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Abstract:

Given i.i.d. observations of a random vectsr € R?, we study the problem of estimating both its covariance
matrix ©*, and its inverse covariance or concentration ma@ix= (3*)~!. WhenX is multivariate Gaussian, the
non-zero structure ad* is specified by the graph of an associated Gaussian Markdenafield; and a popular esti-
mator for such sparg@* is the/; -regularized Gaussian MLE. This estimator is sensible esefof non-Gaussiaix ,
since it corresponds to minimizing @p-penalized log-determinant Bregman divergence. We anatypeiformance
under high-dimensional scaling, in which the number of nodéise graptp, the number of edges and the maximum
node degred, are allowed to grow as a function of the sample siz& addition to the paramete(p, s, d), our anal-
ysis identifies other key quantities that control ratesttfay.-operator norm of the true covariance maffix; and
(b) thelo operator norm of the sub-matriX ¢, whereS indexes the graph edges, and = (") 1w (©*)1
and (c) a mutual incoherence or irrepresentability measutieeomatrixI™* and (d) the rate of decaly/ f (n, §) on the
probabilities{@;y -5 > 6}, whereSi™ is the sample covariance basedrosamples. Our first result establishes

consistency of our estimaf® in the elementwise maximum-norm. This in turn allows us to derdrevergence rates

in Frobenius and spectral norms, with improvements upon egisgsults for graphs with maximum node degrees
d = o(4/s). In our second result, we show that with probability conireggo one, the estimat® correctly speci-
fies the zero pattern of the concentration ma@®ix. We illustrate our theoretical results via simulations farigus
graphs and problem parameters, showing good corresporslbateeen the theoretical predictions and behavior in
simulations.

AMS 2000 subject classificationsPrimary 62F12; secondary 62F30.
Keywords and phrases:covariance, concentration, precision, sparsity, Ganggiaphical models]; regularization.

1. Introduction

The area of high-dimensional statistics deals with estomah the “largep, smalln” setting, wherep andn corre-
spond, respectively, to the dimensionality of the data &edsample size. Such high-dimensional problems arise in a
variety of applications, among them remote sensing, coatjoual biology and natural language processing, where
the model dimension may be comparable or substantiallgtatgn the sample size. It is well-known that such high-
dimensional scaling can lead to dramatic breakdowns in roasgical procedures. In the absence of additional model
assumptions, it is frequently impossible to obtain coesisprocedures whem > n. Accordingly, an active line of
statistical research is based on imposing various rdsinEbn the model—for instance, sparsity, manifold stnestor
graphical model structure—and then studying the scalitgder of different estimators as a function of sample size
n, ambient dimensiop and additional parameters related to these structurairgsfans.

In this paper, we study the following problem: given.i.d. observationg X *)}»_ of a zero mean random vector

. . . . . . . —1
X € RP, estimate both its covariance matdiX, and its inverse covariance or concentration ma@rix:= (Z*) .

Perhaps the most natural candidate for estimafifhgs the empirical sample covariance matrix, but this is kndan
behave poorly in high-dimensional settings. For instamt¢eenp/n — ¢ > 0, and the samples are drawn i.i.d. from
a multivariate Gaussian distribution, neither the eigkres nor the eigenvectors of the sample covariance matrix
are consistent estimators of the population versidris 17]. Accordingly, many regularized estimators have been
proposed to estimate the covariance or concentrationxmatder various model assumptions. One natural model
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assumption is that reflected in shrinkage estimators, ssi¢h the work of Ledoit and Wolf19], who proposed to
shrink the sample covariance to the identity matrix. Anralgive model assumption, relevant in particular for time
series data, is that the covariance or concentration mattdanded, meaning that the entries decay based on their
distance from the diagonal. Furrer and Bengtssahjroposed to shrink the covariance entries based on thistie
from the diagonal. Wu and Pourahmadi] and Huang et al.15] estimate these banded concentration matrices by
using thresholding and; -penalties respectively, as applied to a Cholesky factdhefinverse covariance matrix.

Bickel and Levina ] prove the consistency of these banded estimators so Ioﬁé’%@i — 0 and the model
covariance matrix is banded as well, but as they note, tresaaors depend on the presented order of the variables.
In recent work, Cai et al./] have studied such banded covariance models and derivedapates of convergence.

