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Abstract

We consider the matrix completion prob-
lem of recovering a structured matrix from
noisy and partial measurements. Recent
works have proposed tractable estimators
with strong statistical guarantees for the case
where the underlying matrix is low–rank, and
the measurements consist of a subset, either
of the exact individual entries, or of the en-
tries perturbed by additive Gaussian noise,
which is thus implicitly suited for thin–tailed
continuous data. Arguably, common appli-
cations of matrix completion require estima-
tors for (a) heterogeneous data–types, such
as skewed–continuous, count, binary, etc.,
(b) for heterogeneous noise models (beyond
Gaussian), which capture varied uncertainty
in the measurements, and (c) heterogeneous
structural constraints beyond low–rank, such
as block–sparsity, or a superposition struc-
ture of low–rank plus elementwise sparseness,
among others. In this paper, we provide a
vastly unified framework for generalized ma-
trix completion by considering a matrix com-
pletion setting wherein the matrix entries are
sampled from any member of the rich fam-
ily of exponential family distributions; and
impose general structural constraints on the
underlying matrix, as captured by a general
regularizer R(.). We propose a simple convex
regularized M–estimator for the generalized
framework, and provide a unified and novel
statistical analysis for this general class of es-
timators. We finally corroborate our theoret-
ical results on simulated datasets.
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1. Introduction

In the general problem of matrix completion, we seek
to recover a structured matrix from noisy and par-
tial measurements. This problem class encompasses a
wide range of practically important applications such
as recommendation systems, recovering gene–protein
interactions, and analyzing document collections in
language processing, among others. In recent years,
leveraging developments in sparse estimation and com-
pressed sensing, there has been a surge of work on com-
putationally tractable estimators with strong statisti-
cal guarantees, specifically for the setting where a sub-
set of entries of a low–rank matrix are observed either
deterministically, or perturbed by additive noise that
is Gaussian (Candes & Plan, 2010), or more gener-
ally sub–Gaussian (Keshavan et al., 2010b; Negahban
& Wainwright, 2012). While such a Gaussian noise
model is amenable to the subtle statistical analyses re-
quired for the ill–posed problem of matrix completion,
it is not always practically suitable for all data set-
tings encountered in matrix completion problems. For
instance, such a Gaussian error model might not be ap-
propriate in recommender systems based on movie rat-
ings that are either binary (likes or dislikes), or range
over the integers one through five. The first question
we ask in this paper is whether we can generalize the
statistical estimators for matrix completion as well as
their analyses to general noise models? Note that a
noise model captures the uncertainty underlying the
matrix measurements, and is thus an important com-
ponent of the problem specification given any appli-
cation; and it is thus vital for broad applicability of
the class of matrix completion estimators to extend to
general noise models.

Though this might seem like a narrow technical, al-
though important question, it is related to a broader
issue. A Gaussian observation model implicitly as-
sumes the matrix values are continuous–valued (and
that they are thin–tail–distributed). But in modern
applications, matrix data span the gamut of hetero-
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geneous data–types, for instance, skewed–continuous,
categorical–discrete including binary, count–valued,
among others. This, thus gives rise to the second ques-
tion of whether we can generalize the standard matrix
completion estimators and statistical analyses, suited
for thin–tailed continuous data, to more heterogeneous
data–types? Note that there has been some recent
work for the specific case of binary data by Davenport
et al. (2012), but generalizations to other data–types
and distributions is largely unexplored.

The recent line of work on matrix completion, more-
over, enforces the constraint that the underlying ma-
trix be either exactly or approximately low–rank.
Aside from the low–rank constraints, further assump-
tions to eliminate overly “spiky” matrices are re-
quired for well–posed recovery under partial measure-
ments (Candes & Recht, 2009). Early work provided
generalization error bounds for various low–rank ma-
trix completion algorithms, including algorithms based
on nuclear norm minimization (Candes & Recht, 2009;
Candes & Tao, 2010; Candes & Plan, 2010; Recht,
2011), max–margin matrix factorization (Srebro et al.,
2004), spectral algorithms (Keshavan et al., 2010a;b),
and alternating minimization (Jain et al., 2013). These
work made stringent matrix incoherence assumptions
to avoid “spiky” matrices. These assumptions have
been made less stringent in more recent results (Ne-
gahban & Wainwright, 2012), which moreover extend
the guarantees to approximately low–rank matrices.
Such (approximate) low–rank structure is one instance
of general structural constraints which are now un-
derstood to be necessary for consistent statistical es-
timation under high–dimensional settings (with very
large number of parameters and very few observa-
tions). Note that the high–dimensional matrix comple-
tion problem is particularly ill–posed, since the mea-
surements are typically both very local (e.g. individual
matrix entries), and partial (e.g. covering a decay-
ing fraction of entries of the entire matrix). However,
the specific (approximately) low–rank structural con-
straint imposed in the past work on matrix completion
does not capture the rich variety of other qualitatively
different structural constraints such as row–sparseness,
column–sparseness, or a superposition structure of
low–rank plus elementwise sparseness, among others.
For instance, in the classical introductory survey on
matrix completion (Laurent, 2009), the authors dis-
cuss structural constraints of a contraction matrix, and
a Euclidean distance matrix. Thus, the third question
we ask in this paper is whether we can generalize the
recent line of work on low–rank matrix completion to
the more general structurally constrained case.

