
CS395T: Learning Theory; Fall 2011
Lecture 3 and 4 ; Dates:08/31/2011 and 09/14/2011

Lecturer: Pradeep Ravikumar ; Scribe: Avhishek Chatterjee

Keywords: Graphical model, variable elimination, message passing, junction tree

Note: Scribed notes have only been lightly proofread.

1 Overview
These two lectures build the concept of inferencing over a graphical model. We shall first introduce the concept
of marginalization using variable elimination. After that we shall show how variable elimination can be made
efficient through message passing on a tree and general graphs. Then we shall introduce the concept of cluster
graph for graphical models with larger (> 2) cliques. This leads to the development of the concept of junction
tree and eventually to the junction tree algorithm. We end these lectures by pointing out some special features
of the junction tree algorithm.

2 Variable Elimination
Unlike directed graphical models in an undirected graphical model the joint distribution (product of compatibility
functions would be technically more correct term) does not normalize to one. Hence any inference problem over
an undirected graphical model requires us to find the marginalization constant which is also called the partition
function. Mathematically we can write it as, Z =

∑
X

∏
C∈C(G) ψC(XC).

Please note that a brute force method for evaluating Z will require an exponential (in number of variables)
number of addition operations. A natural and smarter alternative to brute force method would be variable
elimination. In variable elimination the summation is done over one variable at a time. Let Ci1 be the set of
cliques that contain Xi1 as a variable. Then given a chosen order of elimination say {i1, i2, · · · in}, also called
the elimination schedule, the variable elimination steps would be as the following.

Z =
∑
X\i1

∑
Xi1

∏
C∈C(G)

ψC(XC)

=
∑
X\i1

∏
C∈C(G)\Ci1

ψC(XC)
∑
Xi1

∏
C∈Ci1

ψC(XC)

=
∑
X\i1

MCi1\i1(X(∪C∈Ci1
C)\i1)

∏
C∈C(G)\Ci1

ψC(XC)

HereMCi1\i1(X(∪C∈Ci1
C)\i1) is the new compatibility function after eliminatingXi1 from the term

∏
C∈Ci1

ψC(XC).
This term simply represent the compatibility function of new component formed after eliminating node i1 and
joining all the nodes that were connected to it.

1

Figure 1: 4-node non-chordal cycle

Note that compared to brute force method variable elimination requires much less number of addition oper-
ations. This is due to the fact that in variable elimination while summing one has to only consider the variable
nodes that are connected to the variable to be eliminated. This drastically reduces the number of operations. In
fact the number of addition operations is polynomial in number of variables. This looks very promising and hence
is worth of deeper study. Let us understand what variable elimination means over a graphical model by taking an
example of 4-node non-chordal cycle as in Figure 1. We want to calculate

Z =
∑

X1,X2,X3,X4

ψ12(X1, X2)ψ23(X2, X3)ψ34(X3, X4)ψ14(X1, X4)

Let us start with eliminating X4. Then,

Z =
∑

X1,X2,X3

ψ12(X1, X2)ψ23(X2, X3)
∑
X4

ψ34(X3, X4)ψ14(X1, X4)

=
∑

X1,X2,X3

ψ12(X1, X2)ψ23(X2, X3)M13(X1, X3)

=
∑

X1,X2

ψ12(X1, X2)
∑
X3

ψ23(X2, X3)M13(X1, X3)

where M13 :=
∑

X4
ψ34(X3, X4)ψ14(X1, X4). Observe that in each step of variable elimination while marginal-

izing over a variable we are also introducing a new function that will be used in next step. This new function will
be a function of d variables where d is the degree of the eliminated variable node. As this new function will be
used in future computations, we have to allocate additional storage for this function which is again exponential
in d. So by doing variable elimination we might pay in memory (and computation) even though we eliminate one
variable at a time.

Intuitively it may appear that an elimination schedule that marginalize over lower degree nodes first would
save lot of memory. This is true in some graphs (optimal for tree) but not true in general.

Fact 1 (i) Largest size (minus one) of the remnant factor over all elimination orders is called the tree-width. The
worst case memory requirement for storing the intermediate factors Mi1,i2,···ik is exponential in tree-width.

(ii) Finding the optimal elimination order is NP-hard.

3 Message Passing on Trees
Message passing on trees is a way to do marginalization on graphical models that have a tree structure. We
mentioned that using greedy method for variable elimination is an efficient way to compute marginals over a tree.
Then the natural question that arises is what do we get using message passing. The answer is that the message
passing technique that we will build in this section can also be applied efficiently to other graphical models while
keeping the computation and memory requirements practical.

