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This lecture presents a brief overview of statistical models in machine learning, exponential family of distributions
and the generalized linear model.

1 Statistical Models
In machine learning, data could appear in various forms, for example:

Data → vectors, x ∈ Rp (continuous or discrete)
→ matrices, x ∈ Rmxn (images)
→ trees (evolutionary phylogenetic trees)

The broad perspective from which we shall be viewing data is that:

Data → Outcome of a random experiment.

Let’s model the data as a random variable x, x ∈ X ,X ∈ Rp (continuous) OR X ∈ {0, 1}p (binary vector)

So, if we denote the probability distribution function of x as P (x), P (x) ∈ {P (x; θ); θ ∈ Θ} (Statistical Model)

Examples of some common distributions:

1. Univariate Gaussian distribution:

P (x;µ;σ2) = 1√
2πσ2

exp(− 1
2σ2 (x− µ2))

2. Multivariate Gaussian distribution:

P (X;µ;Σ) = 1
(2π)p/2det(Σ)1/2

exp(− 1
2 (X − µ)

T
Σ−1(X − µ))

3. Bernoulli distribution (discrete random variables, x ∈ {0, 1})

P (x; θ) = θx(1− θ)x
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2 Exponential Family of Distributions
Let’s consider a general family of distribution in its standard form, which we shall call the Exponential Family of
Distributions.

P (x; θ) = h(x)exp(η(θ)
T
T (x)−A(θ))

where h is a function of x, η is a function of the parameter θ, T is the sufficient statistics and A is the
normalizing constant.

We can specify an exponential family via the tuple (h, η, T,Θ)

The log-normalizing constant is exp(A(θ)), where

exp(A(θ)) =
∫
h(x)exp(η(θ)

T
T (x))dx, θ ∈ Θ, η : Θ→ Rk

Let us try to identify some common distributions as exponential family distributions:

1. Binomial distribution:

P (x; θ) =

(
n
x

)
θx(1− θ)n−x

=
(
n
x

)
exp(xlogθ + (n− x)log(1− θ))

=
(
n
x

)
exp(xlog θ

1−θ + nlog(1− θ))

where h(x) =

(
n
x

)
, T (x) = x, η(θ) = log θ

(1−θ) , A(θ) = nlog(1− θ)

2. Poisson distribution:

P (x; θ) = 1
x!θ

xe−θ, θ > 0

= 1
x!exp(xlogθ − θ)

where h(x) = 1
x! , T (x) = x, η(θ) = logθ,A(θ) = θ

3. Gaussian distribution:

P (x;µ, σ2) = 1√
2πσ2

exp( −1
2σ2 (x− µ)2)

= exp(− x2

2σ2 − µ2

2σ2 + µx
σ2 + log 1√

2πσ2
)

= exp(

(
−x2

x

)T ( −1
2σ2
µ
σ2

)
− µ2

2σ2 + log( 1√
2πσ2

))

where T (x) =

(
−x2

x

)T
, η(θ) =

( −1
2σ2
µ
σ2

)
, A(θ) = µ2

2σ2 − log( 1√
2πσ2

)

2.1 Canonical Exponential Family

The exponential family of distributions can be more conveniently written in a compact form as
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P (x; η) = h(x)exp(ηTT (x)−A(η))

In other words, instead of taking the function of parameter, just take the parameter for representing the model.

For example, consider the Bernoulli distribution,

P (x; θ) = exp(xlog θ
1−θ − log(1− θ)), canonical form is exp(ηx−A(η))

3 Prediction
Consider the pair (X,Y ), where X is our data and Y is the label on the corresponding data. X is also called the
input / feature / covariate / dependent variable and Y is the output / response variable.

Now, consider the conditional probability distribution P (Y |X; θ). If Y is discrete, then the task of prediction
is called a classification problem and if Y is continuous, then it is called a regression problem.

Clearly P (Y |X) = P (X,Y )
P (Y ) , where Y is discrete, say Y ∈ {C1, C2}

Now, by Bayes Rule, we can expand it as:

P (Y = C1|X) = P (X|Y=C1)P (Y=C1)
P (X|Y=C1)P (Y=C1)+P (X|Y=C2)P (Y=C2)

This can also be written in a compact form:

= exp(a)
1+exp(a)

where a = log P (X|Y=C1)P (Y=C1)
P (X|Y=C2)P (Y=C2) (log-odds)

Let’s consider the case when Y is continuous, Y ∈ Rp

Say, (X,Y ) is jointly Gaussian, that is (X,Y ) ∼ N (µ,Σ), where

µ =

(
µx
µy

)
,Σ =

[
Σxx Σxy
Σyx Σyy

]
As an exercise, find out P (Y |X), when it is known that (X,Y ) is jointly Gaussian. (Hint: should be a N (?, ?)

- find out the parameters of this normal distribution).

The above is the generative model for prediction where the joint distribution can be modeled as

P (X,Y ; θ) = h(x)exp(η(θ)TT (x)−A(θ)) [exponential family]

and P (Y |X; θ) can be computed using Bayes Rule.

Contrast this with the discriminative model of prediction where we are interested in

P (Y |X) ∈ {P (Y |X; θ); θ ∈ Θ}
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4 Linear Models (Regression Model)

Let us study linear models of the form y = θTx+ ε, where y ∈ R, θ ∈ Rp, ε ∈ N (0, σ2) and x ∈ Rp.

So, P (Y |X; θ) = N (θTx, σ2)

Some examples of linear models are:

1. Logistic Regression Model:

Y ∈ {0, 1} and P (Y = 1|X; θ) = exp(θT x)
1+exp(θT x)

which is in the general form as exp(a)
1+exp(a) = 1

1+exp(−a) = σ(a) (sigmoid function).

2. Generalized Linear Models (model conditional probability distribution as exponential families)

P (Y |θ) = h(Y )exp(η(θ)
T
T (Y )−A(θ))

Given, E[Y ] = µ(θ) = g−1(βTX), where g is known as the link function. Therefore, θ = µ−1g−1(βTx).

So, P (Y |X,β) = h(Y )exp(µ−1g−1(βTx)T (Y )−A(β)).

Now, set g = µ−1, then the canonical form of the generalized linear model becomes:

P (Y |X,β) = h(Y )exp((βTx)T (Y )−A(β)).

Exercise:

How can logistic regression be represented as a canonical generalized linear model ?
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