In this paper, we answer all of the three questions

above in the affirmative, and provide a vastly unified
framework for generalized matrix completion. We ad-
dress the first two questions by considering a general
matrix completion setting wherein observed matrix en-
tries are sampled from any member of a rich family
of natural exponential family distributions. Note that
this family of distributions encompass a wide variety of
popular distributions including Gaussian, Poisson, bi-
nomial, negative–binomial, Bernoulli, etc. Moreover,
the choice of the exponential family distribution can
be made depending on the form of the data. For in-
stance, thin–tailed continuous data is typically mod-
eled using the Gaussian distribution; count–data is
modeled through an appropriate distribution over in-
tegers (Poisson, binomial, etc.), binary data through
Bernoulli, categorical–discrete through multinomial,
etc. We address the last question by considering gen-
eral structural constraints upon the underlying matrix,
as captured by a general regularization function R(.).
Our general matrix completion setting thus captures
heterogeneous noise–channels, for heterogeneous data–
types, and heterogeneous structural constraints.

In a key contribution, we propose a simple regularized
convex M–estimator for recovering the structurally
constrained underlying matrix in this general setting;
and moreover provide a unified and novel statistical
analysis for our general matrix completion problem.
Following a standard approach (Negahban, 2012), we
(a) first showed that the negative log–likelihood of the
subset of observed entries satisfies a form of Restricted
Strong Convexity (RSC) (Definition 4); and (b) under
this RSC condition, our proposed M–estimator satis-
fies strong statistical guarantees. We note that prov-
ing these individual components for our general ma-
trix completion problem under general structural con-
straints required a fairly delicate and novel analysis,
particularly the first component of showing the RSC
condition, which we believe would be of independent
interest. A key corollary of our general framework is
matrix completion under sub–Gaussian samples and
low–rank constraints, where we show that our theo-
rem recovers results comparable to the existing litera-
ture (Candes & Plan, 2010; Keshavan et al., 2010b; Ne-
gahban & Wainwright, 2012). Finally, we corroborate
our theoretical findings via simulated experiments.

1.1. Notations and Preliminaries

In this subsection we describe the notations and defini-
tions frequently used throughout the paper. Matrices
are denoted by capital letters, X, Θ, M , etc. For a ma-
trix M , Mj and M (i) are the jth column and ith row
of M respectively, and Mij denotes the (i, j)th entry
of M . The transpose, trace, and rank of a matrix M
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are denoted by M†, tr(M), and rk(M), respectively.
The inner product between two matrices is given by
〈X,Y 〉 = tr(X†Y ) =

∑
(i,j)XijYij .

For a matrix M ∈ Rm×n of rank r, with singu-
lar values σ1 ≥ σ2 ≥ . . . σr, commonly used ma-
trix norms include the nuclear norm ‖M‖∗ =

∑
i σi,

the spectral norm ‖M‖2 = σ1, the Frobenius norm
‖M‖F =

∑
i σ

2
i , and the maximum norm ‖M‖max =

max(i,j) Mij . Given any matrix norm ‖ · ‖, the dual
norm, ‖ · ‖∗ is given by ‖X‖∗ = sup

‖Y ‖≤1

〈X,Y 〉.

Definition 1 (Natural Exponential Family). A dis-
tribution of a random variable X, in a normed vector
space is said to belong to the natural exponential fam-
ily, if its probability density function, characterized by
the parameter Θ in the dual vector space, is given by:

P (X|Θ) = h(X) exp
(
〈X,Θ〉 −G(Θ)

)
,

where G(Θ) = log
∫
X
h(X)e〈X,Θ〉dX, called the log–

partition function, is strictly convex, and analytic.

Definition 2 (Bregman Divergence). Let φ :
dom(φ) → R be a strictly convex function differen-
tiable in the relative interior of dom(φ). The Bregman
divergence (associated with φ) between x ∈ dom(φ)
and y ∈ ri(dom(φ)) is defined as:

Bφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉.
Definition 3 (Subspace compatibility constants).
Given a matrix norm R(.), we define the following
maximum and minimum subspace compatibility con-
stants of R(.) w.r.t the subspace M:

Ψ(M;R) = sup
Θ∈M\{0}

R(Θ)

‖Θ‖F
, Ψmin(R) = inf

Θ6={0}

R(Θ)

‖Θ‖F
.

Thus, ∀Θ ∈M
Ψmin(R)‖Θ‖F ≤ R(Θ) ≤ Ψ(M,R)‖Θ‖F .

