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Recall: High-dimensional Statistical Analysis

Typical Statistical Consistency Analysis: Holding model
size (p) fixed, as number of samples goes to infinity,
estimated parameter 6 approaches the true parameter
o*.

Meaningless in finite sample cases where p > n!

Need a new breed of modern statistical analysis: both
model size p and sample size n go to infinity!

ypical Statistical Guarantees of Interest for an estimate
0:

e Structure Recovery e.g. is sparsity pattern of 0
same as of 6*7

e Parameter Bounds: [|6 — 0*|| (e.g. ¢> error bounds)

e Risk (Loss) Bounds: difference in expected loss



Recall: Lasso

Estimator: Lasso program
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Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;
Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &
Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;
Meinshausen/Yu, 2007; Tsybakov et al., 2008

Statistical Assumption: (z;,y;) from Linear Model:

yi = 27 0* 4+ w;, with w; ~ N(0,02).



Sparsistency

Theorem. Suppose the design matrix X satisfies some
conditions (to be specified later), and suppose we solve
the Lasso problem with regularization penalty
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Then for some ¢; > 0, the following properties hold with
probability at least 1 — 4exp(—cinA2) — 1:

e [ he Lasso problem has unique solution @with Sup-
port contained with the true support: S(0) C S(6%).

o If 6/, = Minjcs(g) [07] > c2An fOr some ¢z > 0, then

S(6) = S(6%).



Sufficient Conditions: Dependency Bound

1
)\min (EXg:XS) 2 Cmin > 0.

1
Amax (EXEXS) < Dmax < 00.

Ensures that the relevant covariates are not “too de-
pendent’ .



Sufficient Conditions: Incoherence

X4 Xs(X5Xs) Hioo <1 =1,
for some ~ > 0.

Equivalent:

MaX,;ege ||XfXS(X§X5)_1||1 <1-— .

Weaker form of orthogonality:

LHS equal to zero if all columns are orthogonal (which
is not possible when p > n).



Sufficient Conditions: Gaussian Design

Suppose X has i.i.d rows, with X; ~ N(0,X). Then the
sufficient conditions stated earlier are satisfied if:

® Amin(ZSS) > Cmin > 0.
Amax(Zss) < Dmax < 00.

o [[Zs:5(Xs5) Moo <1 =1,
for some v > 0.

e Sample Scaling: n > Kslogp, for some K > 0.

Proof: One can show that under sample scaling, popu-
lation conditons imply the sample conditions.



Proof of Sparsistency

Stationary Condition:
IXT(X0 —y) + Az =0,

where z € 9||0||1 is the sub-gradient of ||9]];.

Sub-gradient : equal to derivative when the function is
differentiable; otherwise a set.

Definition: For any convex function g, its sub-gradient
at a point z, denoted by 9d¢g(x) is the set of all points z
such that, for all y # x:

9(y) —g(x) > 2" (y — ).
For ¢; norm: z € 0| 0|1 if:
Zj = sign(ej), if (9j = 0,

2] < 1, if 6, = 0.



Proof of Sparsistency

Stationary Condition:

IXT(X6—y)+ Mz =0,

where z € 9||0||1 is the sub-gradient of ||4]|1.
Have to show: #g. = 0!

Easier to show inequalities (can bound terms), than
equalities! Way out: "Witness" proof technique.

We will explicitly construct a (0, 2)~ which satisfy the
stationary condition, and for which 6g. = 0!

Catch: Have to show z € 9||0||1 (which we will show
holds with high-probability).



Proof of Sparsistency

Set § as the solution of an “oracle” problem:

0 = argmingg. o.—oy {Xlly — X062 + Aull6]]1} -

Set zg = 9|9s]1.

Set Zs. = — {1 X&(Xs0s —y) }.

(0, 2) satisfies stationary condition of original problem:

Stationafy Condition of Oracle Problem:
IXT (X505 — y) + AnZs = 0.

Construction: +XT(Xs0s —y) + AnZs. = 0.
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Proof of Sparsistency

Remains to show that z € 9|0]|1!
Construction: Zg € 0||0s||1.
Have to show: Zg € 0||0s|1.

By construction: fs. = 0. So have to show: |z;| < 1, for
all 3 € S°.

Equivalently: [[zs:||oo < 1.
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Proof of Sparsistency

Notation: A =8 —6*; W =y — X6*.

Stationary Condition: X7 (Xgfs —y) + AnZs = 0.
Rewritten: (1XTXg) Ag+ 1XIW + Azg =0.
Hence: Ag = (AX1Xg) " [-AZs — LXTW].

Construction:

1 1
MZg = —=XLXsAg— =XIW
n n

1, 1 .o\ ' . 1., 1.
= ;XSCXS EXSXS [—)\ZS — gXS W] — gXSCW'
Let ¢, = || XTW||x. Recall: | XLXs(XEXs) Moo <1—17.

Then A\yl|Zselloc < (L =) M+ cn) +en < (2—7)en+ (1 —

provided ¢, < v/(2 —v)\,: we show this holds with high
probability.

Whence: [|Zs:]|lco < 1, as required, with high probability.
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Proof of Sparsistency

Gaussian Tail Bounds: If W; ~ N(0,c?), then:

IP’[|XfW\ > a] < exp(—cna?).
Then, by an application of the union bound:

IP’[SL}jp \XJTW] > a] < pexp(—cna?) = exp(—cna? 4+ log p).
j=1

Thus, for A, = c14/°92,

[XTWloo = supi_; | X] W] < co\n with probability at
least 1 — exp(—cnA2).
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Parameter Error Bounds

Restricted Eigenvalue:

Let C ={A:[|Asl1 < 3||As1}:
Then for all A €C:

| X A3 > k||AJ]3, for some k > O.

Theorem: Suppose the design matrix X satisfies the
[estricted eigenvalue condition. Then the Lasso solution
0 satisfies:

16— 6%|l> < /=222,
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Parameter Error Bounds

Lemma: The solution to the Lasso problem 6 = 6*+ A
satisfies the following cone condition: [|Ag|l1 < 3||Ag]|1.

r(ApL)

Here: §=3;5°=1,2.

15



Parameter Error Bounds

Let L(0) = 1| X0 — y|32.

Then, by optimality of Lasso solution 6:
L(D) + A|0]lx < L(0*) + A07]1.
Convexity:

L(O) > L(6*) + VL(0*) - A > L(6*) — [VL(0) ||| All1-
If we set A > 2||[VL(0") || = 2| XTW s, then:
—sllAllL 4+ X[8]]1 < A[6*]2.

Noting that

101 = 116"+ A1 = 105 + As + Asea
= [[Ase|]1 + [|05 + As]1
> |[Ase]l1 + (10511 — [[Asll1,

and rearranging terms, we get:

| Asel]1 < 3||As]1.

16



Parameter Error Bounds

Again, by optimality of Lasso solution @:

L(O) + 0] < L(0%) 4+ |61

Suppose, over the restricted set {A : ||Ag||1 < 3||Ag|[1}:
L(0) > L(6") + VL(6") - A + x| A|3.

Then, by re-arranging terms as earlier, we get:

RIAIB < 3X|As] < 3vE[Asll2 < 3AE(IA 2.

Hence:

A2 < 25

NP Scw/%.

Thus,
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