2

Figure 2: Message Passing Tree

Consider the tree in Figure 2. Let us call the tree G = (V,E). As edges are the only cliques in a tree, we can
write its joint distribution P(X) as,

P(X) ∝
∏
s∈V

ψs(Xs)
∏

(s,t)∈E

ψst(Xst)

Here we consider the nodes to form singleton cliques and this representation is handy in some problems. Now
note that if we want to find the marginal of Xu say P(Xu = xu), then we must marginalize over all nodes other
than u. Note that for any node s in neighborhood of u, say N(u), we can think of a tree Ts rooted at s and by
the definition of a tree Ts ∩ Tv = φ if s 6= v ∈ N(u). Hence we can marginalize over each sub-tree of neighbors
of u separately. This is the key idea behind message passing on a tree. Also note that this marginalization can
be done recursively. This will be clear when we follow the steps mathematically.

Note that we can not compute P(Xu = xu) without computing the partition function. So we compute a
quantity µu(xu) which is proportional to the marginal distribution which can be efficiently used to calculate the
marginal distribution. We define P̄T (XT) is the restricted distribution of P() over the sub-tree T . P̄Ts

(XTs
) :=∏

t∈Ts
ψt(Xt)

∏
(t,r)∈ETs

ψtr(Xtr).

µu(xu) =
∑

X:Xu=xu

∏
s∈V

ψs(Xs)
∏

(s,t)∈E

ψst(Xst)

= ψu(xu)
∑

X:Xu=xu

∏
s∈N(u)

(
ψus(xu, Xs)P̄Ts

(XTs
)
)

(1)

= ψu(xu)
∏

s∈N(u)

∑
XTs

ψus(xu, Xs)P̄Ts(XTs)

 (2)

Note that the equation 1 follows from the definition of the restricted distribution. Again the graph is a tree,
so Ts ∩ Tv = φ for s, v ∈ N(u) and s 6= v. Hence the summation and the product can be interchanged in the
equation 2.

Let us define Mij(Xj) :=
∑

XTi
ψji(Xj , Xi)P̄Ti

. With this new term defined, we can represent the variable
elimination by the following simple update algorithm between the nodes of the tree.

µu(Xu) = ψu(Xu)
∏

s∈N(u)

Msu(Xu)

Msu(Xu) =
∑
Xs

ψsu(Xsu)ψs(Xs)
∏

t∈N(s)\u

Mts(Xts)


Note that we have shown these update equations to be same as variable elimination for a tree. Hence it is

implicit that the message passing on a tree that uses this update algorithm must converge to the true marginal.

3

Figure 3: Moralization

Figure 4: Extended Student Graph

Also note that the update equations make sense even for non-tree graph as the algorithm does not use any
other graph structure than the concept of neighbouring nodes. For general graph this algorithm is called the
sum-product algorithm. In fact sum-product algorithm also converges to the true marginal for some non-tree
graphs. But note that sum-product algorithm as stated above only uses 2-cliques, but can be generalized to the
case with higher order d-cliques where d > 2.

4 Moralization
Before directly delving into the junction tree algorithm which is a generalization of the message passing al-
gorithm applied to general graphs, we shall take a necessary detour. Note that we have described the infer-
ence/marginalization problem for undirected graphical model so far. The question is now, how do we solve
the same problems over a directed acyclic graph. It turns out that we can achieve that simply by perform-
ing an intermediate step called moralization. The idea behind moralization is simple and we shall explain it
using the Figure 3. Distribution of the DAG in figure is given by P (B)P (D)P (A|B)P (C|BD). This can
be written as, ψ(B)ψ(D)ψ(A,B)ψ(B,C,D) where ψ(B) = P (B), ψ(D) = P (D), ψ(A,B) = P (A|B) and
ψ(B,C,D) = P (C|BD). Note that this factorization represents the undirected graph (right) in Figure 3. So it
follows from this example that by connecting parents of a node and erasing the direction, a distributin on a DAG
can be represented as a distribution over an undirected graphical model. This is called moralization of a DAG. So
the steps for moralization are (i) making the edges un-directed and (ii) connecting the parents of a node to form
a clique. After moralization of a graph marginal distribution can be found similarly like an undirected graph.