Definition 4 (Restricted Strong Convexity). A loss
function L is said to satisfy Restricted Strong Convex-
ity with respected to a subspace S, if for some κL > 0,

L(Θ + ∆)− L(Θ)− 〈∇L(Θ),∆〉 ≥ κL‖∆‖2F ,∀∆ ∈ S.
Definition 5 (Sub–Gaussian Distributions). A ran-
dom variable, X, is said to have a sub–Gaussian dis-
tribution with parameter b, if ∀ s > 0, the distri-
bution satisfies E[esX ] ≤ es

2b2/2. Further, if X is
sub–Gaussian with parameter b, then E[X] = 0 and
V ar(X) ≤ b2 (refer Vershynin (2010)).

2. Exponential Family Matrix
Completion

Denote the underlying target matrix by Θ∗ ∈ Rm×n.
We then assume that individual entries Θ∗ij are ob-
served indirectly via a noisy channel: specifically, via

a sample drawn from the corresponding member of
natural exponential family (see Definition 1):

P (Xij |Θ∗ij) = h(Xij) exp
{
XijΘ

∗
ij −G(Θ∗ij)

}
, (1)

where G : R → R, is a strictly convex, and analytic
function called the log–partition function.

Consider the random matrix X ∈ Rm×n, where each
entry Xij is drawn independently from the correspond-
ing distribution in (1); it can be seen that:

P (X|Θ∗) =
∏
ij

{
h(Xij) exp

{
XijΘ

∗
ij −G(Θ∗ij)

}}
= h(X) exp {〈X,Θ∗〉 −G(Θ∗)} , (2)

where we overload the notation to denote G : Rm×n →
R as G(Θ) =

∑
ij G(Θij), and the base measure h(X)

as h(X) =
∏
ij h(xij).

Uniformly Sampled Observations: In a “fully ob-
served” setting, we would observe all the entries of the
observation matrix X ∈ Rm×n. However, we consider
a partially observed setting, where we observe entries
over a subset of indices Ω ⊂ [m] × [n]. We assume a
uniform sampling model, so that

∀ (i, j) ∈ Ω, i ∼ uniform([m]), j ∼ uniform([n]). (3)

Given, Ω, we define the following matrix PΩ(X):

PΩ(X)ij =

{
Xij if (i, j) ∈ Ω
0 otherwise.

The matrix completion task can then be stated as
the estimation of Θ∗ from the partially observed ma-
trix PΩ(X), where X ∼ P (X|Θ∗). As noted earlier,
this problem is ill–posed in general. However, as we
will show, under structural constraints imposed on the
parameter matrix Θ∗, we are able to design an M–
estimator with a near optimal deviation from Θ∗.

2.1. Applications

Gaussian (fixed σ2) is typically used to model con-
tinuous data, x ∈ R, such as measurements with addi-
tive errors, affinity datasets. Here, G(θ) = 1

2σ
2θ2.

Bernoulli is a popular distribution of choice to model
binary data, x ∈ {0, 1}, with G(θ) = log (1 + eθ).
Some examples of data suitable for Bernoulli model
include social networks, gene protein interactions, etc.
Binomial (fixed N) is used to model number of suc-
cesses in N trials. Here, x ∈ {0, 1, 2, . . . , N}, and
G(θ) = N log (1 + eθ). Some applications include pre-
dicting success/failure rate, survey outcomes, etc.
Poisson is used to model count data x ∈ {0, 1, 2, . . .},
such as arrival times, events per unit time, click–
throughs among others. Here, G(θ) = eθ.
Exponential is often used to model positive valued
continuous data x ∈ R+, specially inter arrival times
between events. Here, G(θ) = − log (−θ).
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2.2. Log–likelihood

Denote the gradient map:

g(Θ) , ∇G(Θ) ∈ Rm×n, where g(Θ)ij =
∂G(Θ)

∂θij
.

It can then be verified that the mean and variance of
the distribution P (X|Θ∗) are given by E[X] = g(Θ∗),
and Var(X) = ∇2G(Θ∗), respectively.

The Fenchel conjugate of the log partition function G,
is denoted by: F (X) , supΘ 〈X,Θ〉 −G(Θ).

A useful consequence of the exponential family is that
the negative log–likelihood is convex in the natural
parameters Θ∗, and moreover has a bijection with a
large class of Bregman divergences (Definition 2). The
following relationship was first noted by (Forster &
Warmuth, 2002), and later established by (Banerjee
et al., 2005) [Theorem 4]:

− logP (X|Θ) ∝ BF (X, g(Θ)), ∀X ∈ dom(F). (4)

2.3. Discussion and directions for future work

We consider the standard matrix–completion setting
where the distribution of the observation matrix X in
(2) corresponds to its entries Xij being drawn indepen-
dently from the other entries. Further, the probability
of observing a specific entry Xij , under uniform sam-
pling is independent of the noise channel or the dis-
tribution P (Xij |Θ∗ij). However, in some applications,
it might be beneficial to have a sampling scheme in-
volving dependencies; for instance, when a user gives
a movie a bad rating, we might want to vary the sam-
pling scheme to sample an entirely different region of
the matrix. It would be interesting to extend the anal-
ysis of this paper to such a dependent sampling setting.

