This lecture presents a brief overview of statistical models in machine learning, exponential family of distributions and the generalized linear model.

1 Statistical Models

In machine learning, data could appear in various forms, for example:

- Data → vectors, $x \in \mathbb{R}^p$ (continuous or discrete)
- → matrices, $x \in \mathbb{R}^{m \times n}$ (images)
- → trees (evolutionary phylogenetic trees)

The broad perspective from which we shall be viewing data is that:

Data \rightarrow Outcome of a random experiment.

Let’s model the data as a random variable x, $x \in \mathcal{X}, \mathcal{X} \subset \mathbb{R}^p$ (continuous) OR $\mathcal{X} \subset \{0, 1\}^p$ (binary vector)

So, if we denote the probability distribution function of x as $P(x)$, $P(x) \in \{ P(x; \theta) ; \theta \in \Theta \}$ (Statistical Model)

Examples of some common distributions:

1. Univariate Gaussian distribution:

 $P(x; \mu; \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{1}{2\sigma^2}(x - \mu)^2}$

2. Multivariate Gaussian distribution:

 $P(X; \mu; \Sigma) = \frac{1}{(2\pi)^{d/2}\det(\Sigma)^{\frac{1}{2}}}e^{\frac{1}{2}(X - \mu)^T\Sigma^{-1}(X - \mu)}$

3. Bernoulli distribution (discrete random variables, $x \in \{0, 1\}$)

 $P(x; \theta) = \theta^x(1 - \theta)^{1-x}$
2 Exponential Family of Distributions

Let’s consider a general family of distribution in its standard form, which we shall call the Exponential Family of Distributions.

\[P(x; \theta) = h(x) \exp(\eta(\theta)^T T(x) - A(\theta)) \]

where \(h \) is a function of \(x \), \(\eta \) is a function of the parameter \(\theta \), \(T \) is the sufficient statistics and \(A \) is the normalizing constant.

We can specify an exponential family via the tuple \((h, \eta, T, \Theta)\)

The log-normalizing constant is \(\exp(A(\theta)) \), where

\[\exp(A(\theta)) = \int h(x) \exp(\eta(\theta)^T T(x)) dx, \theta \in \Theta, \eta: \Theta \to \mathbb{R}^k \]

Let us try to identify some common distributions as exponential family distributions:

1. Binomial distribution:

\[P(x; \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} = \binom{n}{x} \exp(x \log \theta + (n - x) \log(1 - \theta)) = \binom{n}{x} \exp(x \log \frac{\theta}{1-\theta} + n \log(1 - \theta)) \]

where \(h(x) = \binom{n}{x} \), \(T(x) = x \), \(\eta(\theta) = \log \left(\frac{\theta}{1-\theta} \right) \), \(A(\theta) = n \log(1 - \theta) \)

2. Poisson distribution:

\[P(x; \theta) = \frac{1}{x!} \theta^x e^{-\theta}, \theta > 0 \]

\[= \frac{1}{x!} \exp(x \log \theta - \theta) \]

where \(h(x) = \frac{1}{x!}, T(x) = x, \eta(\theta) = \log \theta, A(\theta) = \theta \)

3. Gaussian distribution:

\[P(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) \]

\[= \exp(-\frac{x^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} + \frac{\mu x}{\sigma^2} + \log \left(\frac{1}{\sqrt{2 \pi \sigma^2}} \right)) \]

\[= \exp \left(\begin{pmatrix} x \end{pmatrix}^T \begin{pmatrix} -\frac{1}{\sigma^2} \\ \frac{\mu}{\sigma^2} \end{pmatrix} - \frac{\mu^2}{2\sigma^2} + \log \left(\frac{1}{\sqrt{2 \pi \sigma^2}} \right) \right) \]

where \(T(x) = \begin{pmatrix} x \end{pmatrix}^T, \eta(\theta) = \begin{pmatrix} -\frac{1}{\sigma^2} \\ \frac{\mu}{\sigma^2} \end{pmatrix}, A(\theta) = \frac{\mu^2}{2\sigma^2} - \log \left(\frac{1}{\sqrt{2 \pi \sigma^2}} \right) \)

2.1 Canonical Exponential Family

The exponential family of distributions can be more conveniently written in a compact form as
\[P(x; \eta) = h(x) \exp(\eta^T T(x) - A(\eta)) \]

In other words, instead of taking the function of parameter, just take the parameter for representing the model.

