Φ < price(G), then (G,M,Φ)

is Walrasian; this contradicts the definition of price(G). Thus, price(G′) =

price(G).

Lemma 3.5.10. For any Walrasian configuration χ = (G,M,Φ), we have

price(G) ≤ threshold(G) ≤ amount(χ).

Proof. By definition, price(G) = min-potential(G), and by Lemma 3.5.8,

we have threshold(G) = max-potential(G); thus price(G) ≤ threshold(G).

Since threshold(G) = max-potential(G), it follows from Lemma 3.5.5 that

(G,M, threshold(G)) is Walrasian. By the definition of Walrasian configura-

tions, it follows that amount(χ) ≥ threshold(G).

Lemma 3.5.11. Let G′ be a bid-graph of the form add(G, u, β) where bid-

graph G = (U, V, w) is Walrasian. Let ∆ denote the maximum over all items

v in V , of β(v) − threshold(G, v), and let V ′ denote the set of all items v in

V such that β(v)− threshold(G, v) = ∆. Then the following conditions hold:

• If ∆ > 0 and configuration χ = (G′,M,Φ) is Walrasian, then match(χ, v) =

u for some item v in V ′, and price(G′, v) = threshold(G, v) for for every

item v in V ′.

• If ∆ < 0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u is

unmatched in M .

• If ∆ = 0, then there exist Walrasian configurations χ = (G′,M,Φ) and

χ′ = (G′,M ′,Φ) such that agent u belongs to matched(χ)∩unmatched(χ′).

51

• If ∆ ≤ 0, then threshold(G′) = threshold(G).

Proof. Let M be an MWMCM of G and let Φ = max-potential(G). By

Lemma 3.5.5, χ0 = (G,M,Φ) is Walrasian; thus, by definition, the weight

of M is at least
∑

v∈G Φ(v). We consider the following cases:

• ∆ < 0

In this case, β(v) < Φ(v) for each item v in G, and thus, M is an

MWMCM of G′. Thus, (G′,M,Φ) is Walrasian, and it follows by the

definition of Walrasian configurations that u is unmatched in M .

• ∆ ≤ 0

By the same argument as in the previous case, (G′,M,Φ) is Walrasian.

Further, if there exists a potential function Φ′ in potentials(G′) such

that Φ′ > max-potential(G), then (G,M,Φ′) is Walrasian; this con-

tradicts the definition of max-potential(G). Thus, max-potential(G′) =

max-potential(G). By Lemma 3.5.8, max-potential(G) = threshold(G)

and max-potential(G′) = threshold(G′); thus threshold(G) = threshold(G′).

• ∆ ≥ 0

It is easy to see that there exists at least one item v in the set items(χ0, u)

for which gap(χ0,match(χ0, v)) = 0 as otherwise the potential asso-

ciated with each item in items(χ0, u) can be incremented while χ re-

mains Walrasian, violating the definition of max-potential(G). When

52

∆ ≥ 0, v belongs to items(χ0, u); thus there exists an augmenting path

in digraph(χ0). It follows that u belongs to some MWMCM of G′.

When ∆ = 0, it is easy to see that (G′,M,Φ) is Walrasian; thus, Φ is in

potentials(G′). By Lemma 3.5.5, (G′,M, price(G′)) is Walrasian. How-

ever, we know that u is not matched in M . It follows that price(G′, v) ≥

Φ(v) for each item v in V ′ in order to satisfy the Walrasian property of

(G′,M, price(G′)). Thus price(G′, v) = Φ(v) = threshold(G, v) for each

item v in V ′. Above we showed that when ∆ = 0, u is matched in some

MWMCM M ′ of G′; thus (G′,M ′, price(G′)) is Walrasian. It is easy to

see that when ∆ > 0, (G′,M ′, price(G′)) remains Walrasian and thus,

price(G′, v) = threshold(G, v) for each item v in V ′.

3.6 White Configurations

In designing our auction, we are interested in configurations, and partic-

ularly Walrasian configurations, that adhere to a specific tie-breaking scheme

that ensures that a unique set of agents is allocated in the event of ties. We

characterize as white configurations, all Walrasian configurations whose out-

comes adhere to this tie-breaking scheme.

A configuration χ is white if agents(χ) = white(χ).

The following is a set of definitions and lemmas related to white config-

urations. The proofs of these lemmas are similar to those for the corresponding

53

results established in Section 3.5 for Walrasian configurations.

Lemma 3.6.1. For any Walrasian bid-graph G, there exists a white config-

uration of the form (G,M,Φ), and for any white configuration of the form

(G,M,Φ), the bid-graph G is Walrasian.

Proof. By definition, every white configuration is Walrasian. Thus, for any

white configuration of the form (G,M,Φ), the bid-graph G is Walrasian. Con-

sider any Walrasian configuration χ = (G,M,Φ) that is not white. Then

there exists at least one agent u in unmatched(χ) such that for some item

v in items(χ, u), gap(χ,match(χ, v)) = 0 and match(χ, v) < u. By repeated

application of Lemma 3.5.3, χ can be transformed to a white configuration.

Lemma 3.6.2. For any Walrasian bid-graph G and any potential function Φ

in potentials(G), there exists a white configuration of the form (G,M,Φ).

Proof. By Lemma 3.5.5, any configuration χ = (G,M ′,Φ) is Walrasian where

M ′ is an MWMCM ofG. Then there exists at least one agent u in unmatched(χ)

such that gap(χ,match(χ, v)) = 0 and match(χ, v) < u for some item v in

items(χ, u). By repeated application of Lemma 3.5.3, χ can be transformed

to a white configuration. Thus, there exists some MWMCM M of G such that

(G,M,Φ) is white.

Lemma 3.6.3. For any Walrasian bid-graph G and any pair of white con-

figurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ′), we have matched(χ) =

matched(χ′).

54

Proof. Let χ0 = (G,M,max-potential(G)) and let χ1 = (G,M ′,max-potential(G)).

By Lemma 3.5.5, χ0 and χ1 are Walrasian. Further, since max-potential(G) ≥

Φ and max-potential(G) ≥ Φ′, it follows that white(χ) ∩ unmatched(χ) =

white(χ0) ∩ unmatched(χ0) and white(χ′) ∩ unmatched(χ′) = white(χ1) ∩

unmatched(χ1); thus χ0 and χ1 are white configurations. If M⊕M ′ consists of

only cycles and no paths, then it follows that matched(χ) = matched(χ′). Sup-

pose there exists some path P in M ⊕M ′ with endpoints u in matched(χ0) ∩

unmatched(χ1) and u′ in matched(χ1) ∩ unmatched(χ0). By Lemma 3.5.3, u

belongs to agents(χ0, u
′) and u′ belongs to agents(χ1, u). Since u < u′ or

u′ < u, this violates the assumption that χ0 and χ1 are both white. Thus,

there is no such path P and matched(χ) = matched(χ′).

[Definition] By Lemmas 3.6.1 and 3.6.3, we can conclude that for

any Walrasian bid-graph G, there exists a unique set of matched agents in

any white configuration of the form (G,M,Φ). We denote this unique set of

matched agents by matched(G).

Lemma 3.6.4. For any white configuration (G,M,Φ), and for any potential

function Φ′ in potentials(G), the configuration (G,M,Φ′) is white.

Proof. By Lemma 3.6.2, there exists an MWMCM M ′ of G such that the

configuration χ′ = (G,M ′,Φ′) is white. Let χ = (G,M,Φ) and let χ′′ =

(G,M,Φ′). By Lemma 3.5.5, χ′′ is Walrasian and by Lemma 3.6.3, matched(χ) =

matched(χ′). Thus, matched(χ) = matched(χ′′) and matched(χ′′) ⊆ white(χ′′).

Since χ′′ and χ are Walrasian, for any agent u in unmatched(χ′′), we have

55

agents(χ′′, u) = agents(χ, u); since u is white in χ, it follows that u is white

in χ′′.

In what follows, we sometimes compare amount-agent pairs. Such com-

parisons are resolved lexicographically.

Lemma 3.6.5. For any Walrasian bid-graph G = (U, V, w), any item v in

V , and any white configurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ), we have

agents(χ, v) = agents(χ′, v).

Proof. By Lemma 3.6.3, we have matched(χ) = matched(χ′); thus unmatched(χ) =

unmatched(χ′). Since χ and χ′ are Walrasian, for any item v, gap(χ,match(χ, v)) =

maxv∈V w(match(χ, v), v)−Φ(v). Further, by the definition of digraph(χ), arc

(match(χ, v), v′) belongs to digraph(χ) for every item v′ in demand(χ,match(χ, v)).

By a similar argument, arc (match(χ′, v), v′) belongs to digraph(χ′) for ev-

ery item v′ in demand(χ′,match(χ′, v)). Thus it follows that agents(χ, v) =

agents(χ′, v).

[Definition] For any Walrasian bid-graph G = (U, V, w), any potential

function Φ in potentials(G), and any item v in V , we define agents(G,Φ, v)

as the unique set agents(χ, v) of Lemma 3.6.5, where χ = (G,M,Φ) is a

white configuration whose existence is guaranteed by Lemma 3.6.2. For any

Walrasian bid-graphG = (U, V, w), and any item v in V , we define agents(G, v)

as agents(G, price(G), v).

[Definition] For any Walrasian bid-graph G = (U, V, w), and any item v

in V , we define price∗(G, v) as (price(G), u0), where u0 is the maximum agent

56

in agents(G, v). Recall that the maximum agent over an empty set is defined

as ε. In addition, we define price∗(G) as the function that maps each item v

in V to price∗(G, v).

For the following lemmas, we view bids and prices as pairs — if u has

an offer of z on item v, we view the offer as the pair (z, u).

Lemma 3.6.6. For any bid-graph G′ of the form add(G, u, v, z) where bid-

graph G = (U, V, w) is Walrasian, there exists a unique agent u0 in U such that

agent u belongs to matched(G′) if and only if (z, u) > (threshold(G, v), u0).

Proof. The proof is similar to that of Lemma 3.5.9 when bids and prices are

viewed as pairs.

For any Walrasian bid-graph G = (U, V, w) and any item v in V , we

define threshold∗(G, v) as the unique pair (threshold(G, v), u0) of Lemma 3.6.6.

Lemma 3.6.7. For any bid-graph G′ of the form add(G, u, β) where bid-graph

G is Walrasian, if the pair (β(v), u) < price∗(G, v) for all items v in V , then

price∗(G′) = price∗(G).

Proof. The proof is similar to that of Lemma 3.5.9 when bids and prices are

viewed as pairs.

For any configuration χ = (G,M,Φ) where G = (U, V, w), and any

item v in V , we define amount∗(χ, v) as the pair (amount(χ, v),match(χ, v)),

and we define amount∗(χ) as the function that maps each item v in V to

amount∗(χ, v).

57

Lemma 3.6.8. For any white configuration χ = (G,M,Φ), we have price∗(G) ≤

threshold∗(G) ≤ amount∗(χ).

Proof. The proof is similar to that of Lemma 3.5.10 when bids and prices are

viewed as pairs.

Lemma 3.6.9. Let G′ be a bid-graph of the form add(G, u, β) where bid-graph

G = (U, V, w) is Walrasian. Let ∆ denote the maximum, over all items v in

V , of β(v) − threshold(G, v), and let V ′ denote the set of all items v in V

such that β(v) − threshold(G, v) = ∆. Let u0 denote the minimum, over all

items v in V ′, of the second component of the pair threshold∗(G, v). Then the

following conditions hold:

• If the pair (∆, u) > (0, u0) and configuration χ = (G′,M,Φ) is white,

then match(χ, v) = u for some item v in V ′, and price(G′, v) = threshold(G, v)

for every item v in V ′.

• If the pair (∆, u) < (0, u0) and configuration χ = (G′,M,Φ) is white,

then agent u is unmatched in M and threshold∗(G′) = threshold∗(G).

Proof. The proof is similar to that of Lemma 3.5.11 when bids and prices are

viewed as pairs.

3.7 Quiescent configurations

The inputs and outputs of the bottom-level auction of Section 5 are qui-

escent configurations. A configuration χ = (G,M,Φ) is quiescent if unmatched(χ)

58

is a subset of white(χ), and for any agent u in black(χ) where β = bid(G, u),

we have β(v) < Φ(v) for all items v in items(χ).

For any configuration χ = (G,M,Φ) where G = (U, V, w), and any

agent u in U , we say χ is u-quiescent if either

1. u belongs to unmatched(χ)∩ gray(χ) and (G′,M,Φ) is quiescent, where

G′ = (U − u, V, w), or

2. u belongs to matched(χ) and shift(χ, u, 1) is quiescent.

3.8 ECCs

We use tie-breaking to handle degeneracy in the bottom-level auction

of Section 5; in each round, we break ties such that the set of allocated agents

is uniquely determined. Below we identify equivalence classes of configurations

(ECCs) that adhere to this tie breaking scheme.

For any pair of configurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ),

we write χ ∼ χ′ if matched(χ) = matched(χ′), nonwhite(χ) = nonwhite(χ′),

and for any item v in items(χ) such that match(χ, v) is non-white, we have

match(χ, v) = match(χ′, v). Observe that ∼ is an equivalence relation and

thus partitions the set of all configurations into equivalence classes. We refer

to an equivalence class of configurations as an ECC , and we use the notation

[χ] to refer to the ECC of a given configuration χ.

By definition, for any ECC X, there exists a unique bid-graph G0 and

a unique potential function Φ0 such that every configuration in X is of the

59

form (G0,M,Φ0). We define bid-graph(X) and potential(X) as G0 and Φ0

respectively. We define potential(X, v) as Φ0(v), for any item v in V , where

G0 = (U, V, w). An ECC X is quiescent if every configuration χ in X is

quiescent. We define u-quiescent ECCs similarly.

It follows by definition that for any ECC X, every configuration χ in X

is associated with the same set of agents; we define agents(X) to be this unique

set of agents. We define the following similarly: items(X), matched(X), and

unmatched(X). For any ECC X and any agent u in unmatched(X), we define

items(X, u) to be the unique set of items given by Lemma 3.8.1. We define

the following functions similarly: gray(X), white(X), black(X), nonwhite(X),

nonblack(X), enabled(X), positive(X), nonpositive(X), gap(X, u), bids(X, v),

max-gap(X, u), demand(X, u), pseudo-demand(X, u), items(X, u), agents(X, u),

and agents(X, v).

For any ECC X, any agent u in agents(X) and any integer z such

that either u belongs to unmatched(X) or z ≥ 0, we define shift(X, u, z)

as [shift(χ, z, u)] where χ is any configuration in X. For any ECC X and

any agent u in agents(X) and any agent u′ not in agents(X), we define

subst(X, u, u′) as the ECC ∪χ∈X [subst(χ, u, u′)] given by Lemma 3.8.3. We

define the following similarly: add(X, u, β), and add(X, u, v, z). Below we

establish some basic properties of ECCs.

Lemma 3.8.1. For any ECC X, any agent u in unmatched(X), and any pair

of configurations χ and χ′ in X, we have items(χ, u) = items(χ′, u).

60

Proof. Configurations χ and χ′ are associated with the same potential func-

tion. By definition, matched(χ) = matched(χ′), nonwhite(χ) = nonwhite(χ′),

and for any agent u′′ in matched(χ) ∩ nonwhite(χ), agent u is matched to

the same item in χ and χ′. Thus, for any item v, gap(χ,match(χ, v)) =

maxv∈V w(match(χ, v), v)−Φ(v). Further, by the definition of digraph(χ), arc

(match(χ, v), v′) belongs to digraph(χ) for every item v′ in demand(χ,match(χ, v)).

By a similar argument, arc (match(χ′, v), v′) belongs to digraph(χ′) for every

item v′ in demand(χ′,match(χ′, v)). It follows that items(χ, u) = items(χ′, u).

Lemma 3.8.2. For any quiescent configuration χ, the ECC [χ] is quiescent.

Proof. Let χ = (G,M,Φ) and let χ′ be any configuration in [χ]. By definition,

potential([χ′]) = Φ, unmatched(χ′) = unmatched(χ), and for every agent u

in matched(χ) ∩ nonwhite(χ), there exists an item v in items(χ) such that

match(χ, v) = match(χ′, v) = u. It follows that since χ is quiescent, χ′ is

quiescent.

Lemma 3.8.3. For any ECC X, any agent u in agents(X), and any agent u′

not in agents(X), the set of configurations given by ∪χ∈X [subst(χ, u, u′)] is an

ECC.

Proof. The proof follows from the definition of ECCs and the definition of

subst(χ, u, u′) for any configuration χ in X.

61

Chapter 4

Solution Concept

In this chapter, we present a novel solution concept for our proposed

sealed-bid unit-demand auction. Our sealed-bid unit-demand auction is used

to implement each round of our proposed dynamic unit-demand auction; it fol-

lows that each round of our dynamic auction implements the solution concept

described in this chapter.

Recall from Section 1.2 that for an item in our proposed sealed-bid

unit-demand auction, the strike price of the item imposes a lower bound on

the auction price of the item — by exercising the item’s put, the seller of

the item can ensure that the auction price is at least as high as the strike

price. Due to these lower bound constraints on prices, we find that the VCG

mechanism is not well-suited for our auction.

Additionally, in our proposed sealed-bid setting, we cannot guarantee

the strong properties that are achieved by VCG in the classic setting. For

example, consider an auction instance in which no agent bids on a particular

item. The auction would be forced to allocate the item to the target of its

put at its associated strike price even if such an allocation violates the envy-

freedom property of the target. Consequently, we formulate a solution concept

62

that is appropriate for our work.

The rest of this chapter is organized as follows. In Section 4.1, we

present an informal discussion of the proposed solution concept for our sealed-

bid unit-demand auction. In Section 4.2, we provide a formal definition of

semi-Walrasian configurations. In Section 4.3, we formalize the equilibrium

conditions associated with the proposed solution concept.

4.1 Informal Description

We say that an agent u is “satisfied” in an outcome if u satisfies the stan-

dard properties of voluntary participation and envy-freedom (see Section 3.3

for the formal definitions). For the classic sealed-bid unit-demand auction, a

solution is said to be Walrasian if all of the agents are satisfied. Moreover, the

VCG mechanism returns a Walrasian solution where the pricing is given by

the unique minimum price vector over all Walrasian solutions.

For the present problem, we relax the Walrasian conditions by requiring

only a certain subset of the agents in an outcome to be satisfied. For example,

we enforce the natural requirement that if an agent u is not allocated, then u is

satisfied; equivalently, each component of the unit-demand bid of u is required

to be less than or equal to the price of the corresponding item. Additionally,

we require that if a non-allocated agent u is indifferent to being allocated to

an item v that is allocated to some agent u′, then u′ is satisfied. Continuing in

this manner, we require that if a non-allocated agent u is indifferent to being

allocated to an item v that is allocated to agent u′, and u′ is indifferent to

63

being allocated to an item v′ (not equal to v) that is allocated to agent u′′,

then u′′ is satisfied, and so on.

In the terminology of the well-known Hungarian algorithm [24] for

weighted bipartite matching, the aforementioned sequence of requirements

may be stated more concisely as follows: If an agent u belongs to the Hungarian

tree rooted at some non-allocated agent, then u is satisfied. (In Section 3.3, we

formalize this requirement as a reachability condition in a suitably defined di-

graph.) The class of solutions meeting the latter requirement — which clearly

includes all Walrasian solutions — plays a central role in our work. We refer

to such solutions as “semi-Walrasian” (see Condition 1 in Section 4.3).

A key observation underlying the design of our solution concept is that

a semi-Walrasian solution implicitly partitions the items into two sets: the set

of all items v such that any positive decrease in the price of v (while leaving

the prices of all other items unchanged) yields a solution that is no longer

semi-Walrasian, and the remaining items. In Section 4.3, the former items

are defined to be “priced at market”, and the latter items are defined to be

“priced above market”. For an item that is priced at market, the associated

put need not be exercised in order to justify the price. For such an item v, the

price is required to be at least the strike price (see Condition 2 in Section 4.3);

otherwise, the seller of item v would prefer to exercise the put associated with

v. For an item that is priced above market, the price can only be justified

via exercise of the associated put; for such an item we require the price to be

equal to the strike price (see Condition 3 in Section 4.3).

64

We require that the set of items V ′ priced above market be purchased by

the set of agents U ′ who are targets of the associated puts (see Condition 4(a)

in Section 4.3); the motivation for this requirement is that the items in V ′ are

too expensive to be of interest to any of the remaining agents. The problem

of determining a suitable allocation of V ′ to U ′ may be viewed as an instance

of the house allocation problem [37]; accordingly, we enforce standard desider-

ata related to voluntary participation (see Condition 4(b) in Section 4.3) and

Pareto-efficiency (see Condition 5 in Section 4.3).

4.2 Semi-Walrasian Configurations

We now formally introduce semi-Walrasian configurations that we re-

ferred to during the discussion of the solution concept in Section 4.1. A con-

figuration χ is semi-Walrasian if for every agent u in unmatched(χ) and every

item v in items(χ, u), the agent match(χ, v) satisfies voluntary participation

and envy-freedom.

A semi-Walrasian configuration χ induces a partition of the items into

two sets: the set of items that belong to items(χ, u) for some agent u in

unmatched(χ), and the remaining items. We say that the items in the former

set are priced at market, and that the remaining items are priced above market.

For the standard sealed-bid unit-demand auction, the VCG mechanism yields

a Walrasian configuration in which every item is priced at market.

65

4.3 Equilibrium Conditions

Given a configuration χ0 = (G,M0,Φ0) as input where G = (U, V, w),

we seek to devise a truthful mechanism that computes a configuration χ =

(G,M,Φ) satisfying the equilibrium conditions listed below.

1. The configuration χ is semi-Walrasian.

2. For any item v in V that is priced at market, we have Φ(v) ≥ Φ0(v).

3. For any item v in V that is priced above market, we have Φ(v) = Φ0(v).

4. Let V ′ denote the set of all items in V that are priced above market.

Then there is a permutation π of V ′ such that the following conditions

hold.

(a) For any item v in V ′, match(χ, π(v)) = match(χ0, v).

(b) For any item v in V ′ having match(χ0, v) = u, gap(χ, u) ≥ gap(χ0, u).

5. For any configuration χ′ = (G,M ′,Φ), if there exists an agent u in U

such that gap(χ, u) < gap(χ′, u), then there exists an agent u′ in U

such that: (strong version) gap(χ′, u′) < gap(χ, u′); (weak version) u′ is

matched differently in M and M ′, and gap(χ′, u′) ≤ gap(χ, u′).

The reader will note that above conditions are stated in terms of an

agent’s gap rather than the utility. For a unit-demand auction where agents

bid truthfully, the gap of an agent is equal to its utility, and (the weak version

66

of) Condition 5 corresponds to a solution in the (weak) core. Our reference

to the (weak) core is in the sense defined by Jaramillo and Manjunath [19].

Consequently, for a truthful auction, a solution in the core satisfies Pareto-

efficiency, and a solution in the weak core satisfies the following property: no

subset of agents can exchange their allocated items amongst themselves such

that every agent in the subset experiences a strict improvement in utility.

67

Chapter 5

Bottom-Level Auction

In this chapter, we present the bottom-level auction. The bottom-level

auction is a dynamic unit-demand auction, and is a building block of the

mid-level auction described in Chapter 6.

The input to the bottom-level auction is a quiescent ECC (see Sec-

tions 3.7 and 3.8 for definition). It is easy to see that quiescent ECCs satisfy

equilibrium conditions 1, 2, and 3 of Section 4.3. In each round of the bottom-

level auction, a single agent increments its offers on all items by one unit, and

the round is resolved by incorporating the bid increment while continuing to

satisfy equilibrium conditions 1, 2, and 3.

The rest of this chapter is organized as follows. In Section 5.1, we

introduce some preliminary definitions. In Section 5.2, we describe the bottom-

level auction. In Section 5.3, we develop formalism leading to the definition

of the raise operation. In Section 5.4, we establish some basic properties of

the bottom-level auction. In Section 5.5, we establish commutativity of raise

invocations.

68

5.1 Preliminaries

For any configuration χ, we define enabled(χ) as the set of agents u in

agents(χ) such that either

1. u belongs to white(χ), or

2. u belongs to nonwhite(χ) and for all items v in items(χ), we have β(v) <

Φ(v)− 1, where β = bid(G, u).

We define enabled(X) similarly.

5.2 Description

The bottom-level auction is dynamic. The auction takes a quiescent

ECC as input and updates the ECC over a sequence of rounds. In a general

round of the bottom-level auction, a single enabled agent in the ECC invokes

the function raise defined in Section 5.3 below. Informally, an invocation of

raise by an agent corresponds to the agent incrementing all components of

its bid by one unit. If two or more enabled agents wish to invoke raise in a

round, then the auction chooses from amongst them arbitrarily. The auction

terminates when no agent invokes raise in a round.

5.3 The Raise Operation

In this section, we develop formalism leading to the definition of the

function raise.

69

For any ECC X and any agent u in unmatched(X), we define the

predicate P0(X, u) to hold if X is either quiescent or u-quiescent.

We now define victim(X, u, z) for any ECC X, any integer z in {0, 1},

and any agent u in unmatched(X) such that the predicate P0(X, u) holds. Let

set U0 denote white(X) and let set U1 denote agents(X, u)∪{u}∩nonpositive(X).

Note that set U1 is nonempty as it contains agent u. If U1 \ U0 6= ∅, we define

victim(X, u, z) as the minimum agent in U1 \ U0. If U1 \ U0 = ∅, z = 1, and

U1 − u 6= ∅, then we define victim(X, u, z) as the minimum agent in U1 − u.