The form of the observation random matrix distribu-
tion in (2), given the individual observations in (1),
can be seen to have connotations of multi–task learn-
ing: here recovering each individual matrix entry Θ∗ij
together with its corresponding noise model forms a
single task, and all these tasks can be performed jointly
given the shared structural constraint on Θ∗. It would
be interesting to generalize this to form a more general
statistical framework for partial multi-task learning.

We use the general class of exponential family distribu-
tions as the underlying probabilistic model capturing
the measurement uncertainties. The richness of the
class of exponential family distributions has been used
in other settings to provide general statistical frame-
works. Kakade et al. (2010) provide a generalization
of compressed sensing problem to general exponential
family distributions. Note however that results from
compressed sensing cannot be immediately extended

to matrix completion case, since the sampling opera-
tor PΩ does not satisfy the typical assumptions (re-
stricted isometry or restricted eigenvalues) made in
such settings; see (Candes & Recht, 2009) for addi-
tional discussion. There have been extensions of clas-
sical probabilistic PCA (Tipping & Bishop, 1999) from
Gaussian noise models to exponential family distribu-
tions Collins et al. (2001); Mohamed et al. (2008); Gor-
don (2002). There have also been recent extensions of
probabilistic graphical model classes, beyond Gaussian
and Ising models, to multivariate extensions of expo-
nential family distributions (Yang et al., 2012; 2013).

More complicated probabilistic models have also been
proposed in the context of collaborative filtering (Mnih
& Salakhutdinov, 2007; Salakhutdinov & Mnih, 2008),
but these typically involve non–convex optimization,
and it is difficult to extend the rigorous statistical anal-
yses of the form in this paper (and in the matrix com-
pletion literature) to these models.

3. Main Result and Consequences

As noted in the introduction, we consider the ma-
trix completion setting with general structural con-
straints on the underlying target matrix Θ∗. To for-
malize the notion of such structural constraints, we
follow (Negahban, 2012), and assume that Θ∗ satis-
fies Θ∗ ∈ M ⊆ M ⊂ Rm×n, for some subspace
M ⊆ M, which contains parameter matrices that
are structured similar to the target (the correspond-
ing structural constraints such as low rankness, low
rankness+sparsity etc); we also allow the flexibility
of working with a superset M of the model subspace
that is potentially easier to analyze. Moreover, we use
their definition of a decomposable norm regularization
function, R(.) : Rm×n → R+, which suitably captures
these structural constraints:

A 1. (Decomposable Norm Regularizer) We assume
that R(.) is a matrix norm, and is decomposable over

(M,M⊥), i.e. if X ∈M, Y ∈M⊥, then,

R(X + Y ) = R(X) +R(Y ).

We provide some examples of such decomposable regu-
larizers and structural constraint subspaces, and refer
to (Negahban, 2012) for more examples and discussion.

Example 1. Low–rank: This is a common structure
assumed in numerous matrix estimation problems,
particularly those in collaborative filtering, PCA, spec-
tral clustering, etc. The corresponding structural con-

straint subspaces (M,M⊥) in this case correspond to
a linear span of specific one–rank matrices; we discuss
these in further detail in Section 3.2, where we derive
a corollary of our general theorem to the specific case



Generalized Matrix Completion

of recovery guarantees for low–rank constrained ma-
trix completion. The nuclear norm R(Θ) = ‖Θ‖∗ =∑
k σk, has been shown to be decomposable with re-

spect to these constraint subspaces (Fazel et al., 2001).

Example 2. Block sparsity: Another important
structural constraint for a matrix is block–sparsity,
where each row is either all zeros or mostly non–zero,
and the number of non–zero rows is small. The struc-
tural constraint subspaces in this case correspond to
a linear span of specific Frobenius–norm–one matrices
that are non–zero in a small subset of the rows (de-
pendent on Θ∗); it has been shown that `1/`q (q >
1) norms (Negahban & Wainwright, 2008; Obozinski
et al., 2011) are decomposable with respect to such
structural constraint subspaces. Recalling that Θ(i) is
the ith row of Θ, the `1/`q norm is defined as:

‖Θ‖1,q =
m∑
i=1

‖Θ(i)‖q =

m∑
i=1

[( n∑
j=1

|Θij |q
)1/q

]
.

Example 3. Low–rank plus sparse: This struc-
ture is often used to model low–rank matrices which
are corrupted by a sparse outlier noise matrix. The
structural constraint subspaces corresponding to these
consist of the linear span of weighted sum of specific
rank–one matrices and sparse matrices with non–zero
components on specified positions; and appropriate
regularization function decomposable with respect to
such structural constraints is the infimum convolution
of the weighted nuclear norm with weighted elemen-
twise `1 norm, ‖M‖1,1 =

∑
ij |Mij | (Candes et al.,

2011; Yang & Ravikumar, 2013):

R(Θ) = inf{λ1‖S‖1,1 + λ2‖L‖∗ : Θ = S + L}.

The second assumption we make is on the curvature of
the log–partition function. This is required to estab-
lish a form of RSC (Definition 4) for the loss function.

A 2. The second derivative of the log–partition func-
tion G : R→ R has atmost an exponential decay, i.e,

∇2G(u) ≥ e−η|u|, ∀ u ∈ R, for some η > 0

It can be verified that commonly used members of nat-
ural exponential family obey this assumption.