For example, consider the Bernoulli distribution,
\[P(x; \theta) = \exp(x \log \frac{\theta}{1 - \theta} - \log(1 - \theta)), \text{ canonical form is } \exp(\eta x - A(\eta)) \]

3 Prediction

Consider the pair \((X, Y)\), where \(X\) is our data and \(Y\) is the label on the corresponding data. \(X\) is also called the input / feature / covariate / dependent variable and \(Y\) is the output / response variable.

Now, consider the conditional probability distribution \(P(Y|X; \theta)\). If \(Y\) is discrete, then the task of prediction is called a classification problem and if \(Y\) is continuous, then it is called a regression problem.

Clearly \(P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}\), where \(Y\) is discrete, say \(Y \in \{C_1, C_2\}\)

Now, by Bayes Rule, we can expand it as:
\[P(Y = C_1|X) = \frac{P(X|Y=C_1)P(Y=C_1)}{P(X|Y=C_1)P(Y=C_1) + P(X|Y=C_2)P(Y=C_2)} \]

This can also be written in a compact form:
\[= \frac{\exp(a)}{1 + \exp(a)} \]

where \(a = \log \frac{P(X|Y=C_1)P(Y=C_1)}{P(X|Y=C_2)P(Y=C_2)} \) (log-odds)

Let’s consider the case when \(Y\) is continuous, \(Y \in \mathbb{R}^p\)

Say, \((X, Y)\) is jointly Gaussian, that is \((X, Y) \sim \mathcal{N}(\mu, \Sigma)\), where
\[
\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}
\]

As an exercise, find out \(P(Y|X)\), when it is known that \((X, Y)\) is jointly Gaussian. (Hint: should be a \(\mathcal{N}(?, ?)\) - find out the parameters of this normal distribution).

The above is the generative model for prediction where the joint distribution can be modeled as
\[P(X, Y; \theta) = h(x) \exp(\eta^T T(x) - A(\theta)) \text{ [exponential family]} \]

and \(P(Y|X; \theta)\) can be computed using Bayes Rule.

Contrast this with the discriminative model of prediction where we are interested in \(P(Y|X) \in \{P(Y|X; \theta); \theta \in \Theta\}\)
4 Linear Models (Regression Model)

Let us study linear models of the form \(y = \theta^T x + \epsilon \), where \(y \in \mathbb{R}, \theta \in \mathbb{R}^p, \epsilon \in \mathcal{N}(0, \sigma^2) \) and \(x \in \mathbb{R}^p \).

So, \(P(Y|X; \theta) = \mathcal{N}(\theta^T x, \sigma^2) \)

Some examples of linear models are:

1. Logistic Regression Model:
 \(Y \in \{0, 1\} \) and \(P(Y = 1|X; \theta) = \frac{\exp(\theta^T x)}{1+\exp(\theta^T x)} \)
 which is in the general form as \(\frac{\exp(a)}{1+\exp(a)} = \frac{1}{1+\exp(-a)} = \sigma(a) \) (sigmoid function).

2. Generalized Linear Models (model conditional probability distribution as exponential families)
 \(P(Y|\theta) = h(Y) \exp(\eta(\theta)^T Y - A(\theta)) \)
 Given, \(\mathbb{E}[Y] = \mu(\theta) = g^{-1}(\beta^T X) \), where \(g \) is known as the link function. Therefore, \(\theta = \mu^{-1} g^{-1}(\beta^T x) \).
 So, \(P(Y|X, \beta) = h(Y) \exp(\mu^{-1} g^{-1}(\beta^T x) T(Y) - A(\beta)) \).

Now, set \(g = \mu^{-1} \), then the canonical form of the generalized linear model becomes:
 \(P(Y|X, \beta) = h(Y) \exp((\beta^T x) T(Y) - A(\beta)) \).

Exercise:

How can logistic regression be represented as a canonical generalized linear model?