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Figure 1: Receiver operator curves for support set recovery task when (n, p) = (800, 1600) (Left),
(n, p) = (5000, 10000) (Right).

Appendix

A Proof of Theorem 1

Let � be the error vector, b✓ � ✓⇤. Since we choose �
n

greater than k✓⇤ � [rB]

�1

(

b�)k1,

k�k1 = kb✓ � [rB]

�1

(

b�) + [rB]

�1

(

b�)� ✓⇤k1
 kb✓ � [rB]

�1

(

b�)k1 + k✓⇤ � [rB]

�1

(

b�)k1  2�
n

. (12)

At the same time, by the fact that ✓⇤
S

c = 0, and the decomposability of k · k
1

with respect to (S, Sc

),

k✓⇤k
1

= k✓⇤k
1

+ k�
S

ck
1

� k�
S

ck
1

= k✓⇤ +�

S

ck
1

� k�
S

ck
1

(i)

 k✓⇤ +�

S

c
+�

S

k
1

+ k�
S

k
1

� k�
S

ck
1

= k✓⇤ +�k
1

+ k�
S

k
1

� k�
S

ck
1

(13)

where the equality (i) holds by the triangle inequality of `
1

norm. Now, since we minimize the
objective k✓k

1

in (8), we obtain the inequality of k✓⇤ + �k
1

= kb✓k
1

 k✓⇤k
1

. Combining this
inequality with (13), we have

0  k�
S

k
1

� k�
S

ck
1

. (14)

Armed with inequalities (12) and (14), we utilize the Hölder’s inequality and the decomposability
of k · k

1

in order to compute the error bound:

k�k2
2

= h�,�i  k�k1k�k
1

 k�k1
�

k�
S

k
1

+ k�
S

ck
1

�

. (15)

Since the error vector � satisfies the property: k�
S

ck
1

 k�
S

k
1

from (14),

k�k2
2

 2k�k1k�
S

k
1

. (16)

Combining all the pieces together yields

k�k2
2

 4�
n

p
kk�

S

k
2

. (17)

Notice that the projection operator is non-expansive, k�
S

k2
2

 k�k2
2

. Hence, we obtain k�
S

k
2


4�

n

p
k, and plugging it back into (17) yields the error bound, kb✓ � ✓⇤k

2

.

Finally, the error bound in terms of `
1

, is straightforward from the following reasoning:

k�k
1

= k�
S

k
1

+ k�
S

ck
1

 2k�
S

k
1

 2

p
kk�

S

k
2

 8�
n

k.
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B Useful lemma(s)

Lemma 1 (Theorem 1 of [22, 23]). Let � be max

ij

�

�

⇥

X

>
X

n

⇤

ij

� ⌃

ij

�

�

. Suppose that ⌫ � 2�.

Then, under the conditions (C-Thresh) and (C-Sparse⌃), we can deterministically guarantee that

the spectral norm of error is bounded as follows

�

�

�

�

�

�T
⌫

(S)� ⌃

�

�

�

�

�

�

1  5⌫1�qc
0

(p) + 3⌫�qc
0

(p)�. (18)

Lemma 2 (Lemma 1 of [13]). Let A be the event that

�

�

�

�

X>X

n
� ⌃

�

�

�

�

1
 8(max

i

⌃

ii

)

r

10⌧ log p0

n

where p0 := max{n, p} and ⌧ is any constant greater than 2. Suppose that the design matrix X is

i.i.d. sampled from ⌃-Gaussian ensemble with n � 40max

i

⌃

ii

. Then, the probability of event A
occurring is at least 1� 4/p0⌧�2

.

Lemma 3 (Lemma 3 of [19]). For discrete graphical models in (6),

k�� µ⇤k1  2

r

log p

n

with probability at least 1� 2 exp(�2 log p).

