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This lecture presents a brief overview of statistical models in machine learning, exponential family of distributions
and the generalized linear model.

1 Statistical Models

In machine learning, data could appear in various forms, for example:
Data — vectors, 2 € R? (continuous or discrete)
— matrices, z € R™*" (images)
— trees (evolutionary phylogenetic trees)
The broad perspective from which we shall be viewing data is that:
Data — Outcome of a random experiment.
Let's model the data as a random variable z, z € X, X € RP (continuous) OR X € {0, 1}? (binary vector)
So, if we denote the probability distribution function of x as P(x), P(z) € {P(z;0);0 € O} (Statistical Model)

Examples of some common distributions:

1. Univariate Gaussian distribution:

P(z;p150%) = s eap(—5,3 (x — p1?))
2. Multivariate Gaussian distribution:
T
P(X;p; %) = W%P(_%(X — ) XTHX — p)
3. Bernoulli distribution (discrete random variables, z € {0,1})

P(x;0) =6%(1—0)*



2 Exponential Family of Distributions

Let's consider a general family of distribution in its standard form, which we shall call the Exponential Family of
Distributions.

P(x;0) = h(z)exp(n(6)" T(x) — A(6))

where h is a function of x, 7 is a function of the parameter 6, T is the sufficient statistics and A is the
normalizing constant.

We can specify an exponential family via the tuple (h,n, T, )
The log-normalizing constant is exp(A(6)), where
exp(A(0)) = [ h(x)exp(n(0)" T(z))dx,0 € ©,n: O — RF
Let us try to identify some common distributions as exponential family distributions:

1. Binomial distribution:

P(z;0) = < Z > 92(1—0)"°
= ( Z ) exp(zlogh + (n — z)log(1 — 6))
= ( Z ) exp(zlogtls + nlog(1 — 0))
where h(z) = ( Z ) (@) = 2,9(0) = log 7, A(6) = nlog(1 — )
2. Poisson distribution:
P(z;0) = 56%e=9,0 >0
= Lexp(zlogd — 0)
where h(z) = &, T(z) = z,1(0) = logh, A(6) = 6

3. Gaussian distribution:

P(z;p,0°%) = ﬁexp(%(x - n)?)
2 p?

= eap(—g5z — 4oz + b7 +log5=)
_:EQ g 2_72 u? 1
= exp( " 4o ) T2 T log(5=))

2 T =1 2
whereT(:c)=< ;C ) 777(9):< 2@; ),A(é)):;‘?—log(\/ﬁ)

2.1 Canonical Exponential Family

The exponential family of distributions can be more conveniently written in a compact form as



P(x;n) = h(z)exp(nT(x) — A(n))
In other words, instead of taking the function of parameter, just take the parameter for representing the model.
For example, consider the Bernoulli distribution,

P(x;0) = exp(zlogrts — log(1 — 0)), canonical form is exp(nz — A(n))

3 Prediction

Consider the pair (X,Y’), where X is our data and Y is the label on the corresponding data. X is also called the
input / feature / covariate / dependent variable and Y is the output / response variable.

Now, consider the conditional probability distribution P(Y'|X;8). If Y is discrete, then the task of prediction
is called a classification problem and if Y is continuous, then it is called a regression problem.

Clearly P(Y|X) = P](f(i’);), where Y is discrete, say Y € {C1,Cs}

Now, by Bayes Rule, we can expand it as:

P(X|Y=C1)P(Y=C
PY =C1|X) = P(X\Y:C1)P((Y‘:C1)-li-)P((X\Y:IC)‘z)P(Y:Cz)

This can also be written in a compact form:

_ _exp(a)
1+exp(a)

where a= loggggigigﬁgig;; (log-odds)

Let's consider the case when Y is continuous, Y € R?
Say, (X,Y) is jointly Gaussian, that is (X,Y) ~ N (1, X), where

W= , = [
( Hy ) Yye  Dyy

As an exercise, find out P(Y|X), when it is known that (X, Y’) is jointly Gaussian. (Hint: should be a A/(7,7)
- find out the parameters of this normal distribution).

The above is the generative model for prediction where the joint distribution can be modeled as
P(X,Y;0) = h(z)exp(n(0)TT(x) — A(#)) [exponential family]

and P(Y'|X;0) can be computed using Bayes Rule.

Contrast this with the discriminative model of prediction where we are interested in

P(Y|X) € {P(Y|X;6);0 € ©}



4 Linear Models (Regression Model)
Let us study linear models of the form y = 07z + ¢, where y € R, 0 € RP, e € N'(0,02) and x € RP.
So, P(Y|X;0) = N(0Tz,0?)
Some examples of linear models are:
1. Logistic Regression Model:
Y €{0,1} and P(Y = 1|X;0) = <220 2)

14+exp(6Tx)

exp(a) 1 —
l1+exp(a) — 14exp(—a)

which is in the general form as o(a) (sigmoid function).

2. Generalized Linear Models (model conditional probability distribution as exponential families)
P(Y10) = h(Y)eap(n(0) " T(Y) — A(6))

Given, E[Y] = u(6) = g~ *(BTX), where g is known as the link function. Therefore, 6 = u=1g=1(37x).
So, P(Y|X, ) = h(Y)exp(u~g~ (8T2)T(Y) — A(8)).

Now, set g = 1, then the canonical form of the generalized linear model becomes:

P(Y|X, ) = h(Y)eap(872)T(Y) — A(B)).

Exercise:

How can logistic regression be represented as a canonical generalized linear model ?