Finally, we make an assumption to avoid “spiky” tar-
get matrices. As Candes & Recht (2009) show with
numerous examples, low–rank and presumably other
such structural constraints as above, by themselves are
not sufficient for accurate recovery, in part due to the
infeasibility of recovering overly “spiky” matrices with
very few large entries. Early work (Candes & Plan,
2010; Keshavan et al., 2010a;b), assumed stringent ma-
trix incoherence conditions to preclude such matrices,
while more recent work (Davenport et al., 2012; Ne-
gahban & Wainwright, 2012), relax these assumptions

to restricting the following spikiness ratio:

αsp(Θ) =

√
mn‖Θ‖max

‖Θ‖F
. (5)

A 3. There exists a known α∗ > 0, such that

‖Θ∗‖max =
αsp(Θ

∗)√
mn

‖Θ∗‖F ≤
α∗√
mn

.

3.1. M–estimator for Generalized Matrix
Completion

We propose a regularized M–estimate as our candidate
parameter matrix Θ̂. The norm regularizer R(.) used
is a convex surrogate for the structural constraints,
and is assumed to satisfy A 1. For a suitable λ > 0,

Θ̂ = argmin
‖Θ‖max≤ α∗√

mn

mn

|Ω|

[ ∑
ij∈Ω

− logP (Xij |Θij)
]

+ λR(Θ)

= argmin
‖Θ‖max≤ α∗√

mn

mn

|Ω|

[ ∑
ij∈Ω

G(Θij)−XijΘij

]
+ λR(Θ).

(6)

The above optimization problem is a convex program,
and can be solved by any off–the shelf convex solvers.

3.2. Main Results

Without loss of generality, suppose that m ≤ n. Let
R∗(.) = supR(X)≤1〈X, .〉 be the dual norm of the regu-

larizer R(.). Further, let Ψ(M) and Ψmin be the max-
imum and minimum subspace compatibility constants
of R w.r.t the model subspaceM (Definition 3)∗. We
next define the following quantity:

κR(n, |Ω|) := E
[√mn
|Ω|
R∗
( ∑
ij∈Ω

εijeie
∗
j

)]
,

where the expectation is over the random sampling
index set Ω, and over the Rademacher sequence {εij :
∀(i, j) ∈ Ω}; here {ei ∈ Rm}, {ej ∈ Rn} are the stan-
dard basis. This quantity κR(n, |Ω|) captures the in-
teraction between the sampling scheme and the struc-
tural constraint as captured by the regularizer (specif-
ically its dual R∗). Note that it depends only on n
(n ≥ m), and on the size |Ω| of Ω.

Theorem 1. Let Θ̂ be the estimate from (6) with λ
2 ≥

mn
|Ω|R

∗(PΩ(X − g(Θ∗)). Under the assumptions A1-

3, if |Ω| = Ω(Ψ2(M)n log n)†, then given a constant
c0, ∃ constants C, C1, C2, and K1, such that, with
probability > 1− C1e

−C2Ψminn logn:

‖Θ̂−Θ∗‖2F ≤ C max{α∗2, 1}Ψ2(M) max

{
λ2

κ2
L
,
c20n logn

|Ω|

}
,

provided κL := e
− 2ηα∗√

mn

(
K1 − 64

c0

√
|Ω|κ2

R(n,|Ω|)
n logn

)
> 0.

∗We suppress the dependence of Ψ and Ψmin on R in
our notation to avoid notational clutter
†f(n) = Ω(g(n)) if f(n) > kg(n) ∀n > n̂.
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In the above theorem, η and α∗ ≥ αsp(Θ
∗)‖Θ∗‖F are

constants from Assumptions 2 and 3, respectively. Our
proof uses elements from Negahban (2012), as well as
Negahban & Wainwright (2012) where they analyze
the case of low–rank structure and additive noise, and
establish a form of restricted strong convexity (RSC)
for squared loss over subset of matrix entries (closely
relates to the special case, when the exponential fam-
ily distribution assumed in (2) is Gaussian). However,
showing such an RSC condition for our general loss
function over a subset of structured matrix entries in-
volved some delicate arguments. Further, we provide
a much simpler proof that moreover only required a
low–spikiness condition rather than a multiplicative
spikiness and structural constraint. Moreover, we are
able to provide an RSC condition broadly for general
structures, and the negative log–likelihood loss associ-
ated with general exponential family distribution.

3.3. Corollary

An important special case of the problem is when the
parameter matrix Θ∗, is assumed to be of a low–rank
r � m. The most commonly used convex regularizer
to enforce low–rank is the nuclear norm. The intuition
behind the low–rank assumption on the parameter ma-
trix is as follows: the parameter Θ∗ij , can be thought
of as the true measure of affinity between the enti-
ties corresponding to row i and column j, respectively;
and the data Xij , is a sample from a noisy channel
parametrized by Θij . It is hypothesized that {Θ∗ij},
are obtained from a weighted interaction of a small
number of latent variables as, Θ∗ij =

∑r
k=1 σkuikvjk.