A related class of models are based on positing some kindaybigyp either in the covariance matrix, or in the
inverse covariance. Bickel and Leving [study thresholding estimators of covariance matricesyming that each
row satisfies ard,-ball sparsity assumption. In independent work, El Kardadj plso studied thresholding estimators
of the covariance, but based on an alternative notion os#igaone which captures the number of closed paths of any
length in the associated graph. Other work has studied rmadelhich the inverse covariance or concentration matrix
has an elementwise sparse structure. As will be clarifieiémext section, when the random vector is multivariate
Gaussian, the set of non-zero entries in the concentratiinixrcorrespond to the set of edges in an associated
Gaussian Markov random field (GMRF). In this setting, impgssparsity on the entries of the concentration matrix
can be interpreted as requiring that the graph underlyieg@NMRF have relatively few edges. A minimum mean-
squared error estimator for such GMRFs with relatively felges has been analyzed by Giraué][ Another line of
recent papersd| 11, 31] have proposed an estimator that minimizes the Gaussiaatinedog-likelihood regularized
by the ¢; norm of the entries (or the off-diagonal entries) of the @niation matrix. The resulting optimization
problem is a log-determinant program, which can be solvegbignomial time with interior point methodsl], or
by faster co-ordinate descent algorithnis 11]. In recent work, Rothman et al2]] have analyzed some aspects
of high-dimensional behavior of this estimator; assumingt the minimum and maximum eigenvaluesXf are
bounded, they show that consistent estimates can be adhiewerobenius and spectral norm, in particular at the

rateO(4/ %). Lam and Fan1g] analyze a generalization of this estimator based on reigets more general
than the/; norm. For the case df, regularization, they too obtain the same Frobenius andispeorm rates as the
paper P7]. They also show that thé -based estimator succeeds in recovering the zero-pattéhe @oncentration
matrix ©* so long as the number of edgesscales as = O(,/p), and the number of observationsscales as
n = Q((s +p)logp).

The focus of this paper is the problem of estimating the cotmadon matrix©* under sparsity conditions. We do
not impose specific distributional assumptions’itself, but rather analyze the estimator in terms of theltailavior
of the maximum deviatiomax;_; |Z;lj - E;“j| of the sample and population covariance matrices. To estifiig we
use thel;-penalized Gaussian maximum likelihood estimator thatbdeen proposed in past work,[11, 31]. We
show it actually corresponds to minimization of @Apenalized log-determinant Bregman divergence and theist us
without assuming thak is necessarily multivariate Gaussian. We analyze the behaf/this estimator under high-
dimensional scaling, in which the number of nogén the graph, and the maximum node degiese all allowed to
grow as a function of the sample size

In addition to the triple(n, p, d), we also explicitly keep track of certain other measures otleh complexity,
that could potentially scale as well. The first of these messsis thel.-operator norm of the covariance matbix,
which we denote bys- := | X*]|«. The next quantity involves the Hessian of the log-deteamimbjective function,
' := (0*)~! ® (6*)~1. When the distribution of{ is multivariate Gaussian, this Hessian has the more explici
representanoﬂi’(k )(em) = = cov{X; X}, X,X,,}, showing that it measures the covariances of the randorahlas
associated with each edge of the graph. For this reason,dhé&imi* can be viewed as an edge-based counterpart to
the usual node-based covariance maltix Using S to index the variable pair@, j) associated with non-zero entries
in the inverse covariance. our analysis involves the qtiarti- = [|(I'sg) ! [lo. Finally, we also impose a mutual
incoherence or irrepresentability condition on the Haskig this condition is similar to assumptions imposedh
in previous work on the Lassa@?, 28, 29, 32]. We provide some examples where the Lasso irrepreseityataihdition
holds, but our corresponding condition Bh fails; however, we do not know currently whether one coodittrictly
dominates the other. R