Otherwise, we define victim(X, u, z) as the minimum agent in U1.

For any ECC X and any agent u in enabled(X), we define the predicate

P1(X, u) to hold if either

1. agent u belongs to matched(X) and X is quiescent, or

2. agent u belongs to unmatched(X) and the predicate P0(X, u) holds.

We now define augment(X, u, z) for any ECC X, any integer z in {0, 1},

and any agent u in enabled(X) such that the predicate P1(X, u) holds. If agent

u belongs to matched(X), then augment(X, u, z) is the ECC X. Otherwise,

augment(X, u, z) is the ECC [χ′], where χ′ is constructed as follows: Let χ

be an arbitrary configuration in X and let P be an arbitrary simple directed

path from u to victim(X, u, z) in digraph(χ); for every item v′ such that there

exists an arc of the form (u′, v′) on path P , we set match(χ′, v′) = u′, and for

every item v′ that is not on path P , we set match(χ′, v′) = match(χ, v′). By

Lemma 5.3.1, it follows that augment(X, u, z) is well defined.

70

For any ECC X and any agent u in enabled(X) such that either

1. X is quiescent and agents(X, u) ∩ nonpositive(X) = ∅, or

2. X is u-quiescent and u belongs to matched(X)

we define inc(X, u) as

∪(G,M,Φ)∈X [(G′,M,Φ′)]

where G′ = shift(bid-graph(X), u, 1), and Φ′ is defined as follows: if agent u

belongs to matched(χ), then Φ′ = Φ; otherwise Φ′(v) = Φ(v) + 1 for any item

v in items(χ, u) and Φ′(v) = Φ(v) for any item v in items(χ) \ items(χ, u).

The existence of such an ECC is established by Lemma 5.3.2.

For any quiescent ECC X and any agent u in enabled(X), we de-

fine raise ′(X, u) as augment(X, u, 1). For any ECC X and any agent u in

enabled(X) such that either X is quiescent, or X is u-quiescent and u be-

longs to matched(X), we define raise ′′(X, u) as augment(inc(X, u), u, 0) For

any quiescent ECC X and any agent u in enabled(X), the function raise(X, u)

is defined as raise ′′(raise ′(X, u), u).

For any quiescent ECC X and any agent u in unmatched(X), we define

victim(X, u) as follows: if matched(X)∩ unmatched(raise(X, u)) = {u′}, then

victim(X, u) = u′; otherwise, victim(X, u) = ∅. Recall that by Fact 5.3.4,

matched(X) ∩ unmatched(X) has a cardinality of at most 1.

The facts below follow from the definition of the function raise.

71

Fact 5.3.1. For any quiescent ECC X and any agent u in enabled(X) ∩

matched(X), we have raise(X, u) = shift(X, u, 1).

Fact 5.3.2. For any quiescent ECC X and any agent u in enabled(X), we

have potential(raise(X, u)) ≥ potential(X).

Fact 5.3.3. For any quiescent ECC X and any agent u in enabled(X) such

that bid(bid-graph(X), u) < potential(X), we have potential(raise(X, u)) =

potential(X).

Fact 5.3.4. For any ECC X ′ of the form raise(X, u), we have |S| ≤ 1, where

S = matched(X) \matched(X ′).

The following lemmas establish that the output of the bottom-level

auction is a quiescent ECC.

Lemma 5.3.1. For any ECC X, any integer z in {0, 1}, and any agent u in

enabled(X) such that the predicate P1(X, u) holds, there is a unique ECC of

the form augment(X, u, z). augment(X, u, z).

Proof. If u belongs to matched(X), then by definition augment(X, u, z) = X.

We now consider the case where u belongs to unmatched(X). Let χ be any

configuration in X. By definition, irrespective of the choice of χ and the path

P used, the agent victim(χ, u, z) is unmatched in augment(X, u, z) and each

agent in matched(χ) ∩ nonwhite(χ) \ victim(χ, u, z) is matched to the same

item in χ and augment(X, u, z). Thus it follows that augment(X, u, z) is an

ECC.

72

Lemma 5.3.2. Any set of configurations of the form inc(X, u) is an ECC.

Proof. If u belongs to matched(X), then by definition inc(X, u) = shift(X, u, 1).

We now consider the case where u belongs to unmatched(X). By the precon-

ditions on X required by inc(X, u), it follows that X is quiescent and there

exists no agent u′ in agents(X, u) such that gap(X, u′) ≤ 0. Let (G,M,Φ)

be any configuration in X. By definition, inc(X, u) includes the configura-

tion (G′,M,Φ′) where G′ = shift(bid-graph(X), u, 1) and Φ′(v) = Φ(v) + 1 for

each item v in items(χ, u). Thus, every agent in nonwhite(χ) is matched to

the same item in χ and χ′. It follows that the set of configurations given by

inc(X, u) is an ECC.

Lemma 5.3.3. For any quiescent ECC X and any agent u in enabled(X),

the predicate P1(X, u) holds.

Proof. Since X is quiescent, by definition, P1(X, u) holds if u belongs to

matched(X). Suppose u belongs to unmatched(X). Then, P1(X, u) holds

if P0(X, u) holds. By definition, P0(X, u) holds when X is quiescent.

Lemma 5.3.4. For any ECC X ′ of the form inc(X, u), the predicate P1(X ′, u)

holds.

Proof. By the preconditions of inc(X, u), we know that either agents(X, u) ∩

nonpositive(X) = ∅ and X is quiescent, or u belongs to matched(X) and

shift(X, u, 1) is quiescent. We first consider the case when u belongs to

73

matched(X). In this case, inc(X, u) = shift(X, u, 1). Thus inc(X, u) is quies-

cent and P1(X ′, u) holds.

Next we consider the case when u belongs to unmatched(X). In this

case, agents(X, u) ∩ nonpositive(X) = ∅ and X is quiescent. By definition,

inc(X, u) is an ECC X ′ whose bid-graph G = shift(bid-graph(X), u, 1) and

whose potential function has incremented potential(X, v) by one for each item

v in items(X, u). It is easy to see that u is either white or gray in inc(X, u);

thus inc(X, u) is either quiescent or u-quiescent. It follows that P1(inc(X, u), u)

holds

Lemma 5.3.5. For any quiescent ECC X and any agent u in enabled(X),

either raise′(X, u) is quiescent, or raise′(X, u) is u-quiescent and u belongs to

matched(raise′(X, u)).

Proof. We first consider the case where u belongs to matched(X). In this case

raise ′(X, u) = X and thus raise ′(X, u) is quiescent.

Next, we consider the case where u belongs to unmatched(X). Since X

is quiescent, u belongs to white(X). In this case, raise ′(X, u) = augment(X, u, 1).

Thus, either u is unmatched and u is white in raise ′(X, u), or u belongs to

matched(raise ′(X, u)) and u is gray in raise ′(X, u). Thus, raise ′(X, u) is either

quiescent or u-quiescent.

Lemma 5.3.6. Any ECC of the form raise(X, u) is quiescent.

Proof. By definition raise(X, u) = raise ′′(raise ′(X, u), u). By Lemma 5.3.5,

raise ′(X, u) satisfies the preconditions of raise ′′. We consider the following two

74

cases. First, we consider the case where u belongs to matched(raise ′(X, u)), In

this case, by Lemma 5.3.5, raise ′(X, u) is u-quiescent. Further, by definition,

raise ′′ for a matched agent results in incrementing the bid of the agent by

one unit; thus, raise(X, u) = shift(raise ′(X, u), u, 1) which is quiescent by

definition.

Next we consider the case where u belongs to unmatched(raise ′(X, u)).

In this case, by Lemma 5.3.5, raise ′(X, u) is quiescent and thus raise ′(X, u)

satisfies the precondition for invoking inc. By Lemma 5.3.4, the predicate

P1(inc(raise ′(X, u), u), u) holds; it follows that agent u belongs to the set

matched(inc(raise ′(X, u), u)), or the ECC inc(raise ′(X, u), u) is either quies-

cent of u-quiescent. In the case where inc(raise ′(X, u), u) is u-quiescent, it is

easy to see from the definition of augment that raise(X, u) is quiescent. For

the remaining two cases, augment is a no-op.

5.4 Properties

In this section, we discuss some basic properties of the bottom-level

auction that are useful in both proving lemmas of Section 5.5 and in estab-

lishing results in Chapter 6.

Lemma 5.4.1. For any ECC X ′ of the form raise(X, u′) and any agent u in

nonwhite(X), either

1. u belongs to unmatched(X ′), or

75

2. u belongs to nonwhite(X ′), and there exists an item v in items(X) such

that potential(X, v) is equal to potential(X ′, v) and match(χ, v) = u for

any configuration χ in X ∪X ′.

Proof. Since u belongs to nonwhite(X), there exists an item v in items(X) such

that for any configuration χ in X, we have match(χ, v) = u. By definition, u

does not belong to digraph(X) and v is a leaf of digraph(X). Since v is a leaf

of digraph(X), by the definition of the function raise ′ either implies that u =

victim(X, u′, 1) or match(χ, v) = u for any configuration χ in X∪raise ′(X, u′).

If u = victim(X, u′, 1), then u belongs to unmatched(X ′) and the proof is

complete.

We now consider the case where u 6= victim(X, u′, 1); thus v does not

belong to items(X, u′). By the definition of the function raise ′′, we have

potential(X ′, v′) = potential(X, v′) + 1 for any item v′ in items(X, u′) and

potential(X ′, v′) = potential(X, v′) for any item v′ not in items(X, u′); thus

potential(X ′, v) = potential(X, v). Let X ′′ = inc(raise ′(X, u′), u′). It is easy

to see that v is a leaf of digraph(X ′′). Thus, either u = victim(X ′′, u′, 0) or

match(χ, v) = u for any configuration χ in X ∪X ′.

Lemma 5.4.2. For any quiescent ECC X and any agent u in enabled(X), if

X ′ = raise(X, u), then

gray(X) ⊆ nonblack(X ′) ∧ white(X) ⊆ white(X ′).

Proof. By the definition of the function raise, if u belongs to gray(X), then u

belongs to gray(X ′), and if u belongs to white(X), then u belongs to white(X ′).

76

Consider any agent u0 in agents(X) − u. By Lemma 5.3.6, X ′ is quiescent,

and by the definition of a quiescent ECC, unmatched(X ′) ⊆ white(X ′). Thus,

if u0 belongs to unmatched(X ′), then u0 belongs to white(X ′) and hence u0

belongs to enabled(X ′). Now suppose that u0 belongs to matched(X ′). We

consider the following two cases.

First we consider the case where u0 belongs to gray(X)∩matched(X ′).

By Fact 5.3.2, we have potential(X ′) ≥ potential(X) and by Lemma 5.4.1,

it follows that there exists an item v0 in items(X) having potential(X, v0) =

potential(X ′, v0) and for any configuration χ in X∪X ′, we have match(χ, v0) =

u0. It follows that u0 belongs to gray(X ′).

Next we consider the case where u0 belongs to white(X)∩matched(X ′).

By our assumption, u0 belongs to matched(X). By the definition of raise, it

follows that gap(X ′, u0) ≥ 0. Thus, u0 belongs to white(X ′).

Lemma 5.4.3. For any quiescent ECC X and any agent u in enabled(X),

we have enabled(X)− u ⊆ enabled(raise(X, u)).

Proof. Let X ′ = raise(X, u). By Lemma 5.3.6, X ′ is quiescent. Consider

any agent u0 in enabled(X) − u. Suppose u0 belongs to white(X); then by

Lemma 5.4.2, u0 belongs to white(X ′), and hence u0 belongs to enabled(X ′).

Suppose u0 belongs to nonwhite(X). Since u0 belongs to enabled(X),

we have β(v) < potential(X, v) for every item v in items(X), where β =

bid(X, u0). By Fact 5.3.2, potential(X ′) ≥ potential(X) and by Lemma 5.4.1,

either u0 belongs to unmatched(X ′) or there exists an item v0 in items(X)

77

such that for any configuration χ in X∪X ′, we have match(χ, v0) = u0. Thus,

u0 belongs to enabled(X ′).

Lemma 5.4.4. For any quiescent ECC X and any agent u in enabled(X),

if there exists an item v in items(X) such that potential(X, v) is equal to

potential(raise(X, u), v), then bids(X, v) ⊆ bids(raise(X, u), v).

Proof. Let β be any bid in in bids(X, v). By definition, for any item v′ in

items(X) − v, we have β(v) − potential(X, v) ≥ β(v′) − potential(X, v′). By

Lemma 5.3.2, we have potential(raise(X, u)) ≥ potential(X). Thus, for any

item v′ in items(X)− v, we have

β(v)− potential(X, v) ≥ β(v′)− potential(raise(X, u), v′)

Thus, β belongs to bids(raise(X, u), v).

Lemma 5.4.5. For any quiescent ECC X0 and any quiescent ECC X1 of the

form subst(X0, u0, u1) where u0 belongs to unmatched(X0) and u1 < u0, we

have gap(raise(X0, u0), u0) = gap(raise(X1, u1), u1) = 0. Furthermore, either

1. raise(X1, u1) = subst(raise(X0, u0), u0, u1), or

2. raise(raise(X1, u1), u1) = subst(raise(raise(X0, u0), u0), u0, u1)

Proof. Let β = bid(bid-graph(X0), u0). Let X ′0 = raise ′(X0, u0) and let X ′′0 =

raise ′′(X ′0, u0). Let X ′1 = raise ′(X1, u1) and let X ′′1 = raise ′′(X ′1, u1). Note

that items(X0, u0) = items(X1, u1). Thus, by the definition of the function

78

raise ′ it follows that X ′1 = subst(X ′0, u0, u1). If u0 belongs to matched(X ′0),

then it is easy to see that X ′′1 = subst(X ′′0 , u0, u1) and the proof is complete.

We now consider the case where u0 belongs to unmatched(X ′0). Note that

items(X ′0, u0) = items(X ′1, u1). Since u1 < u0, it follows from the defini-

tion of the function raise ′′ that if u1 belongs to matched(X ′′1), then u0 be-

longs to matched(X ′′0). Similarly, if u0 belongs to unmatched(X ′′0), then u1

belongs to unmatched(X ′′1). Thus, either X ′′1 = subst(X ′′0 , u0, u1), or u0 be-

longs to matched(X ′′0) and u1 belongs to unmatched(X ′′1). Thus, there exists

an item v in items(inc(X ′1, u1), u1) such that match(inc(X ′1, u1), v) belongs

to zero(inc(X ′1, u1)) and u1 < u′ < u0. It is easy to see from the defi-

nition of the function raise ′ that raise ′(X ′′0 , u0) = X ′′0 and raise ′(X ′′1 , u1) =

subst(X ′′0 , u0, u1). Thus, raise(X ′′1 , u0) = subst(raise(X ′′0 , u0), u0, u1).

5.5 Commutativity of Raise Operations

A key property of the bottom-level auction is the commutativity of

raise invocations. This property is formalized in Lemma 5.5.9 and is used

extensively in Chapter 6 of this dissertation.

Lemma 5.5.1. For any quiescent ECC X, any agents u0 and u1 in unmatched(X)

such that agents(X, u0)∩nonpositive(X) = ∅, and any item v in items(X, u0),

we have v belongs to items(raise(X, u1), u0) if and only if

potential(raise(X, u1), v) = potential(X, v)

Proof. Since agents(X, u0)∩nonpositive(X) = ∅, it follows that victim(X, u1, 1)

79

does not belong to agents(X, u0), thus agents(X, u0) = agents(raise ′(X, u1), u0)

and items(X, u0) = items(raise ′(X, u1), u0). Let χ = (G,M,Φ) be any con-

figuration in X and let χ′ = (G′,M ′,Φ′) be any configuration in raise(X, u1).

By Lemma 3.8.1, we have items(χ, u0) = items(X, u0) and items(χ′, u0) =

items(raise(X, u1), u0). By definition, v belongs to items(χ, u0) if and only if

there exists a directed path from u0 to v in digraph(χ), where every edge (u′, v′)

in digraph(χ) is such that v′ belongs to demand(χ, bid(bid-graph(X), u′)).

It is easy to see that if potential(raise(X, u1), v) > potential(X, v), then

there is no directed path from u0 to v in digraph(χ). We now consider the

case where potential(raise(X, u1), v) = potential(X, v). It follows from the

definition of the raise function that if Φ′(v′) > Φ(v′) for some item v′ on a

directed path from u0 to v, then Φ′(v) > Φ(v), and this would contradict

our assumption that potential(raise(X, u1), v) = potential(X, v). Thus every

item v′ on every directed path from u0 to v has Φ′(v′) = Φ(v′); it follows that

all such directed paths are preserved in digraph(χ′), and thus, v belongs to

items(raise(X, u1), u0).

Lemma 5.5.2. For any quiescent ECC X and any agents u0 in unmatched(X)

and u1 in enabled(X), if agents(X, u0) ∩ nonpositive(X) = ∅, then

agents(X1, u0) ⊆ agents(X, u0) ∧ agents(X1, u0) ∩ nonpositive(X1) = ∅

where X1 = raise(X, u1).

Proof. If agent u1 belongs to matched(X), then by Fact 5.3.1, we have X1 =

80

shift(X, u1, 1); in this case it is easy to see that agents(X1, u0) ⊆ agents(X, u0)

and agents(X1, u0) ∩ nonpositive(X1) = ∅.

We now consider the case where u1 belongs to unmatched(X). By

Lemma 5.5.1, we have items(X1, u0) ⊆ items(X, u0) and potential(X1, v) =

potential(X, v) for any item v in items(X1, u0). Thus, we have agents(X1, u0) ⊆

agents(X, u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅.

Lemma 5.5.3. Let X0 and X1 be quiescent ECCs such that the following

conditions hold

1. bid-graph(X0) = bid-graph(X1)

2. potential(X0) = potential(X1)

3. for any agent u in nonwhite(X) ∩ matched(X), there exists an item v

such that match(χ, v) = u for any configuration χ in X0 ∪X1

For any agents u0 and u1 such that matched(X0) \matched(X1) = {u1} and

matched(X1) \ matched(X0) = {u0}, if u1 belongs to agents(X0, u0) and u0

belongs to agents(X1, u1), then either victim(X0, u0, 1) = victim(X1, u1, 1) or

victim(X0, u0, 0) = victim(X1, u1, 0).

Proof. Let U = matched(X0)−u1 = matched(X1)−u0. We have potential(X0) =

potential(X1) and for any agent u in nonwhite(X)∩matched(X), there exists

an item v such that match(χ, v) = u for any configuration χ in X0 ∪X1; thus

we have nonpositive(X0) = nonpositive(X1) and for any agent u in U , we have

81

agents(X0, u) = agents(X1, u) and items(X0, u) = items(X1, u). Additionally,

since u1 belongs to agents(X0, u0) and u0 belongs to agents(X1, u1), we have

nonpositive(X0) ∩ agents(X0, u0) = nonpositive(X1) ∩ agents(X1, u1). By the

definition of the function victim, it is easy to see that either victim(X0, u0, 1) =

victim(X1, u1, 1) or victim(X0, u0, 0) = victim(X1, u1, 0).

Lemma 5.5.4. For any quiescent ECC X and any agents u0 and u1 in

unmatched(X), if victim(X, u0) = victim(X, u1, 1), then agent u0 belongs to

agents(raise(X, u0), u1).

Proof. Let X0 = raise(X, u0) and let victim(X, u0) = victim(X, u1, 1) = u.

Since u = victim(X, u1, 1), we have u1 belongs to nonpositive(X) and V ⊆

items(X, u1) where V = demand(X, u).

Suppose V ∩ items(X0, u1) = ∅. Then, by Lemma 5.5.1, we have

potential(X0, v) = potential(X, v)+1 for every item in V and V ⊆ items(X, u0);

thus u belongs to agents(X, u0) and by the definition of the function raise ′,

potential(X0) = potential(X), which is a contradiction. Thus, we have V ∩

items(X0, u1) 6= ∅. Additionally, since u = victim(X, u0), we have u0 belongs

to agents(X0, u
′) for any agent u′ having V ∩ items(X0, u

′) = ∅. Thus, u0

belongs to agents(raise(X, u0), u1).

Lemma 5.5.5. For any quiescent ECC X and any agents u0 and u1 in

unmatched(X) such that u1 = victim(X, u1, 1), if victim(X, u0) is equal to

victim(X ′1, u1, 0) where X ′1 = inc(raise′(X, u1), u1), then agent u0 belongs to

agents(X ′01, u1) where X ′01 = inc(raise′(raise(X, u0), u1), u1).

82

Proof. Let X0 = raise(X, u0) and let victim(X, u0) = victim(X ′1, u1, 0) = u.

Note that the case where victim(X, u0, 1) = u is symmetric to the case handled

by Lemma 5.5.4; thus the proof of this case follows from Lemma 5.5.4.

We now focus on the case where victim(X, u0, 1) = u0. By the definition

of the function raise ′′, we have potential(X0, v) = potential(X, v) + 1 for any

item v in items(X, u0) and potential(X, v) = potential(X, v) for any item v

in items(X) \ items(X, u0). Since victim(X, u0) = u, we have u0 belongs to

agents(X0, u
′) for any agent u′ such that demand(X0, u) ∩ items(X0, u

′) 6= ∅.

Since victim(X, u1, 1) = u1, we have nonpositive(X)∩ agents(X, u1) = ∅; thus

by Lemmas 5.5.1 and 5.5.2, we have potential(X ′01, v) = potential(X, v) + 1

for any item v in items(X, u0) ∪ items(X, u1). Since victim(X ′1, u1, 0) = u, we

have V ∩ items(X ′01, u1) 6= ∅. It follows that u0 belongs to agents(X ′01, u1).

Lemma 5.5.6. Let X be a quiescent ECC and let u0 and u1 be agents in

unmatched(X). Let X0 = raise(X, u0) and let X1 = raise(X, u1). If victim(X, u0)

is not equal to victim(X, u1), then we have victim(X0, u1) = victim(X, u1) and

potential(raise(X0, u1), v) = potential(X1, v) for any item v in items(X) such

that potential(X1, v) = potential(X, v) + 1.

Proof. First we consider the case where victim(X, u1, 1) 6= u1. In this case, we

have victim(X, u1) = victim(X, u1, 1) and potential(X1) = potential(X); thus

victim(X, u1) belongs to nonpositive(X). The statement of the lemma assumes

that victim(X, u0) 6= victim(X, u1); thus, by the definition of the function

raise, we find that victim(X, u1) belongs to agents(X0, u1)∩ nonpositive(X0).

83

If victim(X0, u1) = victim(X, u1), then the proof is complete. Suppose that

victim(X0, u1) 6= victim(X, u1). Then there is an agent u′ in agents(X, u1)

such that u′ = victim(X, u0), and hence u0 belongs to agents(X0, u1). Since

u′ = victim(X0, u0), u′ belongs to agents(X, u1), and u′ 6= victim(X, u1, 1), the

definition of the function victim implies that victim(X0, u1, 1) = victim(X, u1, 1).

Next we consider the case where victim(X, u1, 1) = u1; thus, by the

definition of the function raise, we have nonpositive(X) ∩ agents(X, u1) = ∅

and potential(X1, v) = potential(X, v) + 1 for any item v in items(X, u1).

Thus, victim(X, u1) = victim(X ′1, u1, 0), where X ′1 = inc(raise ′(X, u1), u1).

By Lemma 5.5.1, we have items(X0, u1) = items(X, u1) \ items(X, u0) and

potential(X0, v) = potential(X, v) + 1 for any item v in items(X, u0). By

Lemmas 5.5.1 and 5.5.2, we have nonpositive(X0) ∩ agents(X0, u1) = ∅; thus,

we have potential(raise(X0, u1), v) = potential(X, v) + 1 for any item v in

items(X0, u1). Since items(X0, u1) = items(X, u1) \ items(X, u0), we have

potential(raise(X1, u1), v) = potential(X, v)+1 for any item v in items(X, u0)∪

items(X, u1).

LetX ′01 = inc(raise ′(X0, u1), u1). If victim(X ′01, u1, 0) = victim(X ′1, u1, 0),

then the proof is complete. Suppose that victim(X ′01, u1, 0) 6= victim(X ′1, u1, 0);

then there is an agent u′ in agents(X ′1, u1) such that u′ = victim(X, u0), and

hence u0 belongs to agents(X ′01, u1). Since u′ = victim(X0, u0), u′ belongs

to agents(X ′1, u1), and u′ 6= victim(X ′1, u1, 0). The definition of the function

victim implies that victim(X ′01, u1, 0) = victim(X ′1, u1, 0).

Thus, victim(X0, u1) = victim(X, u1) and potential(raise(X0, u1), v) =

84

potential(X1, v) for any item v in items(X) such that potential(X1, v) =

potential(X, v) + 1.

Lemma 5.5.7. For any quiescent ECC X and any agents u0 and u1 in

agents(X), if matched(X)∩{u0, u1} 6= ∅, then potential(X01) = potential(X10)

and matched(X01) = matched(X10), where X01 = raise(raise(X, u0), u1) and

X10 = raise(raise(X, u1), u0).

Proof. Let X0 = raise(X, u0) and let X1 = raise(X, u1).

We first consider the case where |{u0, u1} ∩ matched(X)| = 2; thus,

{u0, u1} ⊆ matched(X). By Fact 5.3.1, we haveX01 = shift(shift(X, u0, 1), u1, 1),

and X10 = shift(shift(X, u1, 1), u0, 1); thus, X01 = X10.