Let {uk ∈ Rm} and {vk ∈ Rn}, k ∈ [r] be the left and
right singular vectors, respectively of Θ∗. Let the col-
umn and row span of Θ∗ be U∗ , col(Θ∗) = span{ui}
and V ∗ , row(Θ∗) = span{vj}, respectively. Define:

M := {Θ : row(Θ) ⊆ V ∗, col(Θ) ⊆ U∗}, and

M⊥ := {Θ : row(Θ) ⊆ V ∗⊥, col(Θ) ⊆ U∗⊥}.
(7)

It can be verified that, M 6=M, however, M⊂M.

Corollary 1. Let Θ∗ be a low–rank matrix of rank
atmost r � m. If further, ∀(i, j), (Xij − g(Θ∗ij))
is sub–Gaussian (Definition 5) with parameter b, and
|Ω| > Ω(rn log n), then using R(.) = ‖.‖∗ and λ

2 :=

C
√
mnb

√
n logn
|Ω| in (6), w.p. > 1− C ′1e−C

′
2 logn,

1

mn
‖Θ̂−Θ∗‖2F ≤ C ′

max{α∗2, 1}b2

κ′2L

(
rn log n

|Ω|

)
,

where κ′L = K ′1e
− 2ηα∗√

mn .

Remark 1: Note that the above results hold for the
minimizer Θ̂ of the convex program in (6), optimized
for any α∗ ≥ αsp(Θ

∗)‖Θ∗‖F ; in particular it holds

with α∗ = αsp(Θ
∗)‖Θ∗‖F , where 1 ≤ αsp(Θ

∗) ≤√
mn. While in practice α∗ is chosen through cross–

validation, the theoretical bound in Corollary 1 can be
tightened to the following (if ‖Θ‖F ≥ 1):

1

mn

‖Θ̂−Θ∗‖2F
‖Θ∗‖2F

≤ C ′
α2

sp(Θ∗)b2

κ′2L

(
rn log n

|Ω|

)
. (8)

Similar bound can be obtained for Theorem 1.

Remark 2: The parameter b2 is a measure of noise
per entry in the system; ∀ij, Var(Xij − g(Θ∗ij)) ≤ b2.

4. Proof

In this section, we provide key steps in the proofs of
the main results (Sec. 3.2-3.3).

4.1. Proof of Theorem 1

The proof of our main theorem involves two key steps:

• We first show that, under assumptions A1-3, RSC
of the form in Definition 4 holds for the loss func-
tion in (6) over a large subset of the solution space.

• When the RSC condition holds, the result follows
from a few simple calculations; we handle the case
where RSC does not hold separately.

Let ∆̂ = Θ̂−Θ∗. We state two results of interest.

Lemma 1. We define the following subset:

V = {Θ ∈ Rm×n : R(ΘM⊥) ≤ 3R(ΘM)},
where recall that ΘM is the projection of Θ onto the

subspace M. If Θ̂ is the minimizer of (6), and λ
2 ≥

mn
|Ω|R

∗(PΩ(X − g(Θ∗)), then ∆̂ = Θ̂−Θ∗ ∈ V.

The proof follows from Lemma 1 of Negahban (2012).

Lemma 2. Let Θ̂ be the minimizer of (6). If λ
2 ≥

mn
|Ω|R

∗(PΩ(X − g(Θ∗)), then:

mn

|Ω|
∑

(i,j)∈Ω

BG(Θ̂ij ,Θ
∗
ij) ≤

3λΨ(M)

2
‖Θ∗ − Θ̂‖F

The proof is provided in Appendix A.2.

Recall the notation αsp(∆) =
√
mn‖∆‖max

‖∆‖F . We now

consider two cases, depending on whether the following
condition holds for some constant c0 > 0:

αsp(∆̂) ≤ 1

c0Ψ(M)

√
|Ω|

n log n
. (9)

Case 1: Suppose condition in (9) does not hold;

so that αsp(∆̂) > 1
c0Ψ(M)

√
|Ω|

n logn . From the con-

straints of the optimization problem (6), we have that

‖∆̂‖max ≤ ‖Θ̂‖max + ‖Θ∗‖max ≤ (2α∗/
√
mn). Thus,

‖∆̂‖F =

√
mn‖∆̂‖max

αsp(∆̂)
≤ 2c0α

∗

√
Ψ2(M)n logn

|Ω| . (10)
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Case 2: Suppose condition in (9) does hold. Then,
the following theorem shows that an RSC condition of
the form in Definition 4 holds.

Theorem 2 (Restricted Strong Convexity). If for a

given c0, αsp(∆̂) ≤ 1
c0Ψ(M)

√
|Ω|

n logn . then, under the

assumptions and notations in Theorem 1, w.p. > 1−
C1e

−C2Ψminn logn:
mn

|Ω|
∑
ij∈Ω

BG(Θ̂ij ,Θ
∗
ij) ≥ κL‖∆̂‖2F ,

where κL = e
− 2ηα∗√

mn

(
K1 − 64

c0

√
|Ω|κ2

R(n,|Ω|)
n logn

)
, K1 > 0.