5 Junction Tree Algorithm
Let us start our study of junction tree or clique graph with the example of a graph from the extended student
family. The directed and the undirected graphs in Figure 4 correspond to an extended student graph and its
moralized version respectively. Suppose we want to find marginal over the variable J by carrying out variable
elimination with a schedule C −D − I −H −G− S. In first step we do (

∑
C ψCD(XC , XD)). The summation

results into a function of XD. Note that D, I,G form a clique and the function gets absorbed as a component

4

Figure 5: Junction Tree for Extended Student Graph

of the clique compatibility function. Then we marginalize over D and obtain a function of I and G. We absorb
this function into the component IGS and marginalize out G and S from that. These steps can be graphically
presented as in Figure 5. This graph is a special type of graph with multiple specific characterizations. (i) This
is a tree and nodes that have edge between them must have common variables (reverse is not true), (ii) the
variables that are carried from one node to another are the common variables and others are eliminated, and (iii)
If a variable belongs to two nodes then it belongs to all nodes on the path connecting them (e.g. S belongs to
IGS and JS, it also belongs to GJLS and JLS. Indeed these properties are very important and a graph with
these properties are called clique or junction tree.

Definition 1 Cluster Graph: Given a set of factors Ψ (compatibility function) over V , a cluster graph has set of
nodes V such that

(i) any node i ∈ V is associated with a cluster of nodes Ci ∈ V.
(ii) two clusters Ci and Cj have an edge between them only if Sij = Ci ∩ Cj 6= φ
(iii) Family Preserving Property: For any ψ ∈ Ψ there is a unique Ci ∈ V such that scope of ψ is a subset

of Ci. In other words a factor (compatibility function) can belong to only one cluster (This is to make sure the
joint distribution over clique graph is consistent).

Note that the tree formed in the example with extended student graph is a cluster graph.

Proposition 5.1 The cluster graph obtained from variable elimination is a tree.

Proof: Because VE moves by eliminating variables, any node after say node (stuv) that was reached by eliminating
v will not have v. As the process gradually eliminates variables it can not pick up v which is already eliminated.
Hence there is no way to get back to (stuv). 2

Definition 2 Running Intersection Property: Let Y be a cluster tree. Let X ∈ V and X ∈ Ci and X ∈ Cj .
Then X ∈ C for all C on the path between Ci and Cj .

Proposition 5.2 Any cluster graph obtained through variable elimination will satisfy running intersection property.

Proof: Let X be common to both Ci and Cj . Further, suppose X gets eliminated at CX : this has to occur after
Ci and Cj . It can be seen that all cliques between Ci and CX (and similarly, between Cj and CX) will contain
X since it is eliminated only at CX . 2

5

Definition 3 Clique or Junction Tree: A cluster graph that is tree and satisfies running intersection property is
called a clique or junction tree.

Note that this is true for the cluster graph formed by variable elimination on extended student graph. In general
it is not always true for any cluster graph.

Let us have a look at how the variable elimination is done in Figure 5. Let us number the clusters CD, DIG,
IGS · · · as C1, C2, C3 · · · . We define Mij to be the message sent from Ci to Cj after eliminating variables
Ci\Cj . Also note that Mij is a function of Sij = Ci ∩ Cj . In the example, ψ1(C1) is the compatibility function
for the component C1 that have XC and XD. M12(C1 ∩ C2) =

∑
C1\C2

ψ1(XC1). Similarly, we can write M23

as,
∑

C2\C3
M12ψ2 and so on. Note that the basic idea is that cluster i sends a message Mij to the cluster j

which is the marginalization of the product of the all the messages it received from other neighbors (other than
j) and its own component function. Marginalization is done over all the variables of Ci that are not present in
Cj . This basic idea leads to the following famous algorithm for junction trees, called the junction tree algorithm.

For some schedule over edges (i, j):
Mij(Sij) =

∑
Ci\Sij

ψi(Ci)
∏

k∈N(i)\j Mki(Ski).

Finally: Set µi(Ci) = ψi(Ci)
∏

k∈N(i)Mki(Ski)

5.1 Properties of Junction Tree Algorithm

Theorem 5.1 When the Junction Tree algorithm converges, µi(Ci) as computed above satisfies: µi(Ci) ∝
P (XCi

).

If junction tree algorithm converges to a true marginal then the following must also be true∑
Ci\Sij

µi(Ci) =
∑

Cj\Sij

µj(Cj) (3)

This is true because both give the marginal distribution over Sij . Note that this equality holds after the JTA has
converged to the true marginal, and need not necessarily hold at every iteration of the JTA.

When the equation (3) does holds for an edge (i, j) of the junction tree, then the edge (i, j) is said to be
calibrated. A junction tree is called calibrated if all of its edges are calibrated. Also observe the following nice
equality,

µij(Sij) =
∑

Ci\Sij

µi(Ci)

=
∑

Ci\Sij

ψi(Ci)
∏

k∈N(i)

Mki(Ski)

= Mji(Sji)
∑

Ci\Sij

ψi(Ci)
∏

k∈N(i)\j

Mki(Ski) (4)

= Mji(Sji)Mij(Sij)

In the equation 4 we have used the fact that Ci\Sij and Sji have no variables in common.

6