We now focus on the case where |{u0, u1}∩matched(X)| = 1. Without

loss of generality, we assume that {u0, u1} ∩ matched(X) = {u1}; thus, u1

belongs to matched(X). Since u1 belongs to enabled(X) ∩ matched(X) and

X1 = shift(X, u1, 1), either u1 belongs to nonwhite(X) ∩ nonwhite(X1) or u1

belongs to white(X)∩white(X1). If u1 belongs to nonwhite(X)∩nonwhite(X1),

then for every item v in items(X), we have β(v) < potential(X, v)− 2, where

β = bid(bid-graph(X), u1). Thus we have victim(X, u0) = victim(X1, u0) = u1

and raise(X0, u1) = X0. Using these facts, it is straightforward to argue

that potential(X01) = potential(X10) and matched(X01) = matched(X10). It

remains to address the case where u belongs to white(X) ∩ white(X1). We

proceed via the following case analysis.

85

• Case 1: victim(X, u0) 6= u1.

– Case 1.1: victim(X, u0, 1) 6= u0.

We have victim(X, u0) = victim(X, u0, 1). In this case, u0 belongs

to matched(raise ′(X, u0)); thus, by the definition of the function

raise, we have matched(X0) = matched(X) + u0 − victim(X, u0)

and potential(X0) = potential(X). By Fact 5.3.1, we have X01 =

shift(X0, u1, 1); thus we have potential(X01) = potential(X) and

matched(X01) = matched(X) + u0 − victim(X, u0).

Since victim(X, u0) 6= u1, there exists an agent u′ in nonwhite(X)∩

agents(X, u0) such that victim(X, u1, 1) = u′. By Fact 5.3.1, we

have X1 = shift(X, u1, 1) and thus, nonwhite(X)∩ agents(X, u0)−

u1 = nonwhite(X1)∩agents(X1, u0)−u1; it follows that victim(X1, u0)

is equal to victim(X, u0). Thus, matched(X10) = matched(X) +

u0 − victim(X, u0). Since X1 = shift(X, u, 1) and u0 belongs to

matched(raise ′(X, u0)), we have potential(X10) = potential(X).

Thus, we have matched(X01) = matched(X10) ∧ potential(X01) =

potential(X10).

– Case 1.2: victim(X, u0, 1) = u0.

In this case, victim(X, u0) = victim(X ′0, u0, 0) where X ′0 is equal

to inc(raise ′(X, u0), u0). Since victim(X, u0, 1) = u0, it follows

that nonwhite(X) ∩ agents(X, u0) = ∅; thus, potential(X0, v) =

potential(X, v) + 1 for any item v in items(X, u0). By Fact 5.3.1,

86

we have X01 = shift(X0, u1, 1); thus potential(X01) = potential(X0)

and matched(X01) = matched(X) + u0 − victim(X, u0).

We established above that X1 = shift(X, u1, 1); thus potential(X1)

is equal to potential(X) and matched(X1) = matched(X). Fur-

ther, since agents(X, u0)∩nonpositive(X) = ∅ and potential(X1) =

potential(X0), by Lemmas 5.5.1 and 5.5.2 can be used to argue

that we have items(X1, u0) = items(X, u0) and agents(X1, u0) ∩

nonpositive(X1) = ∅; thus potential(X10, v) = potential(X, v) + 1

for any item v in items(X, u0).

Let X ′1 = inc(raise ′(X1, u0), u0); it is easy to see that X ′1 is equal to

shift(X ′0, u1, 1). Since u1 6= victim(X ′0, u0) andX ′1 = shift(X ′0, u1, 1),

we have u1 6= victim(X ′1, u0); thus, victim(X ′1, u0) = victim(X ′0, u0) =

victim(X, u0), and matched(X10) = matched(X)+u0−victim(X, u0).

It follows that matched(X01) = matched(X10) and potential(X01) =

potential(X10).

• Case 2: victim(X, u0) = u1.

– Case 2.1: victim(X, u0, 1) 6= u0.

In this case, victim(X, u0) = victim(X, u0, 1) = u1; thus, we have

potential(X0) = potential(X) and matched(X0) = matched(X) +

u0−u1. By the definition of the function raise, we have gap(X, u1) =

0 and gap(X0, u0) = 1. We consider two sub-cases.

87

First we consider the case where agents(X0, u1)∩nonpositive(X0) 6=

∅. In this case, we have potential(X01) = potential(X0) and by

Lemma 5.5.2, agents(X0, u1)∩nonpositive(X0) = nonpositive(X)∩

(agents(X, u1) ∪ agents(X, u0)). Since gap(X, u1) = 0 and X1 =

shift(X, u1, 1), we have gap(X1, u1) = 1; by the definition of the

function raise ′, we find that u1 does not belong to nonpositive(X0)

and victim(X0, u1) 6= u1. Thus, potential(X01) = potential(X) and

matched(X01) = matched(X) + u0 + u1 − victim(X0, u1).

Since u1 belongs to agents(X1, u0) and X1 = shift(X, u1, 1), it

follows that potential(X1) = potential(X0) and nonpositive(X1) ∩

agents(X1, u0) = nonpositive(X)∩(agents(X, u0)∪agents(X, u1))−

u1; thus we have victim(X1, u0) = victim(X0, u1). It follows that

potential(X10) = potential(X) and matched(X10) = matched(X)−

victim(X0, u1) + u0 + u1.

Next we consider the case where agents(X0, u1)∩nonpositive(X0) =

∅, In this case, we have potential(X01, v) = potential(X, v) + 1 for

any item v in items(X0, u1) and victim(X0, u1) = victim(X ′0, u1, 0)

whereX ′0 = inc(raise ′(X, u1), u1). Since u0 belongs to agents(X0, u1)

and gap(X0, u0) = 1, we have u0 belongs to nonpositive(X ′0) ∩

agents(X ′0, u1); thus u1 belongs to matched(X01). Thus, we have

matched(X01) = matched(X) + u0 + u1 − victim(X ′0, u1, 0) and

potential(X01, v) = potential(X, v)+1 for any item in items(X, u1).

Since potential(X0) = potential(X) and victim(X, u0, 1) = u1, and

88

since agents(X0, u1)∩nonpositive(X0) = ∅, we have agents(X, u0)∩

nonpositive(X0) = {u1}. Since X1 = shift(X, u, 1), it follows that

agents(X1, u0) ∩ nonpositive(X1) = ∅; thus potential(X10, v) =

potential(X, v) + 1 for any item v in items(X1, u0) = items(X0, u1).

Let X ′1 = inc(raise ′(X1, u1), u1); thus we have X ′1 = shift(X ′0, u1, 1),

agents(X ′1, u0)∩nonpositive(X ′1) = agents(X ′0, u1)∩nonpositive(X ′0)−

u1, and we have victim(X ′1, u0, 0) = victim(X ′0, u1, 0). Therefore,

potential(X10) = potential(X) and matched(X10) = matched(X) +

u0 + u1 − victim(X ′0, u1, 0).

– Case 2.2: victim(X, u0, 1) = u0.

In this case, victim(X, u0) = victim(X ′0, u0, 0) = u1 where X ′0 =

inc(raise ′(X, u0), u0). Since victim(X, u0, 1) = u0, it follows that

nonwhite(X) ∩ agents(X, u0) = ∅; as a result, potential(X0, v) =

potential(X, v) + 1 for any item v in items(X, u0), and by the defi-

nition of the function raise ′′, we have gap(X0, u0) = 0. Since u0 be-

longs to agents(X0, u1) and gap(X0, u0) = 0, we have u1 belongs to

matched(raise ′(X0, u1)); thus potential(X01) = potential(X0) and

matched(X01) = matched(X) + u0 + u1 − victim(X0, u0, 1).

We established above thatX1 = shift(X, u1, 1); thus potential(X1) =

potential(X) and matched(X1) = matched(X). Since agents(X, u0)∩

nonpositive(X) = ∅ and potential(X1) = potential(X), Lemmas 5.5.1

and 5.5.2 imply that agents(X1, u0) ∩ nonpositive(X1) = ∅ and

items(X1, u0) = items(X, u0); thus we have potential(X ′1, v) =

89

potential(X, v) + 1 for any item v in items(X, u0), where X ′1 =

inc(raise ′(X1, u0), u0).

Since gap(X0, u1) = 0, potential(X ′1) = potential(X0) and X1 =

shift(X, u1, 1), we have gap(X ′1, u1) = 1; thus u1 6= victim(X ′1, u0, 0).

By the definition of the function raise, we haveX ′1 = shift(X0, u1, 1);

thus, victim(X ′1, u0) = victim(X0, u0, 0).

It follows that matched(X10) = matched(X)+u0+u1−victim(X, u0, 0)

and potential(X10) = potential(X0).

Lemma 5.5.8. For any quiescent ECC X and any agents u0 and u1 in

unmatched(X), if victim(X, u0) = victim(X, u1) = u, then

potential(X01) = potential(X10) ∧ matched(X01) = matched(X10)

where X01 = raise(raise(X, u0), u1) and X10 = raise(raise(X, u1), u0).

Proof. Let X0 = raise(X, u0) and let X1 = raise(X, u1).

Let X ′0 = inc(raise ′(X, u0), u0), let X ′01 = inc(raise ′(X0, u1), u1), let X ′1 =

inc(raise ′(X, u1), u1), and let X ′10 = inc(raise ′(X1, u0), u0). We consider the

following cases.

• Case 1: victim(X, u1, 1) 6= u1

– Case 1.1 victim(X, u0, 1) 6= u0. We begin by establishing the fol-

lowing sequence of claims.

90

1. potential(X0) = potential(X). Follows from the definition of

the function raise ′′ and the fact that victim(X, u0, 1) 6= u0.

2. u0 belongs to agents(X0, u1). Follows from Lemma 5.5.4 and

the fact that victim(X, u0) = victim(X, u1, 1) = u.

3. potential(X1) = potential(X). Follows from the definition of

the function raise ′′ and the fact that victim(X, u1, 1) 6= u1.

4. u1 belongs to agents(X1, u0). Follows from Lemma 5.5.4 and

the fact that victim(X, u1) = victim(X, u0, 1) = u.

We now consider two sub-cases.

(a) Case 1.1.2 victim(X0, u1, 1) 6= u1.

By claims 1 and 2, we have potential(X0) = potential(X1)

and by claims 2 and 4, we have u0 belongs to agents(X0, u1)

and u1 belongs to agents(X1, u0); thus victim(X1, u0, 1) 6=

u0.

Since victim(X, u0) = victim(X, u1) = u, it follows that

matched(X0) \ matched(X1) = {u0} and matched(X1) \

matched(X0) = {u1}. Further, by the definition of the

function raise, we have bid-graph(X0) = bid-graph(X1) and

for any agent u′ in nonwhite(X), there exists an item v′

in items(X) such that match(χ, v) = u′ for any config-

uration χ in X0 ∪ X1. Thus, by Lemma 5.5.3, we have

victim(X0, u1, 1) = victim(X1, u0, 1).

Further, by the definition of the function raise ′′, we have

91

potential(X01) = potential(X10). Since victim(X, u0) =

victim(X, u1) and victim(X0, u1, 1) = victim(X1, u0, 1), we

have matched(X01) = matched(X10).

(b) Case 1.1.2 victim(X0, u1, 1) = u1.

By claims 1 and 2, we have potential(X0) = potential(X1)

and by claims 2 and 4, we have u0 belongs to agents(X0, u1)

and u1 belongs to agents(X1, u0); thus agents(X0, u1) =

agents(X1, u0) and by the definition of the function raise ′′,

we have potential(X ′01) = potential(X ′10).

We know that victim(X, u0) = victim(X, u1) = u, thus

matched(X ′01) \matched(X ′10) = {u0} and matched(X ′10) \

matched(X ′01) = {u1}. Further, by the definition of the

function raise, we have bid-graph(X ′01) = bid-graph(X ′10)

and for any agent u′ in nonwhite(X), there exists an item

v′ in items(X) such that match(χ, v) = u′ for any con-

figuration χ in X ′01 ∪ X ′10. Thus, by Lemma 5.5.3, we

have victim(X ′01, u1, 0) = victim(X ′10, u0, 0). By the def-

inition of the function raise ′′, we have potential(X01) =

potential(X10).

Since victim(X, u0) = victim(X, u1) and victim(X ′01, u1, 0) =

victim(X10, u0, 0), we have matched(X01) = matched(X10).

– Case 1.2. victim(X, u0, 1) = u0. We begin by establishing the

following sequence of claims.

92

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X, u0)

and potential(X0, v) = potential(X, v) for any item v in items(X)\

items(X, u0). Follows from the fact that victim(X, u0, 1) = u0

and the definition of the function raise ′′.

2. gap(X0, u0) = 0. We have victim(X, u0, 1) = u0 and we have

victim(X, u0) = u; thus, u0 is matched by a raise ′′ invocation

and gap(X0, u0) = 0.

3. u0 belongs to agents(X0, u1). Since victim(X, u0) = victim(X, u1, 1),

by Lemma 5.5.4, we have u0 belongs to agents(X0, u1).

4. potential(X ′01) = potential(X0). By 2 and 3, we have u0 belongs

to nonpositive(X0) ∩ agents(X0, u1); thus by the definition of

the function raise ′, we have potential(X ′01) = potential(X0).

5. potential(X1) = potential(X). This follows from the fact that

victim(X, u1, 1) = u and the definition of the function raise ′.

6. potential(X ′10) = potential(X0). Since victim(X, u0, 1) = u,

we have nonpositive(X) ∩ agents(X, u0) = ∅, thus by 5 and

Lemma 5.5.1, we have items(X1, u0) = items(X, u0), and by

Lemma 5.5.2, we have nonpositive(X1) ∩ agents(X1, u0) = ∅;

thus by the definition of the function raise ′′ and 1, we have

potential(X ′10) = potential(X0).

7. u1 belongs to agents(X ′10, u0). Since victim(X, u0, 1) = u0,

we have victim(X, u0) = victim(X ′0, u0, 0) = u where X ′0 =

inc(raise ′(X, u0), u0). We have victim(X, u1, 1) = u. Thus, by

93

Lemma 5.5.5, we have u1 belongs to agents(X ′10, u0).

8. victim(X ′10, u0, 0) = victim(X0, u1, 1). By claims 4 and 6, we

have potential(X ′01) = potential(X ′10), and by claims 3 and 7

we know that u0 belongs to agents(X0, u1) and u1 belongs to

agents(X10′ , u0). It is now easy to see that matched(X0) \

matched(X ′10) = {u0} and matched(X ′10)\matched(X0) = {u1},

and by the definition of the function raise, for any agent in

nonwhite(X ′01), there exists an item in items(X) such that

match(χ, v) = u for any configuration in X0∪X ′10. Thus, it fol-

lows from Lemma 5.5.5 that victim(X ′10, u0, 0) = victim(X0, u1, 1).

By claims 4 and 6, we have potential(X01) = potential(X10). The

statement of the lemma assumes that victim(X, u0) = victim(X, u1)

and by claim 8, we have victim(X ′10, u0, 0) = victim(X0, u1, 1); thus

matched(X01) = matched(X10).

• Case 2: victim(X, u1, 1) = u1

– Case 2.1: victim(X, u0, 1) 6= u0

This case is symmetric to case 1.2.

– Case 2.1: victim(X, u0, 1) = u0. We begin by establishing the fol-

lowing sequence of claims.

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X, u0)

and potential(X0, v) = potential(X, v) for any item v in items(X)\

94

items(X, u0). Follows from the fact that victim(X, u0, 1) = u0

and the definition of the function raise ′′.

2. potential(X ′01, v) = potential(X, v)+1 for any v in items(X, u0)∪

items(X, u1) and potential(X ′01, v) = potential(X, v) for any v

in items(X)\items(X, u0)∪items(X, u1). Since victim(X, u1, 1) =

u1, we have nonpositive(X) ∩ agents(X, u1) = ∅; by 1 and

Lemma 5.5.1, we have items(X0, u1) = items(X, u1)\items(X, u0),

and by Lemma 5.5.2, we have nonpositive(X0)∩agents(X0, u1) =

∅; thus, claim 2 follows by the definition of the function raise ′′

and claim 1.

3. u0 belongs to agents(X ′01, u1). By claim 2, potential(X ′01) >

potential(X0); thus victim(X0, u1, 1) = u1 and victim(X0, u1) =

victim(X ′01, u1, 0); and by Lemma 5.5.5, we find that u0 belongs

to agents(X ′01, u1).

4. potential(X1, v) = potential(X, v)+1 for any item v in items(X, u1)

and potential(X0, v) = potential(X, v) for any item v in items(X)\

items(X, u1). Follows from the fact that victim(X, u0, 1) = u0

and the definition of the function raise ′′.

5. potential(X ′10, v) = potential(X, v)+1 for any v in items(X, u1)∪

items(X, u0) and potential(X ′10, v) = potential(X, v) for any

item v in items(X) \ items(X, u1)∪ items(X, u0). The analysis

is similar to claim 2.

6. u1 belongs to agents(X ′10, u0). By claim 5, potential(X ′10) >

95

potential(X1); thus victim(X1, u0, 1) = u0; and victim(X1, u0) =

victim(X ′10, u0, 0); and by Lemma 5.5.5, we find that u1 belongs

to agents(X ′10, u0).

7. victim(X ′10, u0, 0) = victim(X ′01, u1, 0). By claims 4 and 5, we

have potential(X ′01) = potential(X ′10) and by claims 3 and 6

we know that u0 belongs to agents(X ′01, u1) and u1 belongs

to agents(X ′10, u0). Since victim(X, u0) = victim(X, u1), we

have matched(X ′01)\matched(X ′10) = {u1} and matched(X ′10)\

matched(X ′10) = {u0}, and by the definition of the function

raise, for any agent in nonwhite(X ′01), there exists an item in

items(X) such that match(χ, v) = u for any configuration in

X ′01∪X ′10. It follows from Lemma 5.5.5 that victim(X ′10, u0, 0) =

victim(X ′01, u1, 0).

By claims 2 and 5, we have potential(X01) = potential(X10). The

statement of the lemma assumes that victim(X, u0) = victim(X, u1)

and by claim 7, we have victim(X ′10, u0, 0) = victim(X ′01, u1, 0);

thus, matched(X01) = matched(X10).

Lemma 5.5.9. For any quiescent ECC X and any agents u0 and u1 in

enabled(X), we have

raise(raise(X, u0), u1) = raise(raise(X, u1), u0).

96

Proof. Let X01 = raise(raise(X, u0), u1) and let X10 = raise(raise(X, u1), u0).

We first prove the following claim: potential(X01) = potential(X10)

and matched(X01) = matched(X10). By Lemma 5.5.7, the claim holds when

matched(X) ∩ {u0, u1} 6= ∅. It remains to show that the claim holds when

{u0, u1} ⊆ unmatched(X). By Lemma 5.5.8, the claim holds when {u0, u1} ⊆

unmatched(X) and victim(X, u0) = victim(X, u1). By Lemma 5.5.6, the claim

holds when {u0, u1} ⊆ unmatched(X) and victim(X, u0) 6= victim(X, u1).

It now remains to be shown that if potential(X01) = potential(X10)

and matched(X01) = matched(X10), then X01 = X10. Consider any agent u in

nonwhite(X); there exists an item v in items(X) such that match(χ, v) = u for

every configuration χ in X. Note that if u belongs to unmatched(raise(X, u0)),

then by the definition of the function raise, it follows that u belongs to

unmatched(X01). Using this fact and by repeated application of Lemma 5.4.1,

it follows that either u belongs to unmatched(X01) or match(χ, v) = u for every

configuration χ in X∪X01. By an identical argument, we find that either u be-

longs to unmatched(X10) or match(χ, v) = u for every configuration in X∪X10.

However, since we established above that matched(X01) = matched(X10), it

follows that match(χ, v) = u for every configuration χ in X ∪X01 ∪X10, and

hence, X01 = X10.

97

Chapter 6

Mid-Level Auction

In this chapter, we present the mid-level auction. The mid-level auction

is a sealed-bid unit-demand auction, and corresponds to a determinized, proxy-

based version of the bottom-level auction.

Recall from Chapter 5 that the bottom-level auction is dynamic. In

the mid-level auction, we associate with each agent u, a proxy agent u′ who

bids on behalf of u in the bottom-level auction. The bid of agent u in the

mid-level auction restricts the number of raise invocations of agent u′ in the

bottom-level auction.

The rest of this chapter is organized as follows. In Section 6.1, we ana-

lyze the bottom-level auction when each agent is associated with a restricted

bidding strategy — the unit-demand bid of an agent in the mid-level auction

restricts the number of raise invocations of the agent’s proxy in the underly-

ing bottom-level auction. In Section 6.2, we describe a particular tie-breaking

scheme that determinizes the raise operation described in Section 5.3 to yield

a unique allocation and pricing. In Section 6.3, we describe the mid-level

auction and establish some basic properties.

98

6.1 A Restricted Class of Bidding Strategies

In this section, we analyze the bottom-level auction when each agent

in the auction has a restricted “target” number of raise invocations.

We define a target as a function from the set of all agents to the set of

nonnegative integers. For any target s, any agent u, and any integer z such

that α(u)+z ≥ 0, we define shift(s, u, z) as the target s′ where s′(u) = α(u)+z

and s′(u′) = α(u′) for any agent u′ different from u. For any configuration χ =

(G,M,Φ) where G = (U, V, w), and any target s, we define shift(χ, s) as the

configuration (G′,M,Φ) where G′ = (U, V, w′) and w′(u, v) = w(u, v) + α(u)

for any agent u in U and any item v in V . For any ECC X and any target s,

we define shift(X, s) as ∪χ∈X [shift(χ, s)].

We view the bottom-level auction as taking a pair (X, s) as input, where

X is a quiescent ECC and s is a target, and updating this pair over a sequence

of rounds. For any agent u in X, the nonnegative integer α(u) represents

the number of additional raise invocations desired by agent u. In a general

round of the auction with input (X0, s0), a single agent u in enabled(X0)

having s0(u) > 0 invokes raise, and the output of the round, denoted by

raise(X0, u, s0) is given by (raise(X0, u), shift(s0, u,−1)). The auction termi-

nates when no enabled agent has pending raise invocations.

We define bottom(X, s) as the output of the bottom-level auction when

given the pair (X, s) as input. By Lemma 5.4.3 and Lemma 5.5.9, it follows

that bottom(X, s) is uniquely defined.

99

In Section 6.1.1, we establish various properties of bottom(X, s). These

properties are crucial for describing and analyzing the auctions of Chapters 7

and 8.

The facts below follow from the definition of the function raise and the

commutativity of raise invocations established in Lemma 5.5.9.

Fact 6.1.1. For any quiescent ECC X, any target s, and any agent u in

enabled(X), we have

bottom(raise(X, u), s) = bottom(X, shift(s, u, 1)).

Fact 6.1.2. For any quiescent ECC X0 of the form add(X, u, β) and any

target s, we have bottom(X0, s) = bottom(add(X ′, u, β), s′) where (X ′, s′) =

bottom(X, s).

Fact 6.1.3. For any quiescent ECC X, any agent u in white(X), and any

target s, if (X0, s0) = bottom(X, s), then

bottom(X, shift(s, u, 1)) = bottom(X0, shift(s0, u, 1)).

6.1.1 Properties

The goal of this section is to establish Lemma 6.1.10. Lemma 6.1.10

is useful in establishing truthfulness of first phase of the top-level auction of

Chapter 7.

[Definitions] For any quiescent ECC X and any target s, we define

matched(X, s) as the set of agents in matched(X ′), where (X ′, s′) = bottom(X, s).

100

For any quiescent ECC X, any target s, and any item v in items(X), we define

agents(X, s, v) as agents(X ′, v), where (X ′, s′) = bottom(X, s).

Lemma 6.1.1. For any quiescent ECC X, any quiescent ECC X ′ of the

form subst(X, u, u′), and any target s such that α(u) = α(u′), if u belongs

to matched(X) ∩ white(X), then gap(X0, u) = gap(X1, u
′), where (X0, s0) =

bottom(X, s) and (X1, s1) = bottom(X ′, s).

Proof. By Lemma 5.5.9, the raise invocations of the bottom-level auction in-

stances with inputs X and subst(X, u, u′) can be reordered such that at each

round, either the same agent invokes raise in both executions, or agents u and

u′ invoke raise in their corresponding executions. By the definitions of the

functions raise ′ and raise ′′, the executions treat agents u and u′ identically

until both agents attain a utility of zero. By Lemma 5.4.2, we know that u

and u′ remain white in every round of their corresponding executions, and by

Fact 5.3.2, we know that the potentials are nondecreasing over the rounds of

both executions. Thus, agents u and u′ continue to have zero utility for the

remainder of the executions, and we have gap(X0, u) = gap(X1, u
′).

Lemma 6.1.2. Let X be a quiescent ECC and let X ′ be a quiescent ECC of the

form subst(X, u, u′) such that for any agent u′′ in agents(X), we have u′′ < u

if and only if u′′ < u′. Let s and s′ be targets such that α(u) = s′(u′) and

α(u′′) = s′(u′′) for any agent u′′ in agents(X)− u. If (X0, s0) = bottom(X, s)

and (X1, s1) = bottom(X ′, s′), then gap(X0, u) + s0(u) = gap(X1, u
′) + s1(u′).