As noted earlier, such an RSC result for the special
case of squared loss under low–rank constraints was
shown in Negahban & Wainwright (2012). However,
proving the RSC condition for our general setting re-
quired a different and more involved proof technique.
We prove this theorem in Section 4.3.

Remaining steps of the proof of Theorem 1:

Thus, if αsp(∆̂) ≤ 1
c0Ψ(M)

√
|Ω|

n logn , and κL > 0, from

Theorem 2 and Lemma 2, w.h.p.:

κL‖∆̂‖2F ≤
mn

|Ω|
∑
ij∈Ω

BG(Θ̂ij ,Θ
∗
ij) ≤

3λΨ(M)

2
‖∆̂‖F (11)

From (10) and (11), under assumptions of Theorem 1,
we have that for an appropriate constant C, with prob-
ability higher than 1− C1e

−C2Ψminn logn,

‖∆̂‖2F ≤ C max{α∗2, 1}Ψ2(M) max

{
λ2

κ2
L
,
c20n log n

|Ω|

}
.

4.2. Proof of Corollary 1

From the definition of M⊥ in (7), we have M =
span{uix

†, yvj
† : x ∈ Rn, y ∈ Rm}. Let PU∗ ∈ Rm×m

and PV ∗ ∈ Rn×n, be the projection matrices onto
the column and row spaces (U∗, V ∗) of Θ∗, respec-
tively. We have, ∀X ∈ Rm×n, XM = PU∗X+XPV ∗−
PU∗XPV ∗ . Also, rk(PU∗) = rk(PV ∗) = rk(Θ∗) = r.
Thus, ∀Φ ∈M, rk(Φ) ≤ 2r; and hence,

Ψ(M) = sup
Φ∈M\{0}

‖Φ‖∗
‖Φ‖F

≤
√

2r. Further, Ψmin ≥ 1.

Next, we use the following proposition by Negahban &
Wainwright (2012), to bound κR(n, |Ω|) in Theorem 1.

Lemma 3 (Lemma 6 of Negahban & Wainwright
(2012)). If Ω ⊂ [m] × [n] is sampled using uniform
sampling and |Ω| > n log n, then for a Rademacher
sequence {εij ,∀(i, j) ∈ Ω},

E
[ 1

|Ω|
‖
∑
ij∈Ω

√
mnεijeie

∗
j‖2
]
≤ 10

√
n log n

|Ω|
.

Thus, for large enough c0 > 640, using κR(n, |Ω|) =

10
√

n logn
|Ω| in Theorem 2, for some K ′1 > 0 we have:

κ′L = e
− 2ηα∗√

mn

(
K1 −

640

c0

)
≥ K ′1e

− 2ηα∗√
mn . (12)

Finally, to prove the corollary, we derive a bound on
‖PΩ(X − g(Θ∗))‖2 using the Ahlswede–Winter Ma-

trix bound (Appendix A.3). Let φ(x) = ex
2 − 1;

and let Y (ij) ,
√
mn(Xij − g(Θ∗ij))eie

∗
j , such that,

√
mn
|Ω| ‖PΩ(X − g(Θ∗))‖2 = ‖ 1

|Ω|
∑
ij∈Ω

Y (ij)‖2.

From the equivalence of sub-Gaussian definitions in
Lemma 5.5 of Vershynin (2010), ‖Xij−g(Θ∗ij)‖φ ≤ c0b,
∀ij. Since, Y (ij) has a single element,

√
mn(Xij −

g(Θ∗ij)), we have, ‖Y (ij)‖φ ≤ c0
√
mnb. Further,

E[Y (ij)T Y (ij)] = E[mn(Xij − g(Θ∗ij))
2eje

∗
j ]

(a)
= mnE(ij∈Ω)[EX [(Xij − g(Θ∗ij))

2]eje
∗
j ]

(b)

≤ mnb2E(ij∈Ω)[eje
∗
j ]

(c)
= mnb2

1

n
In×n, (13)

where (a) follows from Fubini’s Theorem, (b) fol-
lows as (Xij − g(Θ∗ij)) is sub–Gaussian, and (c)
follows from the uniform sampling model. Simi-

larly, E[Y (ij)Y (ij)T ] = mnb2Im×m. Define σ2
ij :=

max{E[Y (ij)T Y (ij)],E[Y (ij)Y (ij)T ]}

In Lemma A.3, using σ2
ij ≤ nb2, σ2 :=

∑
ij∈Ω σ

2
ij =

n|Ω|b2, M = c0
√
mnb ≤ c0nb, and t = |Ω|δ, we have:

P
(∥∥ 1

|Ω|
∑
ij∈Ω

Y (ij)
∥∥

2
≥ δ
)
≤ n2 max

{
e−

δ2|Ω|
4nb2 , e−

δ|Ω|
2c0nb

}
.

Further, for all C, using δ = Cb
√

n logn
|Ω| , there exists

a large enough C1, s.t. if |Ω| > C1n log n, then,

P

(√
mn

|Ω| ‖PΩ(X − g(Θ∗))‖2 ≥ Cb

√
n logn

|Ω|

)
≤ e−C′1 log n.