C Proof of Corollary 1

In order to utilize Theorem 1 for this specific case, we only need to show that k⇥⇤ �
[T

⌫

(S)]�1k1,off  �
n

for the setting of �
n

in the statement:
�

�

�

⇥

⇤ � [T
⌫

(S)]�1

�

�

�

1,off
=

�

�

�

[T
⌫

(S)]�1

�

T
⌫

(S)⇥⇤ � I
�

�

�

�

1,off


�

�

�

�

�

�

[T
⌫

(S)]�1

�

�

�

�

�

�

1

�

�T
⌫

(S)⇥⇤ � I
�

�

1,off =
�

�

�

�

�

�

[T
⌫

(S)]�1

�

�

�

�

�

�

1

�

�

⇥

⇤�T
⌫

(S)� ⌃

⇤��
�

1,off


�

�

�

�

�

�

[T
⌫

(S)]�1

�

�

�

�

�

�

1

�

�

�

�

�

�

⇥

⇤�
�

�

�

�

�

1

�

�T
⌫

(S)� ⌃

⇤�
�

1,off . (19)

We first compute the upper bound of
�

�

�

�

�

�

[T
⌫

(S)]�1

�

�

�

�

�

�

1. By the selection ⌫ in the statement, Lemma 1
and 2 hold with probability at least 1� 4/p0⌧�2. Armed with (18), we use the triangle inequality of
norm and the condition (C-Sparse⌃): for any w

�

�T
⌫

(S)w
�

�

1 =

�

�T
⌫

(S)w � ⌃w + ⌃w
�

�

1 � k⌃wk1 �
�

�

�

⇣

T
⌫

(S)� ⌃

⌘

w
�

�

�

1
(i)
� 

2

kwk1 �
�

�

�

⇣

T
⌫

(S)� ⌃

⌘

w
�

�

�

1
�
⇣


2

�
�

�

�

�

�

�T
⌫

(S)� ⌃

�

�

�

�

�

�

1

⌘

kwk1

where the inequality (i) uses the condition (C-Sparse⌃). Now, by Lemma 1 with the selection of ⌫,
we have

�

�

�

�

�

�T
⌫

(S)� ⌃

�

�

�

�

�

�

1  c
1

⇣

log p0

n

⌘

(1�q)/2

c
0

(p)

where c
1

is a constant related only on ⌧ and max

i

⌃

ii

. Specifically, it is defined as
6.5
�

16(max

i

⌃

ii

)

p
10⌧
�

1�q . Hence, as long as n >
�

2c1c0(p)

2

�

2
1�q

log p0 as stated, so that |||T
⌫

(S)�
⌃|||1  2

2

, we can conclude that
�

�T
⌫

(S)w
�

�

1 � 2
2

kwk1, which implies
�

�

�

�

�

�

[T
⌫

(S)]�1

�

�

�

�

�

�

1  2

2
.

The remaining term in (19) is kT
⌫

(S) � ⌃

⇤k1,off ; kT
⌫

(S) � ⌃

⇤k1,off  kT
⌫

(S) � Sk1,off +
kS � ⌃

⇤k1,off. By construction of T
⌫

(·) in (C-Thresh) and by Lemma 2, we can confirm that
kT

⌫

(S)� Sk1,off as well as kS � ⌃

⇤k1,off can be upper-bounded by ⌫.

By combining all together, we can confirm that the selection of �
n

satisfies the requirement of
Theorem 1, which completes the proof.
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D Proof of Corollary 2

As in proof of Corollary 1, we need to show that k✓⇤ � B⇤
trw(
b�)k1,E

 �
n

for the setting of �
n

in
the statement:

�

�✓⇤ � B⇤
trw(
b�)
�

�

1,E

=

�

�✓⇤ � B⇤
trw(µ

⇤
) + B⇤

trw(µ
⇤
)� B⇤

trw(
b�)
�

�

1,E


�

�

[✓⇤ � B⇤
trw(µ

⇤
)