101

Proof. By Lemma 5.5.9, the raise invocations of the bottom-level auction in-

stances with inputs X and subst(X, u, u′) can be reordered such that at each

round, either the same agent invokes raise in both executions, or agents u and

u′ invoke raise in their corresponding executions. Since agents u and u′ have

the same relative ordering with respect to the agents in agents(X) − u, it is

easy to see that if X0 and X ′0 are the output ECCs corresponding to the same

round in both executions, then we have X ′0 = subst(X0, u, u
′).

Lemma 6.1.3. For any quiescent ECC X ′ of the form add(X, u, v, z) and any

target s, there exists a unique integer z∗ and a unique agent u∗ in agents(X)+ε

such that u belongs to matched(X ′, s) if and only if (z + s(u), u) > (z∗, u∗).

Moreover, if u belongs to matched(X ′, s), then potential(X ′′, v) = z∗ where

(X ′′, s′′) = bottom(X ′, s).

Proof. Let S be the ordered sequence of all pairs of the form (z′, u′) where

z′ is an integer and u′ is an agent that does not belong to agents(X) ∪ ε.

Consider any pair (z0, u0) in S such that z0 + s0(u) < potential(X0, v), where

s0 = subst(s, u0, α(u)) and (X0, s
′
0) = bottom(add(X, u0, v, z0), s0). By re-

peated application of Fact 5.3.2, we know that potential(X0) ≥ potential(X)

and by repeated application of Lemma 5.4.2, we have u0 belongs to white(X0).

Thus, u0 does not belong to matched(X0). Further, since u0 belongs to

white(X0), it follows that potential(X0, v) ≥ z0. Since prices cannot grow in-

definitely, there must be a first pair (z1, u1) > (z0, u0) in S such that u1 belongs

to matched(X1, s1) where X1 = add(X, u1, v, z1) and s1 = subst(s, u1, α(u)).

102

Consider the pair (z1, u2) where u2 is the maximum agent such that u2 < u1.

By Lemma 6.1.2, if u2 does not belong to agents(X) ∪ ε, then u2 and u1

have the same relative ordering with respect to the remaining agents in X

and thus, u2 belongs to matched(subst(X1, u1, u2), subst(s, u2, α(u))). How-

ever, we know that (z1, u1) is the first pair in S such that u1 belongs to

matched(X1, s1). Thus, it follows that u2 belongs to agents(X) ∪ ε. Consider

any pair (z3, u3) > (z1, u1) in S; by the definition of the bottom-level auction,

we find that u3 belongs to matched(subst(X1, u1, u3), subst(s, u3, α(u))). Thus

u∗ = u2 and z∗ = z1.

We now show that if u belongs to matched(X ′, s), then potential(X ′′, v) =

z∗ where (X ′′, s′′) = bottom(X ′, s). Suppose that potential(X ′′, v) < z∗. Then

consider the case where u < u∗ and z+α(u) = z∗. Since (z+α(u), u) < (z∗, u∗),

we have u belongs to unmatched(X ′′) and since z+α(u) > potential(X ′′, v), we

have u belongs to matched(X ′′); a contradiction. Suppose that potential(X ′′, v) >

z∗. Then consider the case where u > u∗ and z+α(u) = z∗. Since (z+α(u) +

z, u) > (z∗, u∗), we have u belongs to matched(X ′′) and since z + α(u) <

potential(X ′′, v), we have u belongs to unmatched(X ′′); a contradiction. It

follows that potential(X ′′, v) = z∗.

[Definitions] For any quiescent ECC X, any target s, and any item

v in items(X), we define threshold∗(X, s, v) as the unique pair (z∗, u∗) of

Lemma 6.1.3, and we define threshold∗(X, s) as the function that maps each

item v in items(X) to threshold∗(X, s, v). In addition, we define threshold(X, s, v)

as the integer z∗ and we define threshold(X, s) as the function that maps each

103

item v in items(X) to threshold(X, s, v).

Lemma 6.1.4. For any quiescent ECC X, any target s, and any agent u in

enabled(X), we have

threshold∗(X, s) ≤ threshold∗(raise(X, u), s).

Proof. Assume threshold∗(raise(X, u), s, v0) < threshold∗(X, s, v0) for some

item v0 in items(X). Let X0 be an ECC of the form add(X, u0, v0,min(v0))

and let s0 be a target such that

1. s0(u′) = α(u′) for any agent u′ in agents(X), and

2. threshold∗(raise(X, u), s, v0) < s0(u0) + min(v0) < threshold∗(X, s, v0)

Note that X0 is quiescent. We have threshold∗(X, s) = threshold∗(X, s0), and

threshold∗(raise(X, u), s) = threshold∗(raise(X, u), s0); thus,

threshold∗(raise(X, u), s0, v0) < s0(u0) + min(v0) < threshold∗(X, s0, v0)

Let (X1, s1) = bottom(X0, s0). Since s0(u0) + min(v0) is less than

threshold∗(X, s0, v0), by Lemma 6.1.3 we find that u0 belongs to unmatched(X1).

Since X0 is quiescent and u belongs to unmatched(X0), we have u belongs to

white(X0), and by repeated application of Lemma 5.4.2, we find that u0 be-

longs to white(X1). We conclude that s1(u0) = 0.

By Fact 6.1.1, bottom(raise(X0, u), s0) = bottom(X0, shift(s0, u, 1)),

and by Fact 6.1.3, bottom(X0, shift(s0, u, 1)) = bottom(X1, shift(s1, u, 1)). Since

104

threshold∗(raise(X, u), s0, v0) < s0(u0)+min(v0), by Lemma 6.1.3, we find that

u0 belongs to matched(raise(X0, u), s0), and since we established above that

s1(u0) = 0, we have u0 does not belong to matched(X1, shift(s1, u, 1)). Since

bottom(raise(X0, u), s0) = bottom(X1, shift(s1, u, 1)), this yields a contradic-

tion. Thus, we have threshold∗(X, shift(s, u, 1)) ≤ threshold∗(raise(X, u), s).

Lemma 6.1.5. For any quiescent ECC X0 of the form add(X, u, β) and any

target s, if u does not belong to matched(X0, s), then threshold∗(X0, s) =

threshold∗(X, s).

Proof. Let (X ′, s′) = bottom(X, s) and let (X ′0, s
′
0) = bottom(X0, s). By

Fact 6.1.2, we have bottom(X0, s) = bottom(add(X ′, u, β), s′). By repeated ap-

plication of Lemma 6.1.4, it follows that threshold∗(X ′0, s
′
0) ≥ threshold∗(X ′, s′).

Suppose threshold∗(X ′, s′, v1) < threshold∗(X ′0, s
′
0, v1) for some v1 in items(X).

Let X1 = add(X0, u1, v1,min(v1)) for some agent u1, and let s1 be a target

such that

1. threshold∗(X ′, s′, v1) < (s1(u1) + min(v1), u1) < threshold∗(X ′0, s
′
0, v1),

and

2. s1(u′) = α(u′) for any u′ in agents(X0). Note that threshold∗(X0, s0) =

threshold∗(X0, s1)

Similarly, threshold∗(X1, s0) = threshold∗(X1, s1).

105

Let X2 = add(X, u1, v1,min(v1)); then it follows from above that

X1 = add(X2, u, β). Let (X ′2, s
′
2) = bottom(X2, s1); by Fact 6.1.2, we find that

bottom(X1, s1) = bottom(add(X ′2, u, β), s′2). By Lemma 6.1.3, since min(v0) +

s1(u1) > threshold∗(X ′, s′, v1) and threshold∗(X ′0, s
′
0) ≥ threshold∗(X ′, s′), u0

is in matched(X ′2, s
′
2). By Lemma 6.1.4, threshold∗(X ′2, s

′
2) ≥ threshold∗(X, s1),

and since u is not in matched(X0, s1), agent u does not belong to matched(X1, s1);

thus u1 belongs to matched(X1, s1).

Since u belongs to enabled(X1), by Fact 6.1.2, it follows that

bottom(add(X ′0, u1, v1,min(v1)), s′1) = bottom(X1, s1)

By Lemma 6.1.3, since min(v0)+s0(u0) < threshold∗(X ′0, s
′
0, v1), agent u0 does

not belong to matched(X ′0, s
′
1); thus u and u1 do not belong to matched(X1, s1),

a contradiction.

[Definitions] For any quiescent ECC X, any target s, and any item

v in items(X), we define price(X, s, v) as potential(X ′, v) where (X ′, s′) =

bottom(X, s), and we define price(X, s) as the function that maps every item

v in items(X) to price(X, s, v).

[Definitions] For any quiescent ECC X, any target s, and any item v

in items(X), we define price∗(X, s, v) as (price(X, s, v), u0), where u0 is the

maximum agent in agents(X, s, v). In addition, we define price∗(X, s) as the

function that maps each item v in items(X) to price∗(X, s, v).

Lemma 6.1.6. For any quiescent ECC X and any target s, we have

price∗(X, s) ≤ threshold∗(X, s)

106

Proof. Assume that there exists an item v in items(X) such that price∗(X, s, v) >

threshold∗(X, s, v). Let (X ′, s′) = bottom(X, s). LetX0 = add(X ′, u, v,min(v))

for some agent u, and let s0 be a target such that

1. threshold∗(X, s, v) < s0(u) + min(v) < price∗(X, s, v), and

2. s0(u′) = s′(u′) for any agent u′ in agents(X).

Note thatX0 is quiescent. It is easy to see that threshold∗(X, s) = threshold∗(X ′, s′) =

threshold∗(X ′, s0); thus threshold∗(X ′, s0, v) < s0(u) + min(v).

We have bottom(X0, s0) = bottom(add(X ′, u, v,min(v)), subst(s′, u, s0(u))).

Thus, by repeated application of Fact 5.3.2, we have

price∗(X0, s0) ≥ price∗(X ′, s′) ≥ price∗(X, s)

Thus, threshold∗(X ′, s0, v) < s0(u) + min(v) < price∗(X0, s0, v).

Let (X ′0, s
′
0) = bottom(X0, s0). By Lemma 6.1.3, since s0(u)+min(v) >

threshold∗(X ′, s0, v) we find that u belongs to matched(X ′0). Since u belongs

to unmatched(X0), we find that u belongs to white(X0); thus, by repeated

application of Lemma 5.4.2, we have u belongs to white(X ′0). However, since

s0(u) + min(v) < price∗(X, s, v), it follows that u belongs to nonwhite(X ′0),

thus yielding a contradiction. Thus, price∗(X, s) ≤ threshold∗(X, s).

Lemma 6.1.7. Let X0 be a quiescent ECC. Let u0 be an agent in unmatched(X0)

and let X1 be a quiescent ECC of the form subst(X0, u0, u1), where u1 <

u0. Then for any target s such that α(u0) = α(u1), we have gap(X ′0, u0) =

gap(X ′1, u1), where (X ′0, s
′
0) = bottom(X0, s) and (X ′1, s

′
1) = bottom(X1, s).

107

Proof. Let β = bid(bid-graph(X0), u) and let X be the ECC such that X0 =

add(X, u, β). Observe thatX andX1 are quiescent. Let (X ′, s′) = bottom(X, s).

By Fact 6.1.2, we have bottom(X0, s) = bottom(add(X ′, u0, β), s′) and we have

bottom(X1, s) = bottom(subst(X0, u0, u1), s′). We refer to the instance of the

bottom-level auction with inputs X0 and s as execution A and we refer to the

instance of the bottom-level auction with inputs X1 and s as execution B. By

Lemma 5.5.9, raise invocations of executions A and B can be reordered such

that agents u0 and u1 exhaust their raise invocations before any other agent

invokes the function raise. If u0 and u1 are unmatched when they exhaust

their raise invocations, then by the description of the bottom-level auction,

agents u0 and u1 have zero utility in executions A and B respectively, and

they continue to have zero utility for the rest of the corresponding executions;

thus gap(X ′0, u0) = gap(X ′1, u1) = 0.

For the remainder of this proof, we may assume that consider the fol-

lowing cases at least one of agents u0 and u1 is matched by a raise invo-

cation in either execution A or execution B. Let k be the first round in

which either u0 or u1 is matched and let Xk and X ′k be the output ECCs of

round k of executions A and B. By repeated application of Lemma 5.4.5, we

have gap(Xk, u0) = gap(X ′k, u1) = 0, and either Xk = subst(X ′k, u1, u0), or

raise(Xk, u0) = raise(X ′k, u1).

First we consider the case where Xk = subst(X ′k, u1, u0). In this case,

u0 belongs to matched(Xk) ∩ white(Xk) and u1 belongs to matched(X ′k) ∩

white(X ′k); thus, by Lemma 6.1.1 we have gap(X ′0, u0) = gap(X ′1, u1).

108

Next we consider the case where Xk 6= subst(X ′k, u1, u0). If agents

u0 and u1 have exhausted their raise invocations, then by the description

of the bottom-level auction, they continue to have zero utility for the rest

of the auction; if u0 and u1 have one or more pending raise invocations,

then by Lemma 5.4.5, raise(Xk, u0) = subst(raise(X ′k, u0), u1, u0), and by

Lemma 6.1.1, we have gap(X ′0, u0) = gap(X ′1, u1).

Lemma 6.1.8. Let X be a quiescent ECC of the form add(X0, u, β) and for

each item v in items(X), let Xv = add(X0, u, v, z) where z = β(v). Then

for any target s, agent u belongs to matched(X, s) if and only if u belongs to

matched(Xv, s) for some item v in items(X).

Proof. We refer to the bottom-level auction instance with inputs (X, s) as

execution A, and for each item v, we refer to the bottom-level auction instance

with input (Xv, s) as execution Av. We represent the output of round i of

execution A by (Xi, si), and for any v in V , we represent the output of round

i of execution Av by (Xv,i, sv,i). Note that agent u is unmatched and therefore

enabled in all rounds of all executions under consideration. By Lemma 5.5.9,

we choose to defer the raise invocations of agent u in each execution to a round

j in which u is the only enabled agent. Further, we choose to allow the same

agent to invoke raise in each round of every execution.

We now allow agent u to exhaust its raise invocations in rounds j to k

of all executions, where k = j + α(u). We consider the following two cases.

109

• Case (1) : (β(v) + α(u), u) < threshold∗(X,α(u), v) for every item v in

items(X).

By Lemma 6.1.3, since (β(v)+α(u), u) < threshold∗(X,α(u), v) for every

item v in items(X), we find that u does not belong to matched(Xv, s) and

thus u belongs to unmatched(Xv,k) for every item v in items(X). Assume

that u belongs to matched(X, s); thus, u belongs to matched(Xk). Let s′

be a target such that s′(u′) = sk(u
′) for any u′ in agents(Xk) and for any

agent of the form uv where v is an item in items(X), we have (β(v) +

α(u), u) < (s′(uv) + min(v), uv) < threshold∗(X, s, v). By Lemma 6.1.4,

we have threshold∗(X, s) ≤ threshold∗(Xk, s
′); thus, we have (β(v) +

α(u), u) < (s′(uv) + min(v), uv) < threshold∗(Xk, s
′, v) for any item v in

items(X).

Let X ′ be an ECC that is constructed from Xk as follows: initialize X ′ =

Xk, and for each item v in items(X), set X ′ = add(X ′, uv, v,min(v)).

Consider the execution A′ of the bottom-level auction with input (X ′, s′),

and for any round i of execution A′, let (X ′i, s
′
i) represent the output of

round i of execution A′. We now use Lemma 5.5.9, to allow all agents in

∪v∈items(X)uv to exhaust their raise invocations. If m is the last round of

the raise invocations by agents in ∪v∈items(X)uv, then by Lemmas 6.1.3,

since (s′(uv)+min(v), uv) < threshold∗(Xk, s
′, v) for every item v, we find

that agent uv belongs to unmatched(X ′m) for every v in items(X), and

by Lemma 6.1.5, we have threshold∗(X ′m, s
′
m) = threshold∗(Xk, sk). Since

every agent uv belongs to unmatched(X ′m) and X ′m is quiescent, we have

110

potential(X ′m, v) ≥ (s′(uv) + min(v), uv) for every item v in items(X);

thus by Fact 5.3.2, we have price∗(X ′, s′, v) ≥ (s′(uv) + min(v), uv) for

every item v. Since (β(v) + α(u), u) < (s′(uv) + min(v), uv) for every

item v, we have price∗(X ′, s′, v) ≥ (β(v) + α(u), u) for every item v.

However, by repeated use of Lemma 5.4.2, agent u is white at the end of

execution A′, and by our assumption that u belongs to matched(X, s),

we have price∗(X ′, s′, v) < (β(v) + α(u), u) for some item v; this yields

a contradiction. Thus, we have u does not belong to matched(X, s).

• Case (2) : (β(v) + α(u), u) > threshold∗(X, s, v) for some item v in

items(X).

By Lemma 6.1.3, since (β(v) + α(u), u) > threshold∗(X, s, v) for some

item v in items(X), we find that u belongs to matched(Xv, s) for some

item v in items(X). Assume that u does not belong to matched(X, s).

Consider the execution A′ defined as in Case 1 above. By Lemma 6.1.5,

we have threshold∗(Xk, sk) = threshold∗(X ′m, s
′
m). By Lemma 6.1.6,

we have price∗(X ′m, s
′
m) ≤ threshold∗(Xk, sk). Thus, there exists some

item v in items(X) such that u belongs to unmatched(X ′m) and (β(v) +

α(u), u) > price∗(X ′m, s
′
m, v); this violates the quiescent property of X ′m.

Thus, u belongs to matched(X, s).

We conclude that agent u belongs to matched(X, s) if and only if u

belongs to matched(Xv, s) for some item v in items(X), as required.

111

Lemma 6.1.9. Let X be a quiescent ECC of the form add(X0, u, β), let s be a

target, and for each item v in items(X), let Xv = add(X0, u, v, z), where z =

β(v). Then, we have gap(X ′, u)+s′(u) = maxv∈items(X){gap(X ′v, u)+sv′(u)},

where (X ′, s′) = bottom(X, s) and (X ′v, s
′
v) = bottom(Xv, s) for each item v

in items(X).

Proof. By Lemma 6.1.7, if (X∗, s∗) = bottom(add(X0, u
′, β), s) for any agent

u′, then gap(X ′, u) = gap(X∗, u′). Thus, without loss of generality, we can as-

sume that u > u′ for any agent u′ in agents(X). By Lemma 6.1.8, u belongs to

matched(X ′) if and only if u belongs to matched(X ′v) for some v in items(X0).

Thus, if u belongs to unmatched(X ′), we have gap(X ′, u) = gap(X ′v, u) = 0

for all v in items(X).

We now focus on the case where u belongs to matched(X ′). Let z be the

largest integer such that u belongs to matched(shift(X ′, u,−z)). By Fact 6.1.3,

we have (X ′, s′) = (X ′′, shift(s′′, u, z)) where (X ′′, s′′) = bottom(shift(X, u,−z), s);

thus gap(X ′, u) + s′(u) = gap(X ′′, u) + s′′(u) + z. By Lemma 6.1.8, agent

u belongs to matched(X ′′v) for some item v in items(X), where (X ′′v , s
′′
v) =

bottom(shift(Xv, u,−z), s).

By Fact 6.1.3, we have (X ′v, s
′
v) = bottom(X ′′v , shift(s′v, u, z)); thus we

have gap(X ′v, u) + s′v = gap(X ′′v , u) + s′′v(u) + z. Since u belongs to white(X)∩

white(Xv), we have s′′(u) = s′′v(u) = 0. To complete the proof, it remains to

be shown that gap(X ′′v , u) = gap(X ′′v , u).

Let the bottom-level auction instance with input (shift(X, u,−z), s) as

112

execution A, and for each item v, let the bottom-level auction instance with

input (shift(Xv, u,−z), s) as execution Av. We represent the output of round

i of execution A by (Xi, si), and for any v in V , we represent the output of

round i of execution Av by (Xv,i, sv,i). Since u belongs to unmatched(X), it

follows that u belongs to enabled(X) ∩ enabled(Xv). By Lemma 5.5.9, we

choose to allow agent u to first exhaust its raise invocations in all executions.

Since u > u′ for any agent u′ in agents(X), it follows that for each round j in

which u invokes raise, either u belongs to unmatched(Xj)∩unmatched(Xv,j) or

there exists a first round j such that u belongs to matched(X ′j) and u belongs

to matched(X ′v,j) for some item v in items(X). Since z was chosen to be

the largest integer such that u belongs to matched(shift(X ′, u,−z)), we have

gap(Xj, u) = gap(Xv,j, u) = 0, and thus gap(X ′′, u) = gap(X ′′v , u) = 0.

Lemma 6.1.10. Let X ′ be a quiescent ECC of the form add(X, u, β) and let

(X ′′, s′′) = bottom(X ′, s) for some target s. Let ∆ denote the maximum, over

all items v in items(X), of β(v)+α(u)−threshold(X, s, v), and let V denote the

set of all items v in items(X) such that β(v) + α(u)− threshold(X, s, v) = ∆.

Let u0 denote the minimum, over all items v in V of the second component of

the pair given by threshold∗(X, s, v). Then the following conditions hold:

• If the pair (∆, u) < (0, u0), then agent u belongs to unmatched(X ′′), and

threshold∗(X ′, s) = threshold∗(X, s).

• If the pair (∆, u) > (0, u0), then agent u belongs to matched(X ′′) and,

(1) for every configuration χ in X ′′, there exists an item v in V such

113

that match(χ, v) = u, and (2) potential(X ′′, v) = threshold(X, s, v) for

any item v in V .

Proof. First, we show that u belongs to matched(X ′′) if and only if (∆, u) >

(0, u0).

Let v0 be any item in items(X); thus, we find that β(v0) + α(u) −

threshold(X, s, v0) = ∆. If (∆, u) < (0, u0), then by adding threshold(X, s, v0)

to the first component of both pairs, we find that

(β(v0) + α(u), u) < (threshold(X, s, v0), u0)

Similarly, if (∆, u) > (0, u0), we have (β(v0)+α(u), u) > (threshold(X, s, v0), u0).

By Lemma 6.1.3, it follows that agent u belongs to matched(add(X, u, v0, β(v0)), s)

if and only if (β(v0) + α(u), u) > (threshold(X, s, v0), u0). Additionally, by

Lemma 6.1.8, we find that agent u belongs to matched(X ′′) = matched(X ′, s)

if and only if there exists some item v′ in items(X) such that agent u be-

longs to matched(add(X, u, v′, β(v′)), s); thus, we find that agent u belongs to

matched(X ′′) if and only if (∆, u) > (0, u0).

Next we show that if agent u does not belongs to matched(X ′′), then

threshold∗(X ′, s) = threshold∗(X, s). The result follows directly from Lemma 6.1.5.

Finally, we show that if agent u belongs to matched(X ′′), then (1) and

(2) stated above hold. By Lemma 6.1.9, if agent u belongs to matched(X ′′),

then we have gap(X ′′, u) = max v∈items(X){gap(X ′v, u)}, where X ′v is equal

to bottom(add(X, u, v, β(v)), s), and by Lemma 6.1.3, it follows that ∆ =

114

max v∈items(X){gap(X ′v, u)}; thus gap(X ′′, u) = ∆. Let v0 be any item in

V . By Lemma 6.1.6, we have potential(X ′′, v0) ≤ threshold(X, s, v0), and

since gap(X ′′, u) = ∆, we have potential(X ′′, v0) ≥ threshold(X, s, v0); thus

potential(X ′′, v0) = threshold(X, s, v0) and condition (1) holds. Now consider

any item v not in V . By definition, we have

β(v) + α(u)− threshold∗(X, s, v) < ∆. (3)

By Lemma 6.1.6, we have

potential(X ′′, v) ≤ threshold∗(X, s, v). (4)

By subtracting (4) from (3), we have β(v)+α(u)−potential(X ′′, v) < ∆; since

u belongs to white(X ′′), agent u attains its highest utility by being matched

to some item in V in every configuration of X ′′ and condition (2) holds.

6.2 A Determinized Raise Operation

We have been dealing with ECCs in the discussion of the bottom-

level auction in the current and previous chapters. The inputs and outputs

of our top-level auction are configurations; accordingly, we define a suitable

determinization of the bottom-level auction.

For any quiescent configuration χ and any agent u in enabled(χ), we

would like to define raise(χ, u) as a specific configuration in raise([χ], u) such

that for any agent u0 in enabled(χ), if u does not belong to matched(χ) ∩

unmatched(raise(χ, u0)), then raise(raise(χ, u0), u) = raise(raise(χ, u), u0).

115

In order to do so, we determinize the choice of the augmenting path in function

augment defined in Section 5.2. Specifically, we pick a lexicographically first

(with respect to item identifiers) shortest path.

6.3 Description

The input to the mid-level auction is a pair (χ, s), where χ is a quiescent

configuration and s is a target.

We view the bottom-level auction instance as taking the pair (χ, s) as

input, and updating this pair over a sequence of rounds. A general round of the

bottom-level auction with input (χ0, s0) is defined as follows: if enabled(χ0) =

∅, then the auction terminates; if the minimum agent in matched(χ0)∩enabled(χ0) =

ε then the minimum agent in enabled(χ0) invokes raise; otherwise, the mini-

mum agent in matched(χ0) ∩ enabled(χ0) invokes raise.

The output of the mid-level auction is defined to be bottom(χ, s), the

output of the bottom-level auction when given the pair (χ, s) as input.

Below we establish some key lemmas relating to the mid-level auction.