Our first result establishes consistency of our estim@tan the elementwise maximum-norm, providing a rate
that depends on the tail behavior of the entries in the ranchatnix > — ¥*. For the special case of sub-Gaussian
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random vectors with concentration matrices having at niggin-zeros per row (corresponding to graphs with maxi-
mal degreel) and at most off-diagonal non-zero entries, a corollary of our analysisonsistency in spectral norm
at rate||© — ©*||, = O(y/min{d?logp, (s + p) log p}/n), with high probability. When the maximum degrdds
large relative to the number of non-zeros (i&.,> s), this rate is equivalent to the spectral norm rates obthine
past work [L8, 27]. However, when the graph has relatively small degreesdaiapcase being bounded degree), then
our result provides a faster rate in spectral norm, but regustronger conditions than the Rothman etZli] fesult.
Section3.5.2provides a more detailed comparison between our resultshésmigast work 1.8, 27]. Under the milder
restriction of each element of having boundedm-th moment, we derive a rate in spectral norm that is sulistgnt
slower—namely)|© — ©*|y = O(dp'/*™//n)—showing that the familiar logarithmic dependence on the ehod
sizep is linked to particular tail behavior of the distribution &f. Finally, we show that under the same scalings as
above, with probability converging to one, the estim@teorrectly specifies the zero pattern of the concentration
matrix ©*.

The remainder of this paper is organized as follows. In 8a&iwe set up the problem and give some background.
Section3 is devoted to statements of our main results, as well as sismu of their consequences. Sectigorovides
an outline of the proofs, with the more technical detaileedefd to appendices. In Sectibnwe report the results of
some simulation studies that illustrate our theoreticatifmtions.

Notation For the convenience of the reader, we summarize here notatioe used throughout the paper. Given a
vectoru € R? and parametes € [1, o], we usel|u||, to denote the usudl, norm. Given a matrixU € RP*? and
parameters, b € [1, cc], we us€|U||,,» to denote the induced matrix-operator narmax; 1 [|Uyl[»; see Horn and
Johnson [4] for background. Three cases of particular importance is plaper are theperator norm||U/||2, which

is equal to the maximal singular value ©f the /., /¢,-operator norm given by

p

Wl = max > |Ul, (1)
k=1

and thef; /¢,-operator normgiven by||U|l; = [|U? || Finally, we usg|U]|| . to denote the element-wise maximum

max; ; |U;;|; note that this is not a matrix norm, but rather a norm on theorized form of the matrix. For any

matrix U € RP*P, we usevec(U) or equivalentlyl & R?” to denote itsvectorized formobtained by stacking

up the rows ofU. We use((U, V) := >, ;U;;V;; to denote therace inner producton the space of symmetric

matrices. Note that this inner product induces Enebenius norm|[U||r = />, ; Ufj Finally, for asymptotics,

we use the following standard notation: we wrjten) = O(g(n)) if f(n) < cg(n) for some constant < oo, and
fn) = Qg(n)) if f(n) > g(n) for some constant’ > 0. The notationf(n) =< g(n) means thaf (n) = O(g(n))

andf(n) = Q(g(n)). Furthermore, we recall the standard matrix notatioand~. For twok x k matricesA and B,

A~ B means thatl — B is positive definite andl = B meanA — B is positive semi-definite. For a matriX and a
set of tuplesS, Cs denotes the set of nuMbeiS; 1)) x)es-

2. Background and problem set-up

Let X = (X1,...,X,) be a zero meap-dimensional random vector. The focus of this paper is tlublpm of
estimating the covariance matrix* := E[X X7] and concentration matri®* := »*~' of the random vectoX
givenn i.i.d. observationg X *)}»_ In this section, we provide background, and set up thislprolmnore precisely.
We begin by describing Gaussian graphical models, whichigeamotivation for estimation of (sparse) concentration
matrices. We then describe an estimator based on minimézifig-regularized log-determinant divergence; when the
data are drawn from a Gaussian graphical model, this estincatresponds té, -regularized maximum likelihood.
We conclude by discussing various distributional assumngtihat we consider in this paper.