�

�

1,E

+

�

�

[B⇤
trw(µ

⇤
)� B⇤

trw(
b�)
�

�

1,E

 ✏+
�

�B⇤
trw(µ

⇤
)� B⇤

trw(
b�)
�

�

1,E

Now, let us focus on the second term above, where B⇤
trw(·) is defined in (10). For all any combination

of (st; jk), we have
�

�

�

�

⇢
st

log

µ⇤
st;jk

µ⇤
s;j

µ⇤
t;k

� ⇢
st

log

b�
st;jk

b�
s;j

b�
t;k

�

�

�

�


�

�

�

�

log

µ⇤
st;jk

µ⇤
s;j

µ⇤
t;k

� log

b�
st;jk

b�
s;j

b�
t;k

�

�

�

�

=

�

�

�

�

logµ⇤
st;jk

� log

b�
st;jk

�

+

�

log

b�
s;j

� logµ⇤
s;j

�

+

�

log

b�
t;k

� logµ⇤
t;k

�

�

�

�


�

�

logµ⇤
st;jk

� log

b�
st;jk

�

�

+

�

�

log

b�
s;j

� logµ⇤
s;j

�

�

+

�

�

log

b�
t;k

� logµ⇤
t;k

�

�

By Lemma 3, k�� µ⇤k1  c
1

q

log p

n

with at least probability 1� 2 exp(�2 log p). Therefore, for
any index ↵, we have

�

�

log

b�
↵

� logµ⇤
↵

�

�

= log

max{b�
↵

, µ⇤
↵

}
min{b�

↵

, µ⇤
↵

}
 log

0

@

min{b�
↵

, µ⇤
↵

}+ c
1

q

log p

n

min{b�
↵

, µ⇤
↵

}

1

A

 log

 

1 +

c
1

min{b�
↵

, µ⇤
↵

}

r

log p

n

!

 c
1

min{b�
↵

, µ⇤
↵

}

r

log p

n
.

If n > 4c

2
1 log p

✏

2
min

, then b�
↵

� µ⇤
↵

� c
1

q

log p

n

� µ⇤
↵

� ✏min
2

� ✏min
2

again by Lemma 3 and (C-Marginal).

Hence, we can conclude
�

�

log

b�
↵

� logµ⇤
↵

�

�  2c1
✏min

q

log p

n

, and finally we have
�

�✓⇤�B⇤
trw(
b�)
�

�

1,E


6c1
✏min

q

log p

n

.

E Extension to Group Sparsity in DMRFs

A pertinent structural constraint for DMRFs is that of group-sparsity, where all the parameters of
an edge are grouped together, so as to encourage sparsity in terms of the edges. Specifically, for
each pair of nodes (s, t) in the DMRF, denote by G

s,t

the group of indices corresponding to the
parameter group {✓

s,t;j,k

: j, k 2 [m]}. Let ✓
Gs,t denote the corresponding parameter sub-vector.

Let G := {G
s,t

: s, t 2 V }. A natural regularization function for such a setting is the following
group-structured `

1

/`
↵

norm defined as k✓kG,↵,E :=

P

(s,t)2V

k✓
Gs,tk↵, where ↵ is a constant

between 2 and 1.

We then consider the following variant of Elem-DMRF,with the regularization function set to the
above group-structured norm:

minimize

✓

k✓kG,↵,E

s. t.
�

�✓ � B⇤
trw(
b�)
�

�

⇤
G,↵,E  �

n

where k✓k⇤G,↵,E := max

(s,t)

k✓
Gs,tk↵⇤ for a constant ↵⇤ satisfying 1

↵

+

1

↵

⇤ = 1.

It can easily be seen that the estimator is still available in closed-form via group-wise soft-
thresholding of B⇤

trw(
b�). We note that our theoretical analysis can be naturally extended to such

group sparsity structure (and to other structures such as low rank). We will consider doing so in
future work.

12