Lemma 6.3.1. For any configuration χ′ of the form raise(χ, u′), and any

agent u in nonwhite(χ), either (1) u belongs to unmatched(χ′), or (2) u

belongs to nonwhite(χ′), and there exists an item v in items(χ) such that

potential(χ, v) = potential(χ′, v) and match(χ, v) = match(χ′, v) = u.

Proof. Let X ′ = raise([χ], u′). By definition, χ′ belongs to X ′. The result

follows from Lemma 5.4.1.

116

Lemma 6.3.2. For any quiescent configuration χ and any agent u in enabled(χ),

if χ′ = raise(χ, u), then

gray(χ) ⊆ nonblack(χ′) ∧ white(χ) ⊆ white(χ′).

Proof. Let X ′ = raise([χ], u). By definition, χ′ belongs to X ′. The result

follows from Lemma 5.4.2.

Lemma 6.3.3. For any quiescent configuration χ and any agent u in enabled(χ),

we have enabled(χ)− u ⊆ enabled(raise(χ, u)).

Proof. Let X ′ = raise([χ], u). By definition, raise(χ, u) belongs to X ′. The

result follows from Lemma 5.4.3.

Lemma 6.3.4. For any quiescent configuration χ, any quiescent configura-

tion χ′ of the form subst(χ, u, u′), and any target s such that α(u) = α(u′),

if u belongs to matched(χ) ∩ white(χ), then gap(χ0, u) = gap(χ1, u
′), where

(χ0, s0) = bottom(χ, s) and (χ1, s1) = bottom(χ′, s).

Proof. Let X = [χ] and let X ′ = [χ′]. Let (X0, s0) = bottom(X, s) and let

(X1, s1) = bottom(X ′, s). By definition, χ0 belongs to X0 and χ1 belongs to

X1. The result follows from Lemma 6.1.1.

Lemma 6.3.5. Let χ be a quiescent configuration and let χ′ be a quiescent con-

figuration of the form subst(χ, u, u′) such that for any agent u′′ in agents(χ),

we have u′′ < u if and only if u′′ < u′. Let s and s′ be targets such that

α(u) = s′(u′) and α(u′′) = s′(u′′) for any agent u′′ in agents(χ) − u. If

117

(χ0, s0) = bottom(χ, s) and (χ1, s1) = bottom(χ′, s′), then gap(χ0, u)+s0(u) =

gap(χ1, u
′) + s1(u′).

Proof. Let X = [χ] and let X ′ = [χ′]. Let (X0, s0) = bottom(X, s) and let

(X1, s1) = bottom(X ′, s′). By definition, χ0 belongs to X0 and χ1 belongs to

X1. The result follows from Lemma 6.1.2.

Lemma 6.3.6. Let χ′ be a quiescent configuration of the form add(χ, u, β) and

let (χ′′, s′′) = bottom(χ′, s) for some target s. Let ∆ denote the maximum, over

all items v in items(χ), of β(v)+α(u)−threshold(χ, s, v), and let V denote the

set of all items v in items(χ) such that β(v) + α(u) − threshold(χ, s, v) = ∆.

Let u0 denote the minimum, over all items v in V of the second component of

the pair given by threshold∗(χ, s, v). Then the following conditions hold:

• If the pair (∆, u) < (0, u0), then agent u belongs to unmatched(χ′′), and

threshold∗(χ′, s) = threshold∗(χ, s).

• If the pair (∆, u) > (0, u0), then agent u belongs to matched(χ′′) and,

(1) for every configuration χ in χ′′, there exists an item v in V such that

match(χ, v) = u, and (2) potential(χ′′, v) = threshold(χ, s, v) for any

item v in V .

Proof. Let X = [χ] and let X ′ = [χ′]. Let (X ′′, s′′) = bottom(X ′, s). By

definition, χ′′ belongs to X ′′. The result follows from Lemma 6.1.10.

118

Lemma 6.3.7. For any quiescent configuration χ and any agents u0 and u1

in enabled(χ), we have

raise(raise(χ, u0), u1) = raise(raise(χ, u1), u0).

Proof. By the definition of the function raise that takes an ECC as an ar-

gument, either u0 does not belong to matched(χ)∩ unmatched(raise([χ], u1)),

or u1 does not belong to matched(χ) ∩ unmatched(raise([χ], u0)). The result

follows from the definition of the function raise that takes a configuration as

argument.

119

Chapter 7

Top-Level Auction

The top-level auction is a sealed-bid unit-demand auction consisting of

two phases. The first phase corresponds to running an instance of the mid-

level auction and the second phase corresponds to solving an instance of the

house allocation problem [37]. The sealed-bid unit-demand auction proposed

in this dissertation is a variant of the top-level auction that admits a fast

implementation.

We provide a formal description of the first and second phases of the

top-level auction in the following sections. Here we briefly mention some of

the high-level ideas underlying the design of the first phase. To ensure that

the price of an item v does not decrease, at the outset of the first phase, we

tentatively impose the following obligation on the agent u who is the target

of item v’s put: Agent u will remain allocated to v at the strike price of v.

Next, we drop the bids of all agents sufficiently until equilibrium properties

1, 2, and 3 of Section 4.3 are satisfied. The first phase then proceeds to

update the tentative allocation and pricing in an iterative manner by invoking

the mid-level auction. In Section 8.7, we discuss a fast implementation of

this iterative procedure. In our fast implementation, each iteration either

120

permanently releases an initially tentatively allocated agent from its obligation,

or eliminates an unallocated agent whose unit-demand bid is too low to ever

be allocated. The latter property ensures termination of the first phase.

The rest of this chapter is organized as follows. In Sections 7.1 and 7.2,

we describe the first and second phases respectively of the top-level auction.

In Section 7.3, we establish some basic properties of the top-level auction. In

Section 7.4, we show that the top-level auction is truthful.

7.1 First Phase

For any configuration χ, we define top ′0(χ) as follows. Let χ0 be a

quiescent configuration and let s0 be a target such that χ = shift(χ0, s0),

white(χ0) ∩ matched(χ0) = ∅, and for any agent u in unmatched(χ), we

have items(χ0, u) = ∅. We define top ′0(χ) as the configuration shift(χ′, s′),

where (χ′, s′) = bottom(χ0, s0). The uniqueness of top ′0(χ) is established by

Lemma 7.3.1.

7.2 Second Phase

The second phase of the top-level auction affects only the allocation

and uses a single application of either the TTC algorithm [37] or the TC≺

algorithm of Jaramillo and Manjunath [19] to exchange items within a certain

subset of the allocated agents.

For any configuration χ = (G,M,Φ), we define an instance of the

121

house allocation problem on χ as follows. Each agent in black(χ) represents

a house owner and the item matched to u in M represents the house owned

by u. Each agent u in black(χ) is associated with a preference ordering over

the items as follows, where β = bid(χ, u): for any pair of items v and v′, if

β(v)− Φ(v) > β(v′)− Φ(v′), then agent u prefers item v over item v′; ties, if

any, are broken using item identifiers.

For any configuration χ, we define top ′′(χ) as the configuration obtained

by using the TTC algorithm to resolve the house allocation problem defined on

χ. Alternatively, the second phase of the top-level auction can be implemented

using the polynomial time TC≺ algorithm. The TC≺ algorithm has a slower

running time than the TTC algorithm but yields an outcome with stronger

efficiency-related properties than the TTC algorithm. (see Section 8.5 for

details.)

For any instance of the top-level auction with configuration χ as input,

the second phase of the top-level auction takes the configuration χ′ = top ′0(χ)

as input and produces the configuration top ′′(χ′) as output. For any instance of

the top-level auction with configuration χ as input, the output of the top-level

auction is given by top ′′(top ′0(χ)).

Recall that equilibrium properties 1, 2, and 3 of Section 4.3 are satisfied

by the first phase of the top-level auction. In the second phase, item prices and

the allocation of non-black agents remain unchanged. Thus, it is easy to see

that equilibrium properties 1, 2, and 3 are retained in the second phase. The

second phase involves resolving an instance of the house allocation problem on

122

the subset of black agents; thus, by definition, equilibrium properties 4(a) and

4(b) are satisfied. Finally, it follows from known results on the TC≺ (TTC)

algorithm that the solution computed in the second phase is in the (weak)

core. This establishes equilibrium property 5 of Section 4.3.

Fact 7.2.1. For any configuration χ′ of the form top′′(χ) where χ = (G,M,Φ)

and χ′ = (G,M ′,Φ′), we have Φ′ = Φ, unmatched(χ′) = unmatched(χ), and

white(χ) ⊆ white(χ′).

Fact 7.2.2. For any configuration χ = (G,M,Φ), if top(χ) = (G,M ′,Φ′),

then Φ′ ≥ Φ.

7.3 Properties

The following lemmas establish basic properties of the top-level auction.

Lemma 7.3.1. Let χ0 and χ1 be configurations and let s0 and s1 be targets

such that (1) configurations χ0 and χ1 are quiescent, and χ = shift(χ0, s0) =

shift(χ1, s1), (2) white(χ0)∩matched(χ0) = white(χ1)∩matched(χ1) = ∅, and

(3) for any agent u in unmatched(χ), we have items(χ0, u) = items(χ1, u) = ∅.

Then, we have bottom(χ0, s0) = bottom(χ1, s1).

Proof. Let s∗ be the target such that for any agent u in agents(χ), we have

s∗(u) = min(s0(u), s1(u)), and let χ = shift(χ∗, s∗); thus s0(u) ≥ s∗(u). Let S

be the set of agents u in agents(χ) such that s0(u) > s∗(u). By the definitions

of s0 and s∗, for any agent u in S, we find that u belongs to enabled(χ0) and

raise(χ0, u) = shift(χ0, u0, 1); by repeated use of this fact and Lemma 6.3.7,

123

agents in S can commute their raise invocations forward until each agent u

in S has s∗(u) pending raise invocations and the resulting configuration is

χ∗; thus, bottom(χ0, s0) = bottom(χ∗, s∗). By a similar argument, we have

bottom(χ1, s1) = bottom(χ∗, s∗). Thus, bottom(χ0, s0) = bottom(χ1, s1).

Lemma 7.3.2. The second phase of the top-level auction is truthful.

Proof. Consider any configuration χ′ of the form top ′′(χ). The second phase of

the top-level auction, which is implemented using an application of the TTC

algorithm or the TC≺, updates only the matching of black agents. By known

results on the truthfulness of the TTC and TC≺ algorithms, the second phase

of the top-level auction is truthful for agents in black(χ). By Fact 7.2.1, we

have potential(top ′′(χ)) = potential(χ); thus no agent u in nonblack(χ) can

achieve a utility higher than gap(χ, u) by submitting a false bid. Thus, the

second phase of the top-level auction is truthful.

Lemma 7.3.3. For any configuration χ0 of the form subst(χ, u, β), if β 6=

bid(bid-graph(χ), u), then either top′0(χ0) = subst(top′0(χ), u, β) or u belongs

to white(top′0(χ)) ∩ white(top′0(χ0)).

Proof. It follows from the description of the bottom-level auction, that ei-

ther u is unmatched in the same round of both bottom-level auction in-

stances and hence u belongs to white(top ′0(χ)) ∩ white(top ′0(χ0)), or u re-

mains matched throughout to the same item in both auction instances and

top ′0(χ0) = subst(top ′0(χ), u, β).

124

7.4 Truthfulness

A sealed-bid auction is said to be truthful if it is a weakly dominant

strategy for every agent in the auction to bid truthfully. Formally, we say

the first phase of the top-level auction is truthful if it satisfies the following

condition: for any configuration χ and any agent u in agents(χ), if χ′ =

subst(χ, u, β) for some bid β in bids(bid-graph(χ)), then

gap(top ′0(χ), u) ≥ gap(χ′′, u)

where χ′′ = subst(top ′0(χ′), u, bid(χ, u)).

In what follows, we establish Lemma 7.4.3 on the truthfulness of the

top-level auction. We establish Lemma 7.4.1 based on the claim of Lemma 6.3.6

of Section 6.1.1. Lemma 7.4.2 follows from Lemma 7.4.1. The proof of

Lemma 7.4.3 follows from Lemma 7.4.2 and known results on the truthful-

ness of the TTC and TC≺ algorithms.

We use the claims of this section to establish Lemma 8.4.10 on the

truthfulness of our proposed sealed-bid unit-demand auction in Section 8.4.

Lemma 7.4.1. For any configuration χ, any agent u in agents(χ) where

bid(bid-graph(χ), u) = β′, and any configuration χ′ of the form subst(χ, u, β)

where β is a bid in bids(bid-graph(χ)), we have

gap(top′0(χ), u) ≥ gap(subst(top′0(χ′), u, β′), u).

Proof. Let χ = shift(χ0, s0), where χ0 is a quiescent configuration and s0

is a target such that white(χ0) ∩ matched(χ0) = ∅, and for any agent u in

125

unmatched(χ), we have items(χ0, u) = ∅. By definition, top ′0(χ) = shift(χ′0, s
′
0),

where (χ′0, s
′
0) = bottom(χ0, s0). Note that threshold∗(χ, s0) = threshold∗(χ, s0).

Similarly, let χ′ = shift(χ1, s1), where χ1 is a quiescent configuration and s1

is a target such that white(χ1) ∩ matched(χ1) = ∅, and items(χ1, u) = ∅ for

any agent u in unmatched(χ). By definition, top ′0(χ′) = shift(χ′1, s
′
1), where

(χ′1, s
′
1) = bottom(χ1, s1).

Let βT = bid(bid-graph(χ), u) and let χ′′ = subst(χ′1, u, βT). Assume

that gap(top ′0(χ), u) < gap(subst(top ′0(χ′), u, βT), u); thus gap(χ′0, u)+s′0(u) <

gap(χ′′, u) + s′1(u).

We first consider the case where u belongs to unmatched(χ). By re-

peated application of Lemma 6.3.2, we find that u belongs to white(χ′0) ∩

white(χ′1) and s′0(u) = s′1(u) = 0; thus, by our assumption, gap(χ′0, u) <

gap(χ′′, u). Since gap(χ′0, u) < gap(χ′′, u) and u belongs to white(χ′0), we have

gap(χ′′, u) ≥ 1; thus u belongs to matched(χ′1). By Lemma 6.3.7, we choose

to defer the raise invocations of u until a round in which u is the only remain-

ing enabled agent with pending raise invocations. Let (χa, sa) be the input

of the first round in which u invokes the function raise in the bottom-level

auction instance with input (χ0, s0), and let χ′a be the configuration such that

χa = add(χ′a, u, βT). Let (χb, sb) be the input of the first round in which

u invokes the function raise in the bottom-level auction instance with input

(χ1, s1), and let χb
′ be the configuration such that χb = add(χ′b, u, β). Let S ′ be

the set of items v in items(χ) for which β(v)−threshold∗(χ′b, sb, v) is maximized.

By Lemma 6.3.6, we have potential(χ′1, v) = threshold∗(χ′b, sb, v); thus, we have

126

gap(χ′1, u) = β(v) − threshold∗(χ′b, sb, v) and we have gap(χ′′1, u) = βT (v) −

threshold∗(χ′b, sb, v). By Lemma 6.3.6, gap(χ′0, u) = max v∈items(χ)(βT (v) −

threshold∗(χ′a, sa, v)); since threshold∗(χ′b, sb) = threshold∗(χ′a, sa), we have

gap(χ′0, u) ≥ gap(χ′′, u); a contradiction. Thus, it follows that

gap(subst(top ′0(χ′), u, βT), u) ≤ gap(top ′0(χ), u)

Next we consider the case where agent u belongs to matched(χ). Since

matched(χ0) ∩ white(χ0) = matched(χ1) ∩ white(χ1) = ∅, the definition of

the function shift implies that there exists an item v in items(χ) such that

match(χ0, v) = match(χ1, v) = u. Since agent u belongs to nonwhite(χ0) ∩

nonwhite(χ1), by the description of the bottom-level auction, either we have

match(χ′0, v) = match(χ′1, v) = u, or u is unmatched in some round of the

bottom-level auction instances with inputs (χ0, s0) and (χ1, s1). In the case

where match(χ′0, v) = match(χ′1, v) = u, it is easy to see that gap(top ′0(χ), u) ≥

gap(subst(top ′0(χ′), u, βT), u). In the case where u is unmatched in some round

of the bottom-level auction instances with inputs (χ0, s0) and (χ1, s1), the

analysis is similar to the previous case in which u belongs to unmatched(χ).

Thus, we have

gap(top ′0(χ), u) ≥ gap(subst(top ′0(χ′), u, bid(bid-graph(χ), u)), u)

Lemma 7.4.2. The first phase of the top-level auction is truthful.

Proof. Follows from Lemma 7.4.1 and the definition of truthfulness.

127

Lemma 7.4.3. The top-level auction is truthful.

Proof. For any configuration χ0, let f(χ0) denote top ′′(top ′0(χ0)). Consider

any instance of the top-level auction with configuration χ as input and let u

be an agent in agents(χ). Let β = bid(bid-graph(χ), u) and let βT 6= β be

the truthful bid of u. Let χT = subst(χ, u, βT). We are required to show

that gap(subst(f(χ), u, βT), u) ≤ gap(f(χT), u). By Lemma 7.3.3, it follows

that either agent u belongs to white(top ′0(χ))∩white(top ′0(χT)) or top ′0(χT) =

subst(top ′0(χ), u, βT).

First, we consider the case where agent u belongs to white(top ′0(χ)) ∩

white(top ′0(χT)). By Fact 7.2.1, we have potential(f(χ)) = potential(top ′0(χ))

and u belongs to white(f(χ)); thus we have gap(f(χ), u) = gap(top ′0(χ), u)

and gap(f(χT), u) = gap(top ′0(χT), u). By Lemma 7.4.1, we have

gap(subst(top ′0(χ), u, βT), u) ≤ gap(top ′0(χT), u)

Thus, we have gap(subst(f(χ), u, βT), u) ≤ gap(χT , u).

Next, we consider the case where top ′0(χT) = subst(top ′0(χ), u, βT). By

Lemma 7.3.2, the second phase of the top-level auction is truthful; thus,

we have gap(subst(f(χ), u, βT), u) ≤ gap(f(χT), u). Thus, any auction that

takes an configuration χ as input and produces the configuration f(χ) =

top ′′(top ′0(χ)) as output is truthful.

128

Chapter 8

A Sealed-Bid Unit-Demand Auction with Put

Options

In this chapter, we describe our proposed sealed-bid unit-demand auc-

tion with put options.

The top-level auction described in Chapter 7 does not immediately

incorporate bid revision requests of tentatively allocated agents at the be-

ginning of the auction. Instead, the bid of each tentatively allocated agent

is incorporated by a suitable number of raise invocations in the underlying

mid-level auction. Our proposed sealed-bid unit-demand auction described in

this chapter is a variant of the top-level auction that immediately incorpo-

rates bid revision requests of tentatively allocated agents whenever possible;

consequently our proposed sealed-bid auction admits a fast implementation.

The rest of this chapter is organized as follows. In Section 8.1, we in-

troduce some preliminary definitions. In Section 8.2, we describe our proposed

sealed-bid unit-demand auction. We establish truthfulness of this auction in

Section 8.4 by using results on the truthfulness of the top-level auction from

Section 7.4. In Section 8.5, we establish efficiency-related properties of our

sealed-bid auction. In Section 8.6, we show that our sealed-bid auction main-

129

tains bid privacy for tentatively allocated agents. Finally, in Section 8.7, we

describe a polynomial-time implementation in which our sealed-bid auction is

resolved by performing a number of single-source shortest paths computations,

with the number of such computations bounded by the number of agents in

the auction.

8.1 Preliminaries

For any configuration χ, we define targets(χ) as the set of all targets

s such that there exists a quiescent configuration χ0 satisfying the following

conditions:

1. shift(χ0, s) = χ

2. white(χ0) ∩matched(χ0) = white(χ) ∩matched(χ)

3. for any agent u in unmatched(χ) we have items(χ0, u) = ∅

For any configuration χ, we define target(χ) as the unique pointwise

minimum target in targets(χ).

8.2 Description

Consider any instance of our sealed-bid auction with a configuration

χ as input and let χ = shift(χ0, target(χ)). The output of the first phase

of our sealed-bid auction, denoted top ′(χ), is given by shift(χ′, s′), where

130

(χ′, s′) = bottom(χ0, target(χ)). The output of the second phase of our sealed-

bid auction is given by top ′′(top ′(χ)). The output of our sealed-bid auction,

denoted top(χ), is the output of its second phase.

8.3 Properties

The following lemmas establish some basic properties of our proposed

sealed-bid auction.

Lemma 8.3.1. For any configuration χ and any targets s0 and s1 in targets(χ)

such that χ = shift(χ0, s0) = shift(χ1, s1), we have

bottom(χ0, s0) = bottom(χ1, s1)

Proof. Let χ = shift(χ∗, s∗), where s∗ = target(χ). Since s∗ is the point-

wise minimum target in targets(χ), we have s0(u) ≥ s∗(u) for any agent u in

agents(χ). Let S be the set of agents u in agents(χ) such that s0(u) > s∗(u).

By the definitions of targets(χ) and s∗, for any agent u in S, we find that u

belongs to enabled(χ0) and raise(χ0, u) = shift(χ0, u0, 1); by repeated use of

this fact and Lemma 6.3.7, agents in S can commute their raise invocations

forward until each agent u in S has s∗(u) pending raise invocations and the re-

sulting configuration is χ∗; thus, bottom(χ0, s0) = bottom(χ∗, s∗). By a similar

argument, we have bottom(χ1, s1) = bottom(χ∗, s∗). Thus, bottom(χ0, s0) =

bottom(χ1, s1).

Lemma 8.3.2. Let χ be any configuration and let χ∗ be the configuration

131

such that χ = shift(χ∗, target(χ)). If (χ0, s0) = bottom(χ∗, target(χ)), then

unmatched(top′(χ)) ⊆ white(top′(χ)) and nonwhite(top′(χ)) ⊆ nonwhite(χ0).

Proof. Let s∗ = target(χ). By definition, we have top ′(χ) = shift(χ0, s0).

Since χ0 is quiescent, we have unmatched(χ0) ⊆ white(χ0) and for any agent

u in unmatched(χ0), we find that agents(χ0, u) ∩ nonwhite(χ0) = ∅. More-

over, these facts imply that by definition of the bottom-level auction, we

have s0(u) = 0 for any agent u in white(χ1); we conclude that u belongs

to white(shift(χ0, s0)), where top ′(χ) = shift(χ0, s0).

It remains to show that nonwhite(top ′(χ)) ⊆ nonwhite(χ0). Consider

any agent u in nonwhite(top ′(χ)); since s0(u) ≥ 0, we conclude that u belongs

to nonwhite(χ0).

Lemma 8.3.3. For any configuration χ and any agent u in nonwhite(top′(χ)),

the following conditions hold: (1) u belongs to nonwhite(χ), (2) there exists an

item v in items(χ) such that potential(χ, v) = potential(top′(χ), v), and (3)

match(χ, v) = match(top′(χ), v) = u.

Proof. Let χ = shift(χ∗, s∗), where s∗ = target(χ). Let (χ0, s0) = bottom(χ∗, s∗).

By definition, we have top ′(χ) = shift(χ0, s0). By Lemma 8.3.2, u belongs to

nonwhite(χ0); since χ0 is quiescent, we find that u belongs to matched(χ0); fur-

ther, since top ′(χ) = shift(χ0, s0), there exists an item v in items(χ) such that

potential(top ′(χ), v) = potential(χ0, v) and match(χ, v) = match(top ′(χ), v).

By repeated application of Lemma 6.3.1, we find that u belongs to nonwhite(χ∗),

potential(χ∗, v) = potential(χ0, v) and match(χ∗, v) = match(χ0, v) = u.

132

By the description of our sealed-bid auction it follows that u belongs to

nonwhite(χ), potential(χ, v) = potential(χ∗, v), and match(χ, v) = u. These

facts imply that u belongs to nonwhite(χ) and there exists an item v in

items(χ) such that potential(χ, v) = potential(top ′(χ), v), and match(χ, v) =

match(top ′(χ), v) = u.

Lemma 8.3.4. For any configuration χ, we have

nonwhite(top(χ)) ⊆ nonwhite(χ)∧ (unmatched(χ)∪white(χ)) ⊆ white(top(χ))

Proof. Let χ = shift(χ∗, s∗) where s∗ = target(χ). Let (χ0, s0) = bottom(χ∗, s∗).

We have unmatched(χ) = unmatched(χ∗)∩white(χ∗) and we have white(χ)∩

matched(χ) = white(χ∗) ∩ matched(χ∗); thus unmatched(χ) ∪ white(χ) ⊆

white(χ∗). By repeated application of Lemma 6.3.2, we have white(χ∗) ⊆

white(χ0), and since top ′(χ) = shift(χ0, s0), we have white(χ∗) ⊆ white(top ′(χ)).

Finally, by Fact 7.2.1, we have white(top ′(χ)) ⊆ white(top(χ)). Thus, we

have unmatched(χ) ∪ white(χ) ⊆ white(top(χ)). By Fact 7.2.1, we have

white(top ′(χ)) ⊆ white(top(χ)); thus nonwhite(top(χ)) ⊆ nonwhite(top ′(χ)).

Lemma 8.3.5. For any configuration χ0 of the form subst(χ, u, β), if β 6=

bid(bid-graph(χ), u), then either top′(χ0) = subst(top′(χ), u, β) or u belongs

to white(top′(χ)) ∩ white(top′(χ0)).