2.1. Gaussian graphical models

One motivation for this paper is the problem of Gaussiantgjg model selection. LeX’ = (X1, X», ..., X,,) denote
a zero-mean Gaussian random vector; its density can be pwaned by the inverse covariance aamcentration
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matrix ©* = (X*)~! = 0, and can be written as

1 1
T1,...,2p,0%) = xp{ — —zTO*z}. 2
i ) = Taoamer oo @

Zero pattern of inverse covariance

1 2

3
(@ (b)

Fig 1. (a) Simple undirected graph. A Gauss Markov random field has a GauswiableX; associated with each vertex

i € V. This graph hag = 5 vertices, maximum degreé= 3 ands = 6 edges. (b) Zero pattern of the inverse covariance
O* associated with the GMRF in (a). The ¢et©™) corresponds to the off-diagonal non-zeros (white blocks); the di&lgo

is also non-zero (grey squares), but these entries do not coneespedges. The black squares correspond to non-edges,
or zeros in9™.

Suppose that the variabléX, ..., X,) are associated with the vertex dét= {1,2,...,p} of an undirected
graphG = (V, E). We say that the concentration matfiX respects the edge structtiref the graph ife;; =0
for all (4,7) ¢ E. The family of Gaussian distributions with this propertykiown as a Gauss-Markov random field
with respect to the grap&. Figurel illustrates this correspondence between the graph steu@panel (a)), and the
sparsity pattern of the concentration matgix (panel (b)). The problem of estimating the entries of theceoitration
matrix ©* corresponds to parameter estimation, while the problenetdrchining which off-diagonal entries 6*
are non-zero—that is, the set

E(G*) = {Zuj eV | i # 7, @rg # 0}7 3)

corresponds to the problem of Gaussian graphieadel selection

With a slight abuse of notation, we define #$parsity index := | E(0©*)]| as the total number of non-zero elements
in off-diagonal positions 00*; equivalently, this corresponds to twice the number of edgehe case of a Gaussian
graphical model. We also define theaximum degree or row cardinality

d = i:rrfﬁuip{jEV\@;j;«éO}, 4)

corresponding to the maximum number of non-zeros in any fa@*ethis corresponds to the maximum degree in the
graph of the underlying Gaussian graphical model. Notewleahave included the diagonal entgy; in the degree
count, corresponding to a self-loop at each vertex.

It is convenient throughout the paper to use graphical testogy, such as degrees and edges, even though the
distributional assumptions that we impose, as describ8eation2.3, are milder and hence apply even to distributions
that are not Gaussian MRFs.

2.2. £1-penalized log-determinant divergence

An important set in this paper is the cone

S’ = {AeRPP|A=AT, A0}, ()

1As a remark on notation, note the difference between this selgé and the expectatioB of a random variable.
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formed by all symmetric positive semi-definite matricespimlimensions. We assume that the covariance matrix
¥* and concentration matri®* of the random vectoX are strictly positive definite, and so lie in the interior
S, ={AeRr?| A= AT A 0} of the coneSt.

The focus of this paper is a particular typeMdfestimator for the concentration matfix', based on minimizing a
Bregman divergence between positive definite matrices.nétfan is of Bregman type if it is strictly convex, contin-
uously differentiable and has bounded level sé{$]. Any such function induces Bregman divergencef the form
Dy(A||B) = g(A) — g(B) — (Vg(B), A — B). From the strict convexity of, it follows thatD,(A| B) > 0 for all A
and B, with equality if and only ifA = B.

As a candidate Bregman function, consider the log-deteantibarrier function, defined for any matrike S by

) —logdet(A) if A=0
9(4) = {+OO otherwise. ©

As is standard in convex analysis, we view this function &ntavalues in the extended redls. = R U {+o0}.
With this definition, the functiory is strictly convex, and its domain is the set of strictly piosi definite matrices.
Moreover, it is continuously differentiable over its domaiith Vg(A) = —A~!; see Boyd and Vandenberghd for
further discussion. The Bregman divergence corresportditiys log-determinant Bregman functigrs given by

Dy(A|B) := —logdetA+logdet B+ (B~', A— B)), 7

valid for any A, B € S” that are strictly positive definite. This divergence suggesatural way to estimate concen-
tration matrices—namely, by minimizing the divergedeg(©|©* )—or equivalently, by minimizing the function

gl;rol {{e, =) —logdet O}, (8)

where we have discarded terms independertd odnd used the fact that the inverse of the concentrationixriatr
the covariance matrix (i.e(P*)~! = ¥* = E[X XT]). Of course, the convex progrard) cannot be solved without
knowledge of the true covariance matkix, but one can take the standard approach of replacingith an empirical
version, with the possible addition of a regularizatiomter