(14)

Using Ψmin ≥ 1, κL = K ′1e
− 2ηα∗√

mn (from (12)), and λ
2 :=

C
√
mnb

√
n logn
|Ω| in Theorem 1 leads to the corollary as

w.h.p. λ
2 = C

√
mnb

√
n logn
|Ω| ≥

mn
|Ω| ‖PΩ(X − g(Θ∗))‖2.

4.3. Proof of Theorem 2

This proof uses symmetrization arguments and con-
tractions (Ledoux & Talagrand (1991) Ch.4&6). We
observe that, ∀ (ij) ∈ Ω, ∃vij ∈ [0, 1], s.t.

BG(Θ̂ij ,Θ
∗
ij) = G(Θ̂ij)−G(Θ∗ij)− g(Θ∗ij)(Θ̂ij −Θ∗ij)

= ∇2G((1− vij)Θ∗ij + vijΘ̂ij)∆̂
2
ij

(a)

≥ e
− 2ηα∗√

mn ∆̂2
ij . (15)
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Figure 1. Appropriate error metric between observation matrix X, and the MLE estimate from (6) X̂, plotted against
“normalized” sample size, when X is generated from (a) Gaussian, (b) Bernoulli, and (c) binomial distributions

where (a) holds as |(1−vij)Θ∗ij +vijΘ̂ij | ≤ ‖Θ∗‖max +

‖Θ̂‖max ≤ 2α∗√
mn

, and ∇2G(u) ≥ e−η|u| (A2).

Lemma 4. Under Theorem 2, consider the subset,

E =
{

∆ ∈ V : αsp(∆) ≤ 1

c0Ψ(M)

√
|Ω|

n logn
, ‖∆‖F = 1

}
.

w.p. > 1− C1e
−C2Ψminn logn, ∀ ∆ ∈ E:∣∣∣mn|Ω| ∑

ij∈Ω

∆2
ij − 1

∣∣∣ ≤ 16R(∆)

c0Ψ(M)

√
|Ω|κ2

R(n, |Ω|)
n logn

+ k′1R(∆)

√
n logn

|Ω| .

The proof is provided in Appendix A.1.

From the assumptions in Thm. 2 and Prop. 1, ∆̂

‖∆̂‖F
∈

E . Further, as ∆̂ ∈ V, R(∆̂) = R(∆̂M) +R(∆̂M⊥) ≤
4R(∆̂M) ≤ 4Ψ(M)‖∆̂‖F . Using Lemma 4, and (15),
and choosing |Ω| = cΨ2(M)n log n, for large enough c,

we have K1 := 1 − 4k′1

√
Ψ2(M)n logn

|Ω| > 0; thus using

κL := e
− 2ηα∗√

mn

(
K1 − 64

c0

√
|Ω|κ2

R(n,|Ω|)
n logn

)
, w.h.p.,

mn

|Ω|
∑
ij∈Ω

BG(Θ̂ij ,Θ
∗
ij) ≥ κL‖∆̂‖2F . (16)

5. Experiments

We provide simulated experiments to corroborate our
theoretical guarantees, focusing specifically on Corol-
lary 1, where we consider the special case where the
underlying parameter matrix is low–rank, but the un-
derlying noise model for the matrix elements could be
any of the general class of exponential family distribu-
tions. We look at three well known members of expo-
nential family suitable for different data–types, namely
Gaussian, Bernoulli, and binomial, which are popular
choices for modeling continuous valued, binary, and
count valued data, respectively.

5.1. Experimental Setup

We create low–rank ground truth parameter matrices,
Θ∗ ∈ Rm×n of sizes n ∈ {50, 100, 150, 200} (for
simplicity we considered square matrices, m = n); we
set the rank to r = 2 log n. The observation matrices,
X, are then sampled from the different members of
exponential family distributions parameterized by Θ∗.
For each n, we uniformly sample a subset Ω entries of
the observation matrix X, and estimate Θ̂ from (6).

Evaluation:
For each member of the exponential family of distri-
butions considered, we can measure the performance

of our M–estimator in parameter space as
‖Θ̂−Θ∗‖2F
‖Θ∗‖2F

,

or in observation space using an appropriate error
metric err(X̂,X), where X̂ is the maximum likeli-

hood estimate of the recovered distribution, X̂ =
argmaxXP (X|Θ̂) (we use RMSE, MAE in our plots).
From our corollary, we require |Ω| = O(rn log n) sam-
ples for consistent recovery, so we plot the error metric

against the the “normalized” sample size, |Ω|
rn logn . For

reasons of space, we only provide results for the error
metric in observations space plotted against the the
“normalized” sample size. The remainder of the re-
sults are provided in Appendix B. It can be seen from
the plots that the error decays with increasing sam-
ple size, corroborating our consistency results; indeed
|Ω| > 1.5rn log n samples suffice for the errors to de-
cay to a very small value. Further, the aligning of the
curves (for different n) given the “normalized” sample
size corroborates the convergence rates as well.
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