Proof. Let χ = shift(χ∗, target(χ)) and let χ0 = shift(χ0
∗, target(χ0)). By

definition, we have top ′(χ) = shift(χ′, s′) where (χ′, s′) = bottom(χ∗, target(χ))

133

and we have top ′(χ0) = shift(χ′0, s
′
0) where (χ′0, s

′
0) = bottom(χ0

∗, target(χ0)).

We consider the following cases. First we consider the case where u belongs

to white(χ∗) ∩ white(χ0
∗). By repeated application of Lemma 6.3.2, we find

that u belongs to white(χ′), and since s′(u) ≥ 0, we find that u belongs to

white(top ′(χ)) ∩ white(top ′(χ0)).

Next we consider the case where agent u belongs to nonwhite(χ∗) ∩

nonwhite(χ0
∗). It follows from the description of the bottom-level auction,

that either u is unmatched in the same round of both bottom-level auction

instances and hence u belongs to white(top ′(χ))∩white(top ′(χ0)), or u remains

matched throughout to the same item in both auction instances and top ′(χ0) =

subst(top ′(χ), u, β).

Finally we look at the case where u either belongs to nonwhite(χ∗) or

belongs to nonwhite(χ∗0). Without loss of generality, assume that u belongs

to nonwhite(χ∗). It follows from the description of the bottom-level auction,

that either u is unmatched in some round of the auction instance with input

(χ∗, target(χ)) and hence either u belongs to white(top ′(χ))∩white(top ′(χ0)),

or agent u remains matched throughout in the auction instance with in-

put (χ∗, target(χ)) and hence gap(top ′(χ), u) = gap(χ, u). It follows that

top ′(χ0) = subst(top ′(χ), u, β).

8.4 Truthfulness

The goal of this section is to establish Lemma 8.4.10 on the truthfulness

of our sealed-bid auction described in Section 8.2. We first establish that for

134

any configuration χ and any white agent u in top ′(χ), agent u has the same

utility in top ′(χ) as it does in top ′0(χ) (see Lemma 8.4.7). Lemmas 8.4.8

and 8.4.9 follow easily from Lemma 8.4.7. We use Lemmas 8.4.9 and known

results on the truthfulness of the TTC algorithm and the TC≺ algorithm to

establish Lemma 8.4.10.

Lemma 8.4.1. For any configuration χ′ of the form subst(χ, u, u′), if u is an

agent in matched(χ) ∩ white(χ), then gap(top′(χ), u) = gap(top′(χ′), u′).

Proof. Let target(χ) = s and let target(χ′) = s′. We first show that s = s′.

Since u belongs to matched(χ)∩white(χ), we have α(u) = 0, and since s is the

pointwise minimum target in targets(χ) and u′ does not belong to agents(χ),

we have α(u′) = 0. Similarly, we have s′(u′) = s′(u) = 0. Since s and s′ are

the pointwise minimum targets in targets(χ) and targets(χ′) respectively, we

have α(u′′) = s′(u′′) for any agent u′′ in agents(χ)− u. It follows that s = s′.

Let top ′(χ) = shift(χ′0, s
′
0) where (χ′0, s

′
0) = bottom(χ0, s). Let top ′(χ′) =

shift(χ′1, s
′
1) where (χ′1, s

′
1) = bottom(χ1, s). By Lemma 6.3.4, gap(χ0, u) =

gap(χ1, u
′). Further, since α(u) = α(u′) = 0, we have s′0(u) = s′1(u′) = 0.

Thus, gap(top ′(χ), u) = gap(top ′(χ′), u′).

Lemma 8.4.2. Let χ be a configuration and let χA be the quiescent configu-

ration such that χ = shift(χA, target(χ)). Let u be an agent in matched(χ) ∩

white(χ), and let z be an integer such that u belongs to gray(shift(χA, u,−z)).

If u is the minimum agent in agents(χ), then gap(top′(χ), u) = gap(χB, u) +

sB(u), where (χB, sB) = bottom(shift(χ′A, u,−z), shift(target(χ), u, z)).

135

Proof. Let (χ′B, s
′
B) = bottom(χA, target(χ)). We refer to the executions of the

bottom-level auction with inputs (shift(χ′A, u,−z), shift(target(χ), u, z)) and

(χA, target(χ)) as executions R and R′ respectively. Let (χi, si) and (χ′i, s
′
i) be

the outputs of round i of executions R and R′ respectively. By Lemma 6.3.7,

the raise invocations of enabled agents commute. Thus, by repeated applica-

tion of Lemma 6.3.7, executions R and R′ can be reordered such that for any

round i, if S is a nonempty set of agents in enabled(χi)∩enabled(χ′i) such that

si(u
′) = s′i(u

′) > 0, then some agent u′ in S invokes raise in round i + 1 of

executions R and R′. For any round i, we define the predicate P (i) to hold if

(χ′i, s
′
i) = (shift(χi, u,−z), shift(si, u, z)).

First we consider the case where P (i) holds for every round of execu-

tionsR andR′. In this case, we have (χ′B, s
′
B) = (shift(χB, u,−z), shift(sB, u, z)).

Thus, we have gap(top ′(χ), u) = gap(χ′B, u) + s′B = gap(χB, u)− z+ sB(u) + z.

Since u belongs to white(top(χ)), we have s′B(u) = 0. Thus, gap(top ′(χ), u) =

gap(χ′B, u) + s′B.

Next we consider the case where there exists a first round k such that

P (k) does not hold. In this case, it is easy to see that either u belongs to

unmatched(χk) or u belongs to unmatched(χ′k); further, since u belongs to

nonwhite(χ′k), we find that u belongs to unmatched(χk). Let u′ be the agent

in matched(χ′k−1) ∩ unmatched(χ′k). We now allow u to exhaust all its raise

invocations in rounds (k+1)···(k+z) of execution B; thus, we have sB(u) = 0.

Since u belongs to white(top ′(χ)), we have agents(χ′j, u) 6= ∅ for some round

j of execution B where (k + 1) ≤ j ≤ (k + z), and thus, u′ = victim(χ′j, u).

136

It is straightforward to see that for any round j > k of execution R, we

have χj = χj+z; thus, χ′B = χB. Since α(u) = 0, we have s′B(u) = 0, and

we established above that sB(u) = 0. Thus, gap(top ′(χ), u) = gap(χB, u) =

gap(χB, u) + sB(u0).

[Definition] For any configuration χ, any agent u in matched(χ) ∩

white(χ), and any agent u′ such that u < u′ and there exists no agent u′′

in agents(χ) such that u′ < u′′ < u, we define split(χ, u, u′) as the con-

figuration add(shift(χ, u,−z), u′, β) where z is the integer such that β =

bid(bid-graph(χ), u) and max-gap(shift(χ, u,−z), u) = −1.

Lemma 8.4.3. Let χ′ be a configuration of the form split(χ, u, u′) and let χ =

shift(χA, target(χ)). For any integer z such that u belongs to gray(shift(χA, u,−z)),

we have

gap(top′(χ′), u′) = gap(χB, u) + sB(u)

where (χB, sB) = bottom(shift(χA, u,−z), shift(target(χ), u, z)).

Proof. Let χ′′ = shift(χA, u,−z∗), where z∗ is the integer such that max-gap(χ′′, u)

is equal to −1. Let s = target(χ). By the definition of the function split , we

find that u belongs to matched(χ) ∩ white(χ); thus, α(u) = 0. Note that

u belongs to white(shift(χ′′, u, 1)); thus, z∗ ≤ z. By repeated application of

Fact 6.1.1, it follows that (χB, sB) = bottom(χ′′, shift(target(χ), u, z∗)). Let

χ′A be the quiescent configuration such that χ′ = shift(χ′A, target(χ′)) and let

(χ′B, s
′
B) = bottom(χ′A, target(χ′)).

137

We refer to the execution of the bottom-level auction instance with in-

puts (χ′′, shift(target(χ), u, z∗)) as execution A and we refer to the bottom-level

auction instance with inputs (χ′A, target(χ′)) as execution B. By Lemma 6.3.7,

we can assume that the same agent invokes raise in both executions whenever

possible. From the description of the bottom-level auction, we find that either

u becomes unmatched in the same round of both executions, or u remains

matched in both executions until u′ is the only remaining enabled agent with

pending raise invocations in execution B.

We first consider the case where u is unmatched in the same round of

both executions. In this case, we immediately process the raise invocations

of agent u in execution A and agent u′ in execution B. If χB and χ′B are

the resultant configurations of executions A and B after agents u and u′ have

exhausted their raise invocations, then by Lemma 6.3.5, we have gap(χ′B, u
′)+

s′B(u′) = gap(χB, u) + sB(u), and the proof is complete.

Next we consider the case where u remains matched to some item v in

both executions, all enabled agents have exhausted their raise invocations in

execution A, and u′ is the only remaining enabled agent with pending raise

invocations in execution B. We now allow agent u′ to exhaust its raise invoca-

tions. While u remains allocated for the rest of execution B, the potential of

v remains unchanged; thus u′ attains its highest utility of gap(χB, u) + sB(u).

If u is unmatched by some raise invocation, then the auction terminates with

the potential of item v unchanged, and with u′ attaining its highest utility of

gap(χB, u) + sB(u). Thus, we have gap(top ′(χ′), u′) = gap(χB, u) + sB(u)

138

Lemma 8.4.4. Let χ0 be an configuration of the form subst(χ, u, u0) where u

is an agent in white(χ)∩matched(χ), and u0 is an agent such that u0 > u and

there exists exactly one agent u′′ in agents(χ) such that u < u′′ < u0. Then

gap(top′(χ′), u′) = gap(top′(χ′0), u′0) where χ′ is any configuration of the form

split(χ, u, u′) and χ′0 is any configuration of the form split(χ0, u0, u
′
0).

Proof. Let χA be the quiescent configuration such that χ′ = shift(χA, target(χ′))

and let χB be the quiescent configuration such that χ′0 = shift(χB, target(χ′0)).

We refer to the executions of the bottom-level auction instances with inputs

(χA, target(χ′)) and (χB, target(χ′0)) as executions A and B respectively. By

Lemma 6.3.7, the raise invocations by enabled agents commute. Thus, we

choose to defer the raise invocations of agents in the set S = {u′, u′0, u′′} in

executions A and B until S is the only set of enabled agents. Further, we

commute raise invocations in both executions such that whenever possible,

the same agent invokes raise in each round.

For any nonnegative integer i, let χi and χ′i be the output configura-

tions of round i of executions A and B respectively. We define the predi-

cate sync(A,B, i) to hold if χ′i = subst(subst(χi, u, u0), u′, u′0). We define the

predicate coupled(A,B, i) to hold if there exists exactly one maximal set of

items Vi in items(χ) and agents ua in matched(χi)∩ unmatched(χ′i) and ub in

unmatched(χi) ∩matched(χ′i) such that for any agent uc in unmatched(χi) ∩

unmatched(χ′i) such that items(χi, u
∗)∩Vi 6= ∅, we have victim(χi, uc, 1) = ua

and victim(χ′i, uc, 1) = ub.

139

Consider the first round j such that coupled(A,B, j) holds; then, by

the definition of the bottom-level auction, it is easy to see that either: (1)

execution A evicts u′ in round j and execution B evicts u′′ in round j, or (2)

execution A evicts u in round j and execution B evicts u′′ in round j. In

case (1), since u′ is evicted by execution A in round j, and sync(A,B, j − 1)

holds, agents u′ and u′0 have zero utility in round j, and by the definition of

the bottom-level auction, u′ and u′0 continue to have zero utility for the rest

of the auction; this completes the proof for case (1).

We now consider case (2). Consider each round i > j of executions A

and B where some agent u1 in agents(χ) − {u′′} invokes the function raise.

If items(χi, u1) ∩ Vi 6= ∅, then it follows that coupled(A,B, i + 1) holds.

Consider the first round k > j in which some agent u1 invokes raise and

victim(χk, u1, 1) = u′′, thus we have victim(χ′k, u1, 1) = u0. and sync(A,B, k+

1) holds; further, it is easy to see that sync(A,B, i) holds for every round i > k

in which some agent in agents(χ) \ S invokes the function raise.

We now look at executions A and B in a round k when u′′ is the only

enabled agent with pending raise invocations. We consider two cases. We

first consider the case where sync(A,B, k − 1) holds; in this case, u′′ is the

only enabled agent with pending raise invocations in both executions A and

B; thus for any i ≥ k, if coupled(A,B, i) holds, then condition (1) holds where

execution A evicts u′ and execution B evicts u′′ and the proof follows from

the analysis of case (1) discussed above. Next, we consider the case where

coupled(A,B, k − 1) holds; in this case execution A has terminated, and u′′

140

is the only enabled agent with pending raise invocations in execution B, and

agents u′′ and u′ are matched in executions A and B respectively. While u′′

and u′ remains allocated for the rest of executions A and B, the potentials

of items on P remain unchanged; thus u′ and u′0 both attain zero utility. If

u′ is unmatched by some raise invocation of execution B, then execution B

terminates and thus, agents u′ and u′0 attain zero utility.

Lemma 8.4.5. Let χ0 be an configuration of the form subst(χ, u, u0) where u is

an agent in white(χ)∩matched(χ). Then gap(top′(χ′), u′) = gap(top′(χ′0), u′0)

where χ′ is any configuration of the form split(χ, u, u′) and χ′0 is any configu-

ration of the form split(χ0, u0, u
′
0).

Proof. Without loss of generality, we can assume that u < u0. If there is

no agent u1 in agents(χ) such that u < u1 < u0, then the result follows by

repeated application of Lemma 6.3.5. If there is an agent u1 in agents(χ) such

that u < u1 < u0, then the result follows by induction using Lemma 8.4.4.

Lemma 8.4.6. For any configuration χ and any agent u in matched(χ) ∩

white(χ), if configuration χ′ is of the form subst(χ, u, u′), then gap(top′(χ), u) =

gap(top′(χ′), u′).

Proof. Let χ0 be an configuration of the form split(χ, u, u0) and let χ1 be an

configuration of the form split(χ′, u′, u1). By Lemma 8.4.3, gap(top ′(χ), u) =

gap(top ′(χ0), u0) and gap(top ′(χ′), u′) = gap(top ′(χ1), u1). Further, since χ′ =

subst(χ, u, u′), by Lemma 8.4.5, we have gap(top ′(χ0), u0) = gap(top ′(χ1), u1).

Thus, we have gap(top ′(χ), u) = gap(top ′(χ′), u′).

141

Lemma 8.4.7. For any configuration χ such that χ = shift(χ0, target(χ)),

any agent u in matched(χ) ∩ white(χ), and any integer z such that u belongs

to gray(shift(χ0, u,−z)), we have gap(top′(χ), u) = gap(χ1, u) + s1(u) where

(χ1, s1) = bottom(shift(χ0, u,−z), shift(target(χ), u, z)).

Proof. Let u′ be an agent such that u′ < u′′ for every agent u′′ in agents(χ).

Let χ′1 be a configuration and let s′1 be a target such that

(χ′1, s
′
1) = bottom(shift(subst(χ0, u, u

′), u′,−z), shift(target(χ), u′, z))

By Lemma 8.4.2, we have gap(χ′1, u
′) + s′1(u′) = gap(top ′(subst(χ, u, u′)), u′).

By Lemma 8.4.6, we have gap(χ1, u) + s1(u) = gap(χ′1, u
′) + s′1(u′). By

Lemma 8.4.1, we have gap(top ′(χ), u) = gap(top ′(subst(χ, u, u′)), u′). Thus,

we have gap(top ′(χ), u) = gap(χ1, u) + s1(u).

Lemma 8.4.8. For any configuration χ, any agent u in agents(χ), and any

configuration χ′ of the form subst(χ, u, β) where β is a bid in bids(bid-graph(χ)),

we have

gap(top′(χ), u) ≥ gap(subst(top′(χ′), u, bid(bid-graph(χ), u)), u).

Proof. The analysis for agents in unmatched(χ) is identical to the analysis for

unmatched agents in the proof of Lemma 7.4.1, and the analysis for agents in

matched(χ) ∩ nonwhite(χ) is identical to the analysis for matched nonwhite

agents in the proof of Lemma 7.4.1.

We now consider any agent u in matched(χ) ∩ white(χ). Let χ =

shift(χ0, target(χ)) and let z be any integer such that agent u belongs to

142

gray(shift(χ0, u,−z)). By Lemma 8.4.7, we have gap(top ′(χ), u) = gap(χ1, u)+

s1(u) where (χ1, s1) = bottom(shift(χ0, u,−z), shift(target(χ), u, z)). Thus,

u obtains the same utility as it would have obtained if its bid had been

shifted down sufficiently to make u gray; it follows that we can restrict at-

tention to bottom-level auction instances that have no white matched agents

in their input configurations. Let χ = shift(χ1, s1), where χ1 is the configura-

tion obtained by shifting down the bid of every white agent in χ0 such that

white(χ1) ∩matched(χ1) = ∅. If (χ′1, s
′
1) = bottom(χ1, s1), then by definition,

we have top ′0(χ) = shift(χ′1, s
′
1). The proof now follows from Lemma 7.4.1.

Lemma 8.4.9. The first phase of our proposed sealed-bid unit-demand auction

is truthful.

Proof. Follows from Lemma 8.4.8 and the definition of truthfulness.

We use Lemma 8.4.9 and Lemma 7.3.2 on the truthfulness of the second

phase to establish Lemma 8.4.10.

Lemma 8.4.10. The proposed sealed-bid unit-demand auction is truthful.

Proof. By Lemma 8.4.9 and Lemma 7.3.2, the first and second phases of our

sealed-bid auction are individually truthful. We now show that the sealed-

bid auction which combines the two phases is truthful. Consider any in-

stance of our sealed-bid auction with configuration χ as input and let u be

an agent in agents(χ). Let β = bid(bid-graph(χ), u) and let βT 6= β be

the truthful bid of u. Let χT = subst(χ, u, βT). We wish to show that

143

gap(subst(top(χ), u, βT), u) ≤ gap(top(χT), u). By Lemma 8.3.5, either u be-

longs to white(top ′(χ)) ∩ white(top ′(χT)) or top ′(χT) = subst(top ′(χ), u, βT).

First, we consider the case where agent u belongs to white(top ′(χ)) ∩

white(top ′(χT)). By Fact 7.2.1, we have potential(top(χ)) = potential(top ′(χ))

and u belongs to white(top(χ)); thus gap(top(χ), u) = gap(top ′(χ), u) and

gap(top(χT), u) = gap(top ′(χT), u). Further, it follows from Lemma 8.4.8

that gap(top ′(χ), u) ≤ gap(subst(top ′(χT), u, βT), u). Thus, we conclude that

gap(top(χ), u) ≤ gap(subst(top(χT), u, βT), u).

Next, we consider the case where top ′(χT) = subst(top ′(χ), u, βT). By

Lemma 7.3.2 on the truthfulness of the second phase of our sealed-bid auction,

we have gap(top(χ), u) ≤ gap(subst(top(χT), u, βT), u).

8.5 Efficiency

Recall that put options impose lower bound constraints on item prices.

As a result, we cannot in general achieve efficiency in our auction setting.

Lemmas 8.5.3 and 8.5.4 establish a relaxed form of efficiency for our sealed-

bid auction — the outcome is efficient if the target of every put that is exercised

satisfies voluntary participation and envy-freedom.

[Definitions] For any configuration χ such that unmatched(χ) ⊆ white(χ)

and any agent u in nonwhite(χ), we define admissible(χ, u) as the set of all bids

β in bids(bid-graph(χ)) such that u belongs to white(subst(χ, u, β)). For any

configuration χ such that unmatched(χ) ⊆ white(χ), we define admissible(χ)

144

as the set of all possible configurations that can be obtained from χ by replac-

ing the bid of every agent u in black(χ) by a bid in admissible(χ, u).

Lemma 8.5.1. For any configuration χ and any agent u in matched(top(χ))∩

nonwhite(top(χ)), if u belongs to white(subst(χ, u, β)) where β is a bid in

bids(bid-graph(χ)), then u belongs to white(subst(top(χ), u, β)).

Proof. By Lemma 8.3.3, we know that there exists an item v in items(χ) such

that potential(top(χ), v) = potential(χ, v) and match(χ, v) = match(top(χ), v) =

u. Let β be any bid in admissible(χ, u). By definition, β(v)−potential(χ, v) ≥

β(v′)−potential(χ, v′) for any item v′ in items(χ). By Lemma 7.2.2, it follows

that potential(top(χ), v′) ≥ potential(χ, v). Thus, β(v)−potential(top(χ), v) ≥

β(v′) − potential(top(χ), v′) for any item v′ in items(χ). Thus, β belongs to

admissible(top(χ), u).

Lemma 8.5.2. If χ is an configuration such that unmatched(χ) ⊆ white(χ),

then any configuration in admissible(χ) is white.

Proof. Let χ′ be any configuration in admissible(χ). By the definition of

admissible(χ), for every agent u in nonwhite(χ), we have bid(χ′, u) belongs

to admissible(χ, u); thus we have nonwhite(χ) ⊆ white(χ′). Further, for any

agent u in white(χ), we have bid(χ, u) = bid(χ′, u), and thus u belongs to

white(χ′). Thus, configuration χ′ is white.

Lemma 8.5.3. For any configuration χ and any agent u in agents(χ), if u be-

longs to nonwhite(top(χ)), then u belongs to nonwhite(χ) and admissible(χ, u) ⊆

145

admissible(top(χ), u).

Proof. By Lemma 8.3.2, we have nonwhite(top(χ)) ⊆ nonwhite(χ). Thus,

u belongs to nonwhite(χ). Let β be any bid in admissible(χ, u); then by

definition, u belongs to white(subst(χ, u, β)). By Lemma 8.5.1, u belongs to

white(subst(top(χ), u, β)). Thus, β belongs to admissible(top(χ), u).

Lemma 8.5.4. For any configuration χ, unmatched(top(χ)) ⊆ white(top(χ)),

and every configuration in admissible(top(χ)) is efficient.

Proof. By definition, top(χ) = top ′′(top ′(χ)). By Fact 7.2.1, we have

unmatched(top ′(χ)) = unmatched(top(χ))∧ potential(top(χ)) = potential(top ′(χ))

and by Lemma 8.3.2, we have unmatched(top ′(χ)) ⊆ white(top ′(χ)); thus

unmatched(top(χ)) ⊆ white(top(χ)).

Let χ′ = (G,M,Φ) be any configuration in admissible(top(χ)). By

Lemma 8.5.2, χ′ is white, and by Lemmas 3.6.1, χ′ is Walrasian; thus, it follows

from Lemma 3.5.2 that M is an MWMCM of G. Thus, χ′ is efficient.

[Definitions] We define a sealed-bid auction to be Pareto-efficient if it

is truthful — so that no agent has an incentive to lie — and it satisfies the

strong version of Condition 5. Lemmas 8.5.5 and 8.5.6 establish the strong

and weak versions of equilibrium condition 5 of Section 4.3.

Lemma 8.5.5. The proposed sealed-bid unit-demand auction is Pareto-efficient

when the second phase of the auction is implemented using the TC≺ algorithm.

146

Proof. Consider any configuration χ and let χ′ = top(χ). Suppose by way

of contradiction that there is a nonempty set of agents U0 who can trade

their allocated items amongst themselves such that every agent in U0 ex-

periences an increase in utility. By definition, for any agent u in white(χ′)

and any item v in items(χ), we have gap(χ′, u) ≥ β(v) − potential(χ′, v),

where β = bid(bid-graph(χ), u). Thus, white(χ′) ∩ U0 = ∅. It follows that

U0 ⊆ nonwhite(χ′); this contradicts the Pareto-efficient property of the TC≺

algorithm. Thus, U0 = ∅ and our sealed-bid auction is Pareto-efficient.

Lemma 8.5.6. The proposed sealed-bid auction produces an outcome in the

weak core when the second phase of the auction is implemented using the TTC

algorithm.

Proof. Consider any configuration χ and let χ′ = top(χ). Suppose by way

of contradiction that there is a nonempty set of agents U0 who can trade

their allocated items amongst themselves such that every agent in U0 ex-

periences an increase in utility. By definition, for any agent u in white(χ′)

and any item v in items(χ), we have gap(χ′, u) ≥ β(v) − Φ′(v), where β =

bid(bid-graph(X), u) and χ′ = (G,M ′,Φ′). Thus, white(χ′) ∩ U0 = ∅. It fol-

lows that U0 ⊆ nonwhite(χ′); this is a contradiction to the well established

property that in the absence of strict preferences, the TTC algorithm produces

an outcome in the weak core. Thus, U0 = ∅.

147

8.6 Privacy Preservation

A motivating application of the sealed-bid unit-demand auction pro-

posed in this dissertation is the design of a dynamic unit-demand auction in

which each round is implemented using the proposed sealed-bid auction. If the

seller of an item in the dynamic auction has access to the maximum price that

an agent who is tentatively allocated to the item is willing to pay for the item,

then the seller can extract this price by submitting a “shill” offer just below

the agent’s offer. Many dynamic auctions including the popular eBay auction

suffer from shill bidding [38]. Thus, a goal of our proposed dynamic auction

is to ensure bid privacy for tentatively allocated agents. Below we establish

Lemmas 8.6.1 and 8.6.2 which are useful in showing a certain privacy preserv-

ing property of the dynamic auction — no seller can artificially raise the price

of an item by more than one unit without risking forfeiture of sale. Ideally,

we would want to prevent a seller from raising the price of an item even by a

single unit; however, our adoption of tie-breaking to handle degeneracy limits

our auction to giving up one unit in being shill proof.