In this paper, we analyze a particular instantiation of shiategy. Givem samples, we define tlsample covariance
matrix

N 1 n
o= 2N xR (x (N 9
nk}_jl (xX®) 9)

To lighten notation, we occasionally drop the supersotipand simply writeS for the sample covariance. We also
define theoff-diagonal/, regularizer

1Ollor = D104l (10)
i#]
where the sum ranges over &llj = 1,...,p with ¢ # j. Given some regularization constant > 0, we consider
estimating®* by solving the followingl; -regularized log-determinant program
© := arg min {(©, £") —logdet(O) + A\, [O]|10 }, (11)
SIS

which returns a symmetric positive definite matfixAs shown in Appendi®d, for any\,, > 0 and sample covariance
matrix 3" with strictly positive diagonal entries, this convex optation problem has a unique optimum, so there
is no ambiguity in equationil). When the data is actually drawn from a multivariate Gausdiatribution, then the
problem (1) is simply/; -regularized maximum likelihood. As described in Sec#ioh the equality®,; = 0 indicates
the absence of an edge between nadesl; for the corresponding Gaussian graphical model, so theltydff||; ox
encourages a sparse graphical model.



Remarks It is worth noting that in principle, one could use other Brem divergence®), in the population equa-
tion (8); examples include the von Neumann Entrdpy,, (A|B) = Tr[A(log A — log B) — A + B], or the Frobenius
divergenceDr(A|B) = | vec(A) — vec(B)||2. These different choices would lead to alternative formegtilarized
divergence minimizationd () for estimating the concentration matrix, and are an irstiang direction for future work.
Let us remark here on three properties of the log-determiBeegman function) that make it especially suitable to
estimating the concentration matrix. First, the log-daieant function acts as a barrier to the positive definiteecon
S, (see Boyd and Vandenbergh#)[ This makes the corresponding problefri) easier to optimize, and has been
taken advantage of by the optimization algorithmsaini[l]. Second, it is also helpful that the population optimiaati
problem @) involves only the population covariané& and not its invers&®*; this feature allowed us to take the
standard approach of replacidg with an empirical versiort: (and adding the regularization function). In contrast,
substituting other divergencds, (6|/©*) for instance the Frobenius divergence & ¢ould involve the population
concentration matri®* itself, for which no ready sample version exists in high-eirsional regimes (since the sam-
ple covariance matrix is not invertible ifp > n.) Third, the log-determinant divergence gives rise toliii@d in
the multivariate Gaussian case.

We also observe that the diagonal entries of the covariaatex?* correspond to variances, while its off-diagonal
entries correspond to pairwise covariances. For a germmedbm vector, the diagonal and off-diagonal entries of the
concentration matri©* do not lend themselves to natural interpretations. Howavken X is multivariate Gaus-
sian, as discussed in Secti@ri, the off-diagonal entries adb* correspond to the edge-weights in the corresponding
Gaussian graphical model. Consequently, imposing a priefepence for sparse graphs is a natural motivation for
using the regularizerlQ), corresponding to thé -norm applied to the off-diagonal entries of the conceigrama-
trix. Of course, other priors, on either the covariance arcemtration matrix, could well motivate the use of differen
regularization functions.

2.3. Tail conditions

In this section, we describe the tail conditions that undevlir analysis. Since the estimatat1) is based on using
the sample covariance” as a surrogate for the (unknown) covariadte any type of consistency requires bounds on
the differencex™ — ¥*. In particular, we define the following tail condition:

Definition 1 (Tail conditions) The random vectaK satisfies tail conditioff ( f, v..) if there exists a constant € (0, o]
and a functionf : N x (0, 00) — (0, 00) such that for anyi,j) € V x V:

PIS) — 25 >0 < 1/f(n,6)  foralld e (0,1/v,]. (12)
We adopt the conventioh/0 := +o0, so that the value,. = 0 indicates the inequality holds for adye (0, o).

Two important examples of the tail functighare the following:

(a) anexponential-type tail functigmrmeaning thatf (n,d) = exp(cnd*), for some scalac > 0, and exponent
a > 0;and

(b) apolynomial-type tail functionmeaning thayf (n,§) = cn™ §2, for some positive integer. € N and scalar
c>0.