Consider an agent u with bid β, and let u be white and allocated in an

outcome of our sealed-bid auction. Lemma 8.6.1 establishes that the outcome

of our sealed-bid auction remains unchanged for any bid β′ of u that exceeds β

in all its components. Lemma 8.6.2 establishes that if u has a positive utility,

then the outcome of our sealed-bid auction remains unchanged if u drops all

components of its bid by one unit. It follows from Lemmas 8.6.1 and 8.6.2

that the seller of an item cannot deduce if the offer of an agent who wins the

148

item exceeds the price of the item by more than one unit.

Lemma 8.6.1. For any configuration χ and any agent u in matched(top(χ))∩

white(top(χ)), we have top(shift(χ, u, 1)) = shift(top(χ), u, 1).

Proof. Let χ′ = shift(χ, u, 1). Let χ = shift(χA, target(χ)) and let χ′ =

shift(χ′A, target(χ′)). We refer to the execution of the bottom-level auction

with inputs χA and target(χ) as execution R and we refer to the execution of

the bottom-level auction with inputs χ′A and target(χ′) as execution S. Let

(χi, si) and (χ′i, s
′
i) be the outputs of round i of executions R and S respec-

tively. Let S be the sequence of agents where the ith element of sequence S,

denoted S(i), is the agent that invoked raise in round i of execution R. Simi-

larly, we define S ′ to be the sequence of agents that invoked raise in execution

S. Let j be the round in which u makes its last raise invocation in execution

R.

We first claim that u has the same color in configurations χ and χ′ and

that u is not gray in either configuration. If u belongs to gray(χ), then by

the definition of our sealed-bid auction, u belongs to gray(χ0) and α(u) = 0,

where s = target(χ); thus, u either belongs to gray(top(χ)) or u belongs to

unmatched(top(χ)), which is a contradiction. Thus, u does not belong to

gray(χ). Since χ′ = shift(χ, u, 1), we find that u does not belong to gray(χ′);

it is thus straightforward to argue that u has the same color in configurations

χ and χ′.

149

We now show that (1) for all i ≤ j, we have S(i) = S ′(i) and χi = χ′i,

and (2) S ′j+1 = u.

By definition of our sealed-bid auction, χ′0 = shift(χ0, u, 1). Further, we

established above that agent u is non-gray has the same color in configurations

χ0 and χ′0. Thus, it follows from the definition of the determinized bottom-

level auction that for all i ≤ j, we have S(i) = S ′(i) and χi = χ′i. Since u

belongs to matched(top(χ)) and u invoked its last raise in round j, we find that

u belongs to matched(χj) ∩ white(χj). Further, since χj = χj′ , we find that

u belongs to matched(χ′j) ∩ white(χ′j) and enabled(χj) = enabled(χ′j). Since

S(j) = u, and by the definition of the function raise, no matched agents were

enabled in round j of both executions, we find that u belongs to enabled(χj+1);

it follows from these facts that S ′(j + 1) = u.

Next we show that S(i) = S ′(i+1) for any i > j. We established above

that u belongs to matched(χ′j) and that u makes its last raise invocation of

execution S in round j+ 1; thus s′j+1(u) = 0. By the definition of the function

raise, we have χ′j+1 = shift(χ′j, u, 1) and enabled(χ′j) = enabled(χ′j+1). Since

χj = χ′j, we have χ′j+1 = shift(χj, u, 1) and enabled(χ′j+1) = enabled(χj);

further, we established that s′j+1(u) = 0; thus, S(i) = S ′(i+ 1) for i ≥ j.

We now show that if S ′(j + 2) = u′, then raise(raise(χ′j, u), u′) =

raise(raise(χ′j, u
′), u). From the preceding claim, we have S(j+ 1) = u′. Since

u belongs to matched(top(χ)) ∩ white(top(χ)) and u invoked its last raise in

round j of execution R, it follows that u 6= victim(χj+1, u
′). Since χ′j+1 =

shift(χj, u, 1) and S ′(j + 2) = u′, it follows that u 6= victim(χ′j+1, u
′); thus, by

150

the definition of the determinized function raise, we have raise(raise(χ′j, u), u′) =

raise(raise(χ′j, u
′), u).

By repeated application of the preceding argument, the last raise in-

vocation of u in execution S can be commuted to the last round k of ex-

ecution S. Thus, it follows that (χ′k−1, s
′
k−1) = (χB, shift(sB, u, 1)), where

(χB, sB) = bottom(χA, target(χ)).

By the definition of the function raise, we have bottom(χB, target(χ′)) =

(shift(χB, u, 1), sB). By the description of the second phase of our sealed-bid

auction, it follows that top(χ′) = shift(top(χ), u, 1).

Lemma 8.6.2. For any configuration χ and any agent u in agents(χ), if

gap(top(χ), u) > 1, then we have gap(top(χ0), u) ≥ 1, where χ0 = shift(χ, u,−1).

Proof. Let χ = (G,M,Φ). It follows that χ0 = (G0,M,Φ), where G0 =

shift(G, u,−1). Let β = bid(G0, u). Let top(χ0) = (G0,M
′
0,Φ

′
0) and let

top(χ) = (G,M ′,Φ′). We consider the following cases.

Suppose u belongs to white(top(χ0))∩matched(top(χ0)). By Lemma 8.6.1,

it follows that top(χ) = shift(top(χ0), u, 1). Thus, gap(top(χ0), u) ≥ 1.

Suppose u belongs to white(top(χ0)) ∩ unmatched(top(χ0)). It follows

that gap(top(χ0), u) = 0. Thus, β(v) ≤ Φ′0(v) for every item v in items(χ0).

However, since gap(top(χ), u) > 1, there exists an item v in items(χ0) such

that match(top(χ), v) = u and β(v) − Φ′(v) ≥ 1. Thus, gap(top(χ0), u) <

gap(χ′′, u), where χ′′ = subst(top(χ), u, β). This contradicts Lemma 8.4.8.

151

Suppose u belongs to nonwhite(top(χ0)). By Lemma 8.3.4, u belongs

to nonwhite(χ0), and by Lemma 8.3.5, we have top ′(χ0) = subst(top ′(χ), u, β);

thus, it follows from the definition of the second phase of our sealed-bid auction

that top(χ0) = subst(top(χ), u, β). It is now straightforward to see that since

gap(top(χ), u) > 1, we have gap(top(χ0), u) ≥ 1.

8.7 Scalability

In this section we briefly sketch a polynomial-time of our proposed

sealed-bid auction. We say that a bid component is “active” if it is at least

equal to the price (viewing the bid components and prices as pairs, as in the

discussion on white configurations in Section 3.6) of the corresponding item.

We only need to maintain information concerning the active bid components.

We first define an initial tentative pricing and allocation at the start of the

auction: each item is allocated to the seller of its put and has a price equal

to the strike price of its put. The agents that are not tentatively allocated

do not have any active bid components, and so we do not need to maintain

any information concerning such agents. We do not maintain an explicit color

value (black, gray, or white) for each tentatively allocated agent. Instead,

when we need to determine the color of an agent, we do so by examining its

active bid components along with the current prices of the associated items.

We now iteratively process bids of unallocated agents. At the start of

an iteration, our auction state specifies the current pricing and allocation, the

target bid of each tentatively allocated agent, and a set of unallocated agents

152

for which the associated bids have yet to be processed. We pick an arbitrary

unallocated agent u from the latter set, and in the style of the well-known

Hungarian algorithm for weighted bipartite matching [24], or the closely re-

lated successive shortest paths algorithm [2, Chapter 9], we proceed to update

the tentative pricing and allocation to account for the bid of u. The high-level

strategy is to grow a Hungarian tree (which involves increasing certain prices,

while maintaining the allocation) rooted at u until one of the following two

conditions occurs: (1) one or more nonwhite tentatively allocated agents enter

the tree; (2) the utility of u or one or more of the white tentatively allocated

agents drops to zero.

If (2) occurs before (1), then we update the allocation via an aug-

mentation that unallocates (and discards) the minimum zero-utility agent,

and allocates u. (If agent u is itself the minimum zero-utility agent, then no

augmentation is performed, and the allocation remains unchanged.) Using a

standard primal-dual approach [25], it is possible to update the pricing and

allocation in time proportional to the time required to solve a single-source

shortest paths (SSSP) problem [8, 11] on the active subgraph of the current

bid-graph. For a directed graph with n vertices and m edges, Thorup presents

an O(m + n log log n) algorithm for the SSSP problem [39]. Thus the time

complexity of the update is close to linear in the number of active bid compo-

nents.

If (1) occurs before (2), then we update the allocation via an augmenta-

tion that unallocates the minimum nonwhite tentatively allocated agent, call

153

it u′, and allocates u. The time complexity for performing this update is the

same as in the case of the preceding paragraph. The difference is that here we

cannot necessarily discard agent u′. In particular, if agent u′ was black before

the update, then it may still have one or more active bid components; if so,

we add agent u′ to the set of unallocated agents for which the associated bids

have yet to be processed. While the size of the latter set does not decrease

(because we removed u and added u′), we are able to prove that the number of

black tentatively allocated agents has decreased by at least one. Consequently,

in any execution of the main auction, the total number of SSSP computations

performed is at most the total number of agents in the auction.

Recall that our proposed sealed-bid auction consists of two phases. The

foregoing discussion has focused on the implementation of the first phase. In

the second phase, any black tentatively allocated agents are given the oppor-

tunity to exchange items with one another. As discussed in Section 7.2, either

the TTC algorithm or the TC≺ algorithm is used to update the allocation, and

the item prices are left unchanged. The second phase of our sealed-bid auction

can be implemented in linear time in the size of the active bid-graph using the

TTC algorithm [37], and in polynomial time using the TC≺ algorithm [19].

154

Chapter 9

A Dynamic Unit-Demand Auction Supporting

Arbitrary Bid Revision

In this section, we present our proposed dynamic unit-demand auction

supporting arbitrary bid revision. The dynamic auction proceeds in rounds

and a single application of the sealed-bid unit-demand auction with put options

described in Chapter 8 is used to update the tentative allocation and pricing in

each round. The output of the last round determines the final allocation and

pricing. Below we give an informal description of the input to each application

of the sealed-bud auction.

At the beginning of the first round, the tentative pricing is given by the

starting prices of the items. Each item v is tentatively allocated to a “dummy

agent” for item v whose bid is a single offer on v equal to the reserve price of

v. There may be other (non-dummy) agents present in the first round, each

of whom has an associated unit-demand bid, which may be arbitrary.

At the beginning of any non-first round, the tentative allocation and

pricing is given by the solution to the application of the sealed-bid auction

associated with the previous round. The set of agents appearing in the round

is equal to the union of the following two sets: (1) agents that were tentatively

155

allocated at the end of the previous round; (2) (non-dummy) agents that were

not tentatively allocated at the end of the previous round, and are submitting

a new unit-demand bid in the current round. For each agent u in set (1), the

associated unit-demand bid in the current round is determined as follows: if

u submits a revised bid in this round, then this revised bid is taken to be the

bid of u; otherwise, the bid of u is taken to be the same as in the previous

round. We do not allow a dummy agent to revise its bid, since the bid of a

dummy agent is merely intended to model the fixed reserve price of the seller.

The rest of this chapter in organized as follows. In Section 9.1, we pro-

vide a formal description of the dynamic auction. In Section 9.2, we introduce

some auxiliary definitions that are required in Section 9.3. In Section 9.3, we

discuss properties of the dynamic auction related to truthfulness, efficiency,

and shill-resistance. In Section 9.4, we discuss an implementation of the dy-

namic auction with a fast amortized time bound for processing each bidding

operation.

9.1 Description

The input to the first round of the dynamic auction is a configuration χ

satisfying the following conditions: (1) for any item v is items(χ), the integer

min(v) is equal to the seller-specified starting price of item v; (2) there exists

exactly |items(χ)| agents in agents(χ) that are designated as dummy agents,

and for any dummy agent u and any non-dummy agent u′ in the set agents(χ),

we have u < u′; (3) for any item v in items(χ), there is a dummy agent u in

156

agents(χ) such that w(u, v) is equal to the seller-specified reserve price of v

(which is required to be at least the starting price of v), match(χ, v) = u, and

w(u, v′) = min(v′)− 1 for any item v′ in items(χ)− v.

Each round of the dynamic auction is resolved using the sealed-bid unit-

demand auction with put options described in Chapter 8. We now describe

the input of a general non-first round of the auction. Let χ = (G,M,Φ) where

G = (U, V, w) be the output of round i− 1 of the auction. The input to round

i is a configuration χ′ of the form (G′,M,Φ) where G′ = (U ′, V, w′) satisfying

the following conditions: (1) U does not include an agent u in unmatched(χ)

if u is either a dummy agent or if u did not submit a bid in round i, (2) For

each item v in V and for each agent u that is either a dummy agent or is in

matched(χ) and did not submit a bid in round i, w′(u, v) = w(u, v).

9.2 Auxiliary Definitions

A dynamic unit-demand auction D is a sequence of sealed-bid unit-

demand auctions where each round of the dynamic auction is resolved using

the corresponding sealed-bid auction in the sequence.

For any execution of a dynamic unit-demand auction, we have an asso-

ciated history of bids that specifies the bids received in each round. We define

a bid-history H as a sequence of sets of bids where each set includes a unit-

demand bid for each agent in the auction. For any bid-history H, we define

length(H) as the length of the sequence H. For any bid-history H and any

nonnegative integer i ≤ length(H), we define prefix (H, i) as the prefix of H of

157

length i. For any bid-history H, we define prefix (H) as prefix (H, length(H)−

1). For any bid-history H and any agent u, we define bid(H, u) as the bid

of agent u in the last set of bids of sequence H. For any bid-history H, any

agent u, and any bid β, we define subst(H, u, β) as the history H ′ obtained by

substituting bid(H, u) with β.

For any dynamic unit-demand auction D and any bid-history H, we

define config(D,H) as the output configuration obtained by running auction

D on bid-history H. It follows that for any dynamic unit-demand auction D

and any bid-history H, the input and output configurations of each round of

auction D can be deduced for the sequence of bids in H.

For any configuration χ = (G,M,Φ) where G = (U, V, w), and any

agent u in U , we define envy-free(χ, u) to hold if gap(χ, u) ≥ 0 and gap(χ, u) ≥

w(u, v) for any item v in V . For any configuration χ = (G,M,Φ) and any

agent u such that ¬envy-free(χ, u), we define admissible(χ, u) as the set of all

bids β in bids(G) such that envy-free(subst(χ, u, β), u).

For any bid-history H and any agent u, we say submit(H, u) holds if

bid(H, u) 6= bid(prefix (H), u).

9.3 Properties

Recall that a dynamic auction is essentially a sequence of sealed-bid

auctions. We say a dynamic unit-demand auction satisfies property 1 if each

round of the dynamic auction satisfies property 1 of Section 4.3. We de-

158

fine what it means for a dynamic unit-demand auction to satisfy proper-

ties 2, 3, 4, 5, and 6 similarly. In this section, we establish properties of

any dynamic unit-demand auction that satisfies certain subsets of properties 1

through 6. Theorems 9.3.1 and 9.3.2 establish efficiency-related properties of

the dynamic auction and are discussed in Section 9.3.2. Theorem 9.3.3 estab-

lishes a certain shill-resistant property of the dynamic auction and is discussed

in Section 9.3.3.

9.3.1 Truthfulness

As we have previously noted in Section 8.4, the sealed-bid unit-demand

auction with put options is truthful. Since each round of the dynamic auction

is resolved using this sealed-bid auction, it follows that each round of the

dynamic auction is truthful.

9.3.2 Efficiency

Each round of the dynamic auction implements the solution concept of

Section 4.3. Thus, it follows from property 6 that each round of the dynamic

auction produces an outcome that is either (strong version) Pareto-efficient,

or (weak version) contained in the weak core.

In Theorems 9.3.1 and 9.3.2, we establish efficiency-related properties

that hold over multiple rounds of the dynamic auction. We now informally

motivate the claims of Theorems 9.3.1 and 9.3.2.

Theorem 9.3.1 establishes that if an agent u is envy-free in a round, then

159

agent u remains envy-free in each subsequent round in which u’s preference

does not change and u does not submit a bid.

Consider an agent u who is tentatively allocated to an item v. Assume

that agent u submits a bid revision request in round i of the auction, thereby

expressing a desire to be allocated to some item v′ different from v. After

round i, agent u may not be envy-free; informally, this means that the revised

bid of u is not fully respected by the auction. Theorem 9.3.2 establishes that

in each round subsequent to round i in which u’s preference does not change,

u does not submit a bid revision request, and u remains allocated to the same

item, the dynamic auction makes progress towards respecting the revised bid

submitted by u in round i. Specifically, with each successive round, the revised

bid of u can only find better and better approximations in the growing set of

admissible bids.

Lemma 9.3.1. For any dynamic unit-demand auction D that satisfies prop-

erties 1 and 3, any agent u in auction D, and any bid-history H, if u belongs

to unmatched(config(D, prefix(H))), then we have envy-free(config(D,H), u).

Proof. Let configuration χ = config(D, prefix (H)) and let configuration χ′ =

config(D,H). By property 1 of auction D, configuration χ′ is semi-Walrasian.

If u belongs to unmatched(χ′), then by the definition of semi-Walrasian config-

urations, we have envy-free(χ′, u). We now consider the case where u belongs

to matched(χ′). Let v be the item such that match(χ′, v) = u. Suppose

¬envy-free(χ′, u); then by the definition of semi-Walrasian configurations and

160

the definition of items that are priced above market, item v is priced above

market. By property 4(a) of auction D, if v is priced above market, then agent

u belongs to matched(χ), a contradiction. Thus, envy-free(χ′, u).

Lemma 9.3.2. For any dynamic unit-demand auction D that satisfies prop-

erties 1, 2, 3, and 4, any bid-history H, and any agent u, if ¬submit(H, u)

and envy-free(config(D, prefix(H)), u), then envy-free(config(D,H), u).

Proof. Let configuration χ = config(D, prefix (H)) and let configuration χ′ =

config(D,H). If agent u belongs to unmatched(χ), then the result follows

from Lemma 9.3.1. We now focus on the case where u belongs to matched(χ).

By property 1 of auction D, configurations χ and χ′ are semi-Walrasian.

Suppose ¬envy-free(χ′, u); then by the definition of semi-Walrasian config-

urations, u belongs to matched(χ′). Let v and v′ be the items in auction

D such that match(χ, v) = u = match(χ′, v′). By the definition of semi-

Walrasian configurations and the definition of items that are priced above

market, item v′ is priced above market. By property 4(a), v is also priced

above market. By property 4(b), gap(χ′, u) ≥ gap(χ, u) and by property 3,

potential(χ, v′) = potential(χ′, v′) and potential(χ, v) = potential(χ′, v). Since

envy-free(χ, u), it follows that gap(χ′, u) = gap(χ, u). Finally, by properties 2

and 3, potential(χ, v′′) ≥ potential(χ′, v′′) for any item v′′ in items(χ) \ {v, v′}.

It follows that envy-free(χ′, u), a contradiction. Thus, envy-free(χ′, u).

Lemma 9.3.3. For any dynamic unit-demand auction D that satisfies proper-

ties 1, 2, and 3, any bid-history H, and any agent u, if ¬envy-free(config(D,H), u)

161

and if u is matched to the same item v in configurations config(D, prefix(H))

and config(D,H), then

admissible(config(D, prefix(H)), u) ⊆ admissible(config(D,H), u)

Proof. Let configuration χ = config(D, prefix (H)) and let configuration χ′ =

config(D,H). By property 1 of auction D, configurations χ and χ′ are semi-

Walrasian. Let β be any bid in admissible(χ, u). By definition, β(v) −

potential(χ, v) ≥ β(v′) − potential(χ, v′) for any item v′ in items(χ). Since

¬envy-free(χ′, u) and χ′ is semi-Walrasian, by the definition of items that are

priced above market, item v is priced above market. By properties 2 and 3,

potential(χ, v) = potential(χ′, v) and potential(χ, v′) ≤ potential(χ′, v′) for

any item v′ in items(χ)− v. It follows that, β(v)− potential(χ′, v) ≥ β(v′)−

potential(χ′, v′) for any item v′ in items(χ′). Thus, β is in admissible(χ′, u).

Theorems 9.3.1 and 9.3.2 follow directly by induction on Lemmas 9.3.2

and 9.3.3 respectively.

Theorem 9.3.1. For any dynamic unit-demand auction D that satisfies prop-

erties 1, 2, 3, and 4, any bid-history H, any prefix H ′ of bid-history H, and

any agent u such that envy-free(config(D,H ′), u), if ¬submit(prefix(H, j), u)

for length(H ′) < j ≤ length(H), then envy-free(config(D,H), u).

Theorem 9.3.2. Let D be a dynamic unit-demand auction that satisfies prop-

erties 1, 2, and 3, let H be a bid-history, and let H ′ be a prefix of H. Let u be an

agent in D such that ¬envy-free(config(D,H), u) and let v be the item such that

162

match(config(D,H), v) = u. For each j where length(H ′) < j ≤ length(H), if

match(config(D, prefix(H, j)), v) = u and ¬submit(prefix(H, j), u), then

admissible(config(D,H ′), u) ⊆ admissible(config(D,H), u).

9.3.3 Shill-resistance

If the seller of an item in a dynamic auction has access to the maximum

price that an agent who is tentatively allocated to the item is willing to pay for

the item, then the seller can extract this price by submitting a shill offer just

below the agent’s offer. Thus, a goal of the dynamic auction is to ensure bid

privacy for tentatively allocated agents. Below we formalize what it means

for an agent to be shilled by ∆ units for some nonnegative integer ∆. In

Theorem 9.3.3, we establish that no agent in the proposed dynamic auction

can be shilled by more than one unit. A consequence of this shill-resistant

property is that no seller can artificially raise the price of an item by more than

one unit without risking forfeiture of sale. The running time of our auction is

independent of the monetary units used; thus each unit can be considered to

be as low as one cent, making our auction highly resistant to shilling.

We establish bid privacy of an agent u in the auction with respect to the

grand coalition of all agents in the auction except agent u. For any dynamic

unit-demand auction D and any agent u, we define coalition(D, u) as the set

of all agents in D except agent u. The agents in coalition(D, u) are assumed

to learn the following in each round of auction D:

163

1. the bids of all agents except agent u,

2. whether agent u submitted a bid in the round,

3. the shape (relative differences between offers) of agent u’s bid, and

4. the pricing and allocation at the end of the round.

Assumption 1 ensures that our dynamic auction preserves the privacy

of agent u even when all of the other agents conspire against u. Assumptions 2

and 3 ensure that our notion of privacy does not merely exploit the fact that

agent u is allowed to submit a bid revision in every round. Assumption 4 is

natural since the dynamic auction publishes the tentative outcome in every

round.

[Definitions] For any dynamic unit-demand auction D, any bid-history

H, and any agent u in auction D, we define possible(D,H, u) as the set of all

bids β such that config(D, subst(H, u, β)) = subst(config(D,H), u, β). The set

possible(D,H, u) corresponds to the set of possible bids of agent u at the end

of the auction that can be deduced by the agents in coalition(D, u). For any

dynamic unit-demand auction D, any bid-history H, any agent u in D, and

any bid β in possible(D,H, u), we define possible(D,H, u, β) as the set of all

integers z such that shift(β, z) belongs to possible(D,H, u).

[Definitions] For any dynamic unit-demand auction D, any bid-history

H, and any agent u, we define risk(D,H, u) to hold if

1. agent u belongs to matched(config(D, prefix (H))), and

164

2. there exists a bid β in possible(D, prefix (H), u) such that agent u belongs

to unmatched(config(D, subst(H, u, β))).

For any dynamic unit-demand auction D, any bid-history H, and any

agent u, we say u is shilled out of ∆ units if ∆ is the maximum integer such

that there exists integers i and j > i that satisfy the following conditions:

1. Agent u belongs to matched(config(D, prefix (H, j)))

2. ¬submit(prefix (H, k), u) for each integer k where i < k ≤ j

3. ¬risk(D, prefix (H, k), u) for each integer k where i < k ≤ j

4. gap(config(D, prefix (H, i)), u) ≥ gap(config(D, prefix (H, j)), u) + ∆.

Lemma 9.3.4. For any dynamic unit-demand auction D that satisfies prop-

erty 1, 2, 3, and 4, any bid-history H, any agent u in matched(config(D,H)),

and any bid β in possible(D,H, u), either envy-free(config(D,H), u), or shift(β, z)

belongs to possible(D,H, u) for any integer z.

Proof. We use induction on the round number i of the auction. For the base

case, we consider i = 1, the first round of the auction. By definition, u is

unmatched in the input configuration of the first round. By Lemma 9.3.1, it

follows that envy-free(config(D, prefix (H, 1)), u).

For the induction step, we consider the case where i > 1. By the induc-

tion hypothesis, the lemma holds for all 1 ≤ j < i. Let χ = config(D, prefix (H, i−

1)) and let χ′ = config(D, prefix (H, i)). If u belongs to unmatched(χ), then

165

by Lemma 9.3.1, we have envy-free(χ′, u). We now consider the case where

u belongs to matched(χ). Let v be the item such that match(χ, v) = u. We

consider the following subcases:

• envy-free(χ, u)

If ¬submit(prefix (H, i−1), u), then by Lemma 9.3.2, we have envy-free(χ′, u).

We now consider the case where submit(prefix (H, i− 1), u).

First, we consider the case where v does not belong to items(χ′, u′) for

any agent u′ in unmatched(χ′), then by using property 1 of auction

D and the definition of items that are priced above market, item v is

priced above market. By property 3 of auction D, potential(χ, v) =

potential(χ′, v). Since potential(χ, v) = potential(χ′, v) and the bid β

submitted by u could be arbitrary, it follows that for any integer z, the

bid shift(β, z) is contained in the set possible(D, prefix (H, i), u).

Next, we consider the case where item v belongs to items(χ′, u′) for some

agent u′ in unmatched(χ′). In this case, by property 1 of auction D,

configuration χ′ is semi-Walrasian, and by the semi-Walrasian property,

we have envy-free(χ′, u).

• For any integer z, the bid shift(β, z) is an element of possible(D, prefix (H, i−

1), u).

First, we consider the case where v does not belong to items(χ′, u′) for

any agent u′ in unmatched(χ′). In this case, by property 1 of auction

166

D, configuration χ′ is semi-Walrasian, and by definition of items that

are priced above market, item v is priced above market. By prop-

erty 3 of auction D, we have potential(χ, v) = potential(χ′, v). Since

potential(χ, v) = potential(χ′, v) and for any integer z, shift(β, z) is con-

tained in the set possible(D, prefix (H, i − 1), u), it follows that for any

integer z, shift(β, z) is in possible(D, prefix (H, i), u).

Next, we consider the case where v is in items(χ′, u′) for some agent u′

in unmatched(χ′). In this case, by property 1 of auction D, χ′ is semi-

Walrasian, and by the semi-Walrasian property of configuration χ′, we

have envy-free(χ′, u).

Lemma 9.3.5. For any dynamic unit-demand auction D that satisfies prop-

erties 1 and 6, any bid-history H, any agent u in matched(config(D,H)),

and any bid β in possible(D,H, u), if envy-free(config(D,H), u), then there

exists a smallest integer z0 such that for any integer z ≥ z0, shift(β, z) be-

longs to possible(D,H, u), and either (a) any nonnegative integer is a possible

value of gap(config(D,H), u), or (b) any positive integer is a possible value of

gap(config(D,H), u).

Proof. Let configuration χ = config(D,H) and let v be the item in auction D

such that match(χ, v) = u. Since envy-free(χ, u), we have gap(χ, u) ≥ 0. It fol-

lows that there exists a maximum integer z′ such that, gap(shift(χ, u, z), u) < 0

for any integer z < z′. By property 1 of auction D, χ is semi-Walrasian; since

envy-free(χ, u), by definition, v is priced at market. By property 6 of auction

167

D, for any integer z > z′, the bid shift(β, z) belongs to possible(D,H, u). Let

H ′ = subst(H, u, shift(β, z′)). By definition, we have gap(shift(χ, u, z′), u) = 0;

thus, if envy-free(config(D,H ′), u), then z0 = z′ and any nonnegative integer

is a possible value of gap(χ, u); otherwise, z0 = z′+ 1 and any positive integer

is a possible value of gap(χ, u).

Lemma 9.3.6. For any dynamic unit-demand auction D that satisfies proper-

ties 1, 2, 3, 4, and 6, any bid-history H, and any agent u in matched(config(D,H)),

if ¬submit(H, u) and ¬risk(D,H, u), then for any bid β in possible(D,H, u),

possible(D,H, u, β) = possible(D, prefix(H), u, β)

Proof. Let configuration χ = config(D, prefix (H)) and let configuration χ′ =

config(D,H). Let v be the item in auction D such that match(χ′, v) = u. Since

β belongs to possible(D,H, u) and ¬submit(H, u), it follows from properties 2

and 3 of auction D, that β is contained in the set possible(D, prefix (H), u).

By Lemma 9.3.4, we know that either envy-free(config(D, prefix (H)), u), or

shift(β, z) belongs to possible(D, prefix (H), u) for any integer z. We consider

the following cases:

• envy-free(χ, u)

By Lemma 9.3.2, we have envy-free(χ′, u). It follows from Lemma 9.3.5

that the possible values for gap(χ′, u) deduced by coalition(D, u) either

include (a) all nonnegative integers or, (b) all integers greater than 0.

Since envy-free(χ, u), by Lemma 9.3.5, there exists a smallest integer k in

168

in possible(D, prefix (H), u, β). Since ¬risk(D,H, u) and ¬submit(H, u),

it follows that k belongs to possible(D,H, u, β). By Lemma 9.3.5, we

know that every integer z > k is in possible(D,H, u, β). Thus, we have

possible(D, prefix (H), u) ⊆ possible(D,H, u). Since ¬submit(H, u), by

properties 2 and 3 of auction D, we have

possible(D,H, u) ⊆ possible(D, prefix (H), u)

Thus, possible(D,H, u) = possible(D, prefix (H), u).

• shift(β, z) belongs to possible(D, prefix (H), u) for any integer z

By property 1 of auction D, configuration χ is semi-Walrasian. Since

¬risk(D,H, u), item v does not belong to items(χ, u′) for any agent u′

in unmatched(χ). By the semi-Walrasian property of configuration χ,

item v is priced above market, and by property 4(a) of auction D, u

belongs to matched(χ). Let v′ be the item such that match(χ, v′) = u.

By properties 2 and 3 of auction D, potential(χ, v) = potential(χ′, v),

potential(χ, v′) = potential(χ′, v′), and potential(χ, v′′) ≥ potential(χ′, v′′)

for any item v′′ in items(χ) \ {v, v′}. Thus, possible(D, prefix (H), u) ⊆

possible(D,H, u). Since ¬submit(H, u), by properties 2 and 3 of auc-

tion D, we have possible(D,H, u) ⊆ possible(D, prefix (H), u). Thus,

possible(D,H, u) = possible(D, prefix (H), u).

Theorem 9.3.3. For any dynamic unit-demand auction D that satisfies prop-

erties 1, 2, 3, 4, and 6, and any bid-history H, no agent in auction D can be

shilled by more than one unit.

169

Proof. Suppose there exists an agent u who is shilled by ∆ > 1 in an execution

of auction D with bid-history H. Then, by definition, there exists integer i

and j, where j > im such that the following conditions hold:

1. u belongs to matched(config(D, prefix (H, j))),

2. ¬submit(prefix (H, k), u) holds for each integer k where i < k ≤ j,

3. ¬risk(D, prefix (H, k), u) holds for each integer k where i < k ≤ j, and

4. gap(config(D, prefix (H, i)), u) ≥ gap(config(D, prefix (H, j)), u) + ∆.

Let χ = config(D, prefix (H, i)). If ¬envy-free(χ, u) then β can be arbitrary,

and any integer is a possible value of gap(χ, u). If envy-free(χ, u), then by

Lemma 9.3.5, the possible values of gap(χ, u) either includes (a) all nonneg-

ative integers, or (b) all integers greater than 0. When zero is a possible

value for gap(χ, u), it is easy to see that u cannot be shilled even by a single

unit without coalition(D, u) risking forfeiture of sale. We now consider the

case where envy-free(χ, u) holds and any positive integer is a possible value

of gap(χ, u). By Lemma 9.3.6, we know that possible(D, prefix (H, k), u, β) =

possible(D, prefix (H, k + 1), u, β) for i ≤ k < j. Thus, if u is shilled by

one unit in a round k where i < k ≤ j, then zero is a possible value of

gap(config(D, prefix (H, l)), u) for k < l ≤ j and u cannot be shilled further, a

contradiction. Thus, u cannot be shilled by more than a unit.

170

9.4 Scalability

In this section, we briefly sketch the details of a fast implementation of

the dynamic auction. In each round of the dynamic auction, new bid data (i.e.,

bid revision requests from tentatively allocated agents, and bids from unallo-

cated agents) is received and the tentative allocation and pricing is updated

using an instance of the sealed-bid unit-demand auction with put options. Re-

call from Section 8.7 that in the first round of the sealed-bid auction, the bid

of each unallocated agent can be processed in time proportional to the time

required to solve a single-source shortest paths (SSSP) problem on the active

subgraph of the associated bid-graph.

At the start of a round, one or more tentatively allocated agents are

not envy-free. If a tentatively allocated agent u who is not envy-free becomes

unallocated in the round, then u is added to the set of unallocated agents

whose bids are yet to be processed. For each such agent u, the number of

tentatively allocated agents who are not envy-free decreases by at least one

as the only way a tentatively allocated agent can cease to be envy-free is by

revising its bid. Furthermore, when we use an SSSP computation to process

the bid of the now-unallocated agent u, we can charge the cost of this SSSP

computation to the most recent bid revision of u. Consequently, the total

number of SSSP computations performed across all rounds is at most the

total number of bidding operations (i.e., bid revisions or new bids) over all

rounds.

For our fast implementation, we choose the TTC [37] algorithm to

171

implement the second phase of the sealed-bid auction used in each round.

From Section 8.7, the TTC algorithm can be implemented in time linear in

the size of the active subgraph.

In summary, it is possible to implement the dynamic auction in such a

way that the amortized cost of each bidding operation is close to linear in the

size of the active subgraph of the bid-graph, which is at most quadratic in the

number of items. Moreover, in many practical auction settings, the average

number of active bid components of a tentatively allocated agent is likely to

be small, say at most a constant. In such settings, the number of active bid

components is linear in the number of items, and hence the amortized cost of

each bidding operation is close to linear in the number of items.

172

Chapter 10

Sniping Fees

In this section we describe how to modify our dynamic unit-demand

auction to encourage early bidding, while preserving all of the theoretical prop-

erties established earlier in the preceding chapters. In Section 10.1 we review a

standard technique for incorporating agent-specific adjustments into the sell-

ing prices of the items. In Section 10.2, we generalize this technique to allow

for price adjustments that may increase from one round to the next. Such

dynamic price adjustments are used to discourage “sniping”, i.e., waiting until

close to the end of the auction to submit a bid. Sniping diminishes agents’

ability to focus value discovery efforts on the most relevant items, thereby

increasing participation costs and degrading efficiency.

10.1 Static Price Adjustments

At the conclusion of a typical single-item online auction, the item is

shipped to the winning agent. The winning agent pays the auction price plus

shipping costs. The cost of shipping is agent-specific, in general, because it may

vary depending on the shipping address. The cost of shipping is typically made

available to the agents during the auction (e.g., via a shipping calculator).

173

Viewed more abstractly, the seller publishes a static function adjustment(u)

as part of the auction listing, and if agent u wins the auction, then agent u

pays the auction price plus adjustment(u).

Such an abstraction is also useful for selling an item with multiple

“variants”. For example, consider a computer that can be sold with or without

a monitor. The auction listing for the computer might specify an additional

charge for the optional monitor. Such variant-related charges might be agent-

specific (e.g., due to the cost of shipping the monitor), and in general might

be positive or negative. The auction listing of the seller provides the necessary

information (e.g., shipping calculator, fixed price adjustments for different

variants) to allow each agent u to determine the relevant price adjustment

adjustment(u) to be paid in the event that agent u wins the auction. We view

the adjustment as a function of the agent only, as opposed to the agent and

variant, because the agent selects the relevant variant based on the published

cost adjustments. In this sense, the problem of supporting multiple variants

of an item is reduced to the single-variant case.

The framework discussed above generalizes immediately to the unit-

demand setting, where we have a static price adjustment function adjustment(u, v)

that specifies the amount to be added to the auction price to determine the to-

tal price paid by agent u for item v. It is natural to ask whether the theoretical

properties established for our auction continue to hold in the presence of such

an adjustment function. Apart from the price adjustment performed at the

end of the auction, the computations performed by our auction depend only

174

on the non-adjusted bids. Consequently, it is straightforward to argue that

all of the theoretical properties established for our auction continue to hold

with respect to the non-adjusted bids/prices. (Regarding our claim that each

individual round of our auction is truthful, we point out that a non-adjusted

bid of agent u is truthful if the corresponding adjusted bid is equal to the

truthful preferences of agent u.)

10.2 Dynamic Price Adjustments

The static price adjustment framework discussed in Section 10.1 reflects

standard practice in single-item auctions, and generalizes straightforwardly to

the unit-demand setting. We now introduce a variation of this framework

in which there is a separate price adjustment function adjustment i for each

round i of the auction. We require that the choice of the function adjustment i

is determined by the public component of the bidding history up to the start

of round i, and that for any agent u, item v, and rounds i and j such that

i < j, we have adjustment i(u, v) ≤ adjustment j(u, v).

When an agent u wins an item v, agent u pays the auction price plus

adjustment i(u, v), where i is the index of the earliest round such that for all

rounds with index at least i, the output configuration χ = (G,M,Φ) satisfies

w(u, v) − Φ(v) ≥ min(0, gap(χ, u)). Roughly speaking, the latter condition

checks whether agent u’s unit-demand bid still has the possibility of winning

item v in a later round, even if it is left unchanged.

Reasoning as in the case of a static price adjustment function discussed

175

in Section 10.1, it is straightforward to argue that our dynamic price adjust-

ment scheme continues to enjoy all of the theoretical properties established

in Chapter 9. In this regard, we remark that our requirement that function

adjustment i is determined by the public component of the bidding history

up to the start of round i ensures that the shill-resistance of the auction is

preserved. (In the absence of this requirement, the choice of the function

adjustment i could reveal private information related to the bids of the tenta-

tively allocated agents.) The scalability of our auction is unaffected since it is

easy to compute the price adjustments to be applied at the end of the auction.

Indeed, we can compute tentative price adjustments at the end of each round

without increasing the asymptotic complexity of processing a round.

The requirement that adjustment i(u, v) is nondecreasing in i is moti-

vated by our desire to encourage early bidding in the auction. Suppose agent

u wins item v, and our price adjustment rule prescribes that agent u pays the

auction price plus adjustment i(u, v). We view the nonnegative value obtained

by subtracting adjustment1(u, v) from adjustment i(u, v) as the “sniping fee”

incurred by agent u for not bidding earlier. (Remark: The term “sniping” is

often used narrowly to refer to submitting a bid in the last few seconds of an

auction. Here we use the term more broadly, since our sniping fee structure

can be multi-tiered to discriminate between bids submitted with arbitrarily

varying amounts of time remaining in the auction.)

We now describe a simple but practically important use case of the dy-

namic price adjustment framework introduced above. Consider a unit-demand

176

auction in which the listing of each item v specifies — at the outset of the

auction — the value of adjustment i(u, v) for all agents u and rounds i. For

i = 1, these values can be used to model shipping costs and item variants

as discussed in Section 10.1. The sniping fee applicable to bids submitted

in the first round is zero. For any agent u and round i > 1, the quantity

adjustment i(u, v)−adjustment i−1(u, v) models the nonnegative change in snip-

ing fee from round i − 1 to round i. A potential drawback of this scheme is

that the sniping fees for an item v accumulate even while the item remains

tentatively allocated to the dummy agent for item v (because the reserve price

has not been reached). It may be preferable for the seller of item v to specify

how sniping fees are to grow once the reserve price has been met. Such a more

complex sniping fee schedule — which has a nontrivial dependence on the

bidding history — still falls well within the general dynamic price adjustment

framework introduced above.

We now discuss considerations associated with the design of a suitable

sniping fee schedule for a given item in the auction. For the sake of con-

creteness, we pursue this discussion in the context of a specific popular online

auction format: A continuous auction with a fixed one-week duration. (In a

continuous auction, the tentative pricing and allocation is updated immedi-

ately once a bidding operation is received. Equivalently, we can imagine that

each round corresponds to a fixed, infinitesimally small, interval of time.) Sim-

ilar considerations arise in the design of sniping fee schedules for other auction

formats.

177

Under one simple sniping fee schedule for a one-week continuous auc-

tion, the sniping fee might increase linearly from zero — at the time when

the reserve is met — to a seller-specified maximum value at the end of the

auction. However, such a schedule is unlikely to be appropriate. Notice, for

example, that the sniping fee would remain virtually constant over the last

hour of the auction. From the perspective of allowing competing agents to

engage in additional value discovery in response to one’s bid, there is a signifi-

cant difference between bidding with ten seconds left in the auction, with one

minute left, with five minutes left, or with an hour left. This observation leads

us to conclude that the sniping fee should increase more rapidly as the time

remaining in the auction diminishes. For example, it might be reasonable to

make the sniping fee proportional to the logarithm of the ratio of the auction

duration to the time remaining. Doing so results in an additive increase in the

sniping fee whenever the time remaining decreases geometrically, and a geo-

metric decrease in the time remaining has a qualitative impact on the ability

of agents to engage in value discovery.

178

Chapter 11

Concluding Remarks

The two main contributions of this dissertation are (1) a sealed-bid

unit-demand auction with put options, and (2) a dynamic unit-demand auction

supporting arbitrary bid revision. Our proposed dynamic unit-demand auction

is essentially a generalization of the eBay auction for the unit-demand setting

and has practical potential. In this section, we offer some recommendations

and extensions for our dynamic auction.

In the foregoing presentation of our dynamic auction, we have assumed

that the set of items for sale in the auction is static. It is straightforward

to modify the auction to allow new items to be introduced in each round.

Further, we have assumed that all items in the auction have the same expiry

time. It is possible to relax this assumption. For example, we can specify a

separate expiration time for each item in the auction, and allow unit-demand

bidding across items that expire within the same interval of time (e.g., the

same day).

The binary string identifiers associated with agents and items in our

dynamic auction provide fixed total orders over the sets of agents and items.

The properties of our auction continue to hold even if these total orders are

179

changed from one round of the auction to the next. We recommend using

a single total order over the items for all rounds of the dynamic auction;

for example, this total order could be derived by sorting a fixed set of item

identifiers. We recommend a slightly more complex scheme for determining

the total order over the agents to be used in each round. First, we recommend

that all dummy agents be ordered lower than all non-dummy agents in every

round; this ensures that an item can be sold to a non-dummy agent at the

starting price. Within the set of dummy agents, we recommend using the same

(arbitrary) fixed total order in all rounds.

Within the set of non-dummy agents, we recommend using a dynamic

timestamp-based ordering, where the timestamp of an agent is determined as

follows. In the first round, all agents are assigned the same timestamp. In

any non-first round i, recall that the agents may be partitioned into sets (1)

agents that were tentatively allocated at the end of the previous round; and

(2) (non-dummy) agents that were not tentatively allocated at the end of the

previous round, and are submitting a new unit-demand bid in the current

round. Timestamp i is assigned to all of the agents in set (2). Each agent u in

set (1) is assigned the minimum timestamp j less than i such that u is allocated

in the solution associated with all applications of the sealed-bid unit-demand

auction with put options in rounds j through i− 1. Having determined these

timestamps, we recommend ordering any pair of agents u and u′ participating

in round i as follows: if u and u′ have distinct timestamps, then the agent with

the higher timestamp is considered lower; if u and u′ have equal timestamps,

180

then the order of the agents is determined by an arbitrary fixed total order.

The motivation for the proposed dynamic timestamp-based scheme is that it

breaks ties in favor of agents who have been allocated longer.

The single-item auction mechanism employed by eBay is essentially a

dynamic second-price auction. We have shown how to generalize this popu-

lar auction format to the unit-demand case, while supporting arbitrary bid

revision by tentatively allocated agents. Our auction maintains strong prop-

erties related to efficiency, truthfulness, privacy preservation, and scalability.

We have implemented our auction in Java and verified that it is capable of

processing large numbers of bidding operations per second. Such speed is im-

portant in practice, since it is desirable for a dynamic auction to compute and

publish updates to the pricing and allocation in real time.

181

Bibliography

[1] G. Aggarwal, S. Muthukrishnan, D. Pál, and M. Pál. General auction

mechanism for search advertising. In Proceedings of the 18th World Wide

Web Conference, volume 18, 2009.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice

Hall, New York, NY, 1993.

[3] L. Ausubel. An efficient ascending-bid auction for multiple objects.

American Economic Review, 94(5):1452–1475, 2004.

[4] L. Ausubel. An efficient dynamic auction for heterogeneous commodities.

American Economic Review, 96(3):602–629, 2006.

[5] L. M. Ausubel, P. Cramton, and P. Milgrom. The Clock-Proxy Auction:

A Practical Combinatorial Auction Design. MIT Press, Cambridge, Mas-

sachussetts, 2005.

[6] S. Bickchandani and J. Ostroy. Ascending price Vickrey auctions. Games

and Economic Behavior, 55(2):215–241, 2006.

[7] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–

33, 1971.

182

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C Stein. Introduction

to Algorithms. MIT Press, Cambridge, Massachussetts, 1990.

[9] S. de Vries, J. Schummer, and R. Vohra. On ascending Vickrey auctions

for heterogeneous objects. Journal of Economic Theory, 132(1):95–118,

2007.

[10] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Journal

of Political Economy, 94(4):863–872, 1986.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.

[12] D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge,

Massachussetts, 1993.

[13] S. Fujishige and A. Tamura. A two-sided discrete-concave market with

possibly bounded side payments: An approach by discrete concave anal-

ysis. Mathematics of Operations Research, 32(1):136–155, 2007.

[14] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602,

1973.

[15] J. Green and J. J. Laffont. Characterization of satisfactory mechanisms

for the revelation of preferences for public goods. Econometrica, 44:427–

438, 1977.

[16] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

183

[17] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes.

Journal of Economic Theory, 87(1):95–124, 1999.

[18] F. Gul and E. Stacchetti. The English auction with differentiated com-

modities. Journal of Economic Theory, 92(1):66–95, 2000.

[19] P. Jaramillo and V. Manjunath. The difference indifference makes in

strategy-proof alloocatin of objects. Under Review, 2009.

[20] T. Koopmans and M. Beckmann. Assignment problem and the location

of economic activities. Econometrica, 25:53–76, 1957.

[21] V. Krishna and M. Perry. Efficient mechanism design. Technical report,

Pennsylvania State University, 1998.

[22] C. Krishnappa and C. G. Plaxton. A dynamic unit-demand auction

supporting arbitrary bid revision. In Proceedings of the 13th International

Conference on Electronic Commerce, August 2011.

[23] C. Krishnappa and C. G. Plaxton. A sealed-bid unit-demand auction

with put options. In Proceedings of the 22nd International Conference

on Game Theory, July 2011.

[24] H. Kuhn. The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 3:253–258, 1955.

[25] H. Leonard. Elicitation of honest preferences for the assignment of indi-

viduals to positions. Journal of Political Economy, 91(3):461–479, 1983.

184

[26] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Ox-

ford University Press, 1995.

[27] P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic

Literature, 25:699–738, 1987.

[28] D. Mishra and D. C. Parkes. Ascending price Vickrey auctions for general

valuations. Journal of Economic Theory, 132(1):335–366, 2007.

[29] D. Mishra and D. C. Parkes. Multi-item Vickrey-Dutch auctions. Games

and Economic Behavior, 66(1):326–347, 2009.

[30] R. Myerson. Incentive compatibility and the bargaining problem. Econo-

metrica, 47:61–73, 1979.

[31] R. Myerson. Optimal auction design. Mathematics of Operation Re-

search, 6:58–73, 1981.

[32] J. Nash. Equilibrium points in n-person games. In Proceedings of the

National Academy of Sciences of the United States of America, volume 36,

pages 48–49, 1950.

[33] J. Neumann and O. Morgenstern. Theory of Games and Economic Be-

havior. Princeton University Press, Princeton, New Jersey, 1947.

[34] D. C. Parkes. Iterative Combinatorial Auctions. In P. Cramton, Y. Shoham,

and R Steinberg, editors, Combinatorial Auctions, chapter 2. MIT Press,

Cambridge, Massachussetts, 2006.

185

[35] H. Rothkopf, M, A. Pekeč, and R. M. Harstad. Computationally man-

ageable combinatorial auctions. Management Science, 44(8):1131–1147,

1999.

[36] J. Schummer and R. V. Vohra. Mechanism design Without Money. In

N. Nisan, T. Roughgarden, É. Tardos, and V Vazirani, editors, Algorith-

mic Game Theory, chapter 10. Cambridge University Press, Cambridge,

Massachussetts, 2007.

[37] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathe-

matical Economics, 1(1):23–37, 1974.

[38] K. Steiglitz. Snipers, Shills & Sharks: eBay and Human Behavior.

Princeton University Press, Princeton, New Jersey, 2007.

[39] M. Thorup. Integer priority queues with decrease key in constant time

and the single source shortest paths problem. Journal of Computer and

System Sciences, 69(3):330–353, 2004.

[40] H. Varian. Economic mechanism design for computerized agents. In Pro-

ceedings of the 1st USENIX Conference on Electronic Commerce, 1995.

[41] W. Vickrey. Counterspeculation, auctions, and competitive sealed ten-

ders. Journal of Finance, 16(1):8–37, 1961.

[42] L. Walras. Elements of Pure Economics. Allen and Unwin, 1954.

186

[43] S. Williams. A characterization of efficient, Bayesian incentive-compatible

mechanisms. Economic Theory, 14:155–180, 1999.

[44] P. Wurman and M. Wellman. A parameterization of the auction design

space. Games and Economic Behavior, 35:304–338, 2001.

187

Vita

Chinmayi Krishnappa was born in Bangalore, India, the daughter of C.

K. Kumudini and Dr. P. Krishnappa. She received her Bachelor’s degree in

Computer Science from Visveswaraiah Technological University in India. After

a short stint in the software industry, she enrolled at the University of Texas at

Austin and earned a PhD in Computer Science in 2011. She was the recipient

of the MCD (Microelectronics and Computer Development) fellowship and the

Dean’s Excellence Award at the University of Texas at Austin.

Permanent address: No. 19, H.M.T Layout
R.T Nagar Main Road
Bangalore 560 032, India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

188