As might be expected, X is multivariate Gaussian, then the deviations of samplaigarnce matrix have an exponential-
type tail function witha = 2. A bit more generally, in the following subsections, we pdevbroader classes of dis-
tributions whose sample covariance entries satisfy expttadeand a polynomial tail bounds (see Lemmatand 2
respectively).

Given a larger number of samplaswe expect the tail probability bound f(n, d) to be smaller, or equivalently,
for the tail functionf(n, 0) to larger. Accordingly, we require thgtis monotonically increasing in, so that for each
fixedd > 0, we can define the inverse function

np(6;r) = argmax{n | f(n,8) <r}. (23)

Similarly, we expect thaf is monotonically increasing ifi, so that for each fixed, we can define the inverse in the
second argument

6f(r;n) = argmax {6 | f(n,d) <r}, (14)
6



wherer € [1,00). For future reference, we note a simple consequence of tm®tmicity of the tail functionf—
namely

n>ng(s,r) forsomes >0 = &p(n,r)<$ (15)

The inverse functions s ande play animportant role in describing the behavior of oumraator. We provide concrete
examples in the following two subsections.

2.3.1. Sub-Gaussian distributions

In this subsection, we study the case of i.i.d. observatidssib-Gaussian random variables.

Definition 2. A zero-mean random variablé is sub-Gaussiaiif there exists a constant € (0, co) such that
Elexp(tZ)] < exp(oc®t?/2)  forallt e R. (16)

By the Chernoff bound, this upper bountb] on the moment-generating function implies a two-sidebtaiind
of the form

2’2
P[|Z| > 2] < 2exp( 202). a7)

Naturally, any zero-mean Gaussian variable with varianteatisfies the bound<.§¢) and (L7). In addition to the
Gaussian case, the class of sub-Gaussian variates indngidsounded random variable (e.g., Bernoulli, multino-
mial, uniform), any random variable with strictly log-cawe density §, 20], and any finite mixture of sub-Gaussian
variables.

The following lemma, proved in Appendi, shows that the entries of the sample covariance baseddrsamples
of sub-Gaussian random vector satisfy an exponentialtippound with exponent = 2. The argument is along the
lines of a result due to Bickel and Levind] but with more explicit control of the constants in the eregponent:

Lemma 1. Consider a zero-mean random vectdf,, ..., X,,) with covariancex* such that eachX,/,/X%; is sub-
Gaussian with parameter. Givenn i.i.d. samples, the associated sample covariaitesatisfies the tail bound

né> }
128(1 + 402)2 max; (25,)2

P[IS - 55 > 6] < dexp{-

forall § € (0, max;(X};) 8(1 + 40?)).

Thus, the sample covariance entries the tail condifidif, v,.) with v, = [max;(3};)8(1 + 402)}_1, and an
exponential-type tail function with = 2—namely

f(n,0) = %exp(c*néz), with ¢, = [128(1 + 40%)? max(5 )2}—1 (18)

1%
A little calculation shows that the associated inverse tions take the form

= log(4r _ log(4r
df(rsm) = c(n ), and 7f(r;d) = 6(62 )

(19)

2.3.2. Tail bounds with moment bounds

In the following lemma, proved in Appendix, we show that given i.i.d. observations from random vadahwith
bounded moments, the sample covariance entries satisflyagmoial-type tail bound. See the book by Petrav][
for related results on tail bounds for variables with bouhad®ments.



Lemma 2. Suppose there exists a positive integeand scalark,,, € R such thatfori = 1,...,p,
X

E [(
VS

For i.i.d. samples{X,f“};;zP the sample covariance matrix® satisfies the bound

)4"’} < K. (20)

{22m(maxi Y12 C (Ko + 1)}

nm 2m

P[|Sy - =

>4 < , (21)

where(C,, is a constant depending only an.

Thus, in this case, the sample covariance satisfies theotadliton 7 ( f, v..) with v, = 0, so that the bound holds
forall 6 € (0,00), and with the polynomial-type tail function

f(n,8) = c,n™s®™  wherec, = 1/{2*™(max; £3;)?™ (K,, + 1) }. (22)
Finally, a little calculation shows that in this case, theeirse tail functions take the form

5f(n,r) = On/ak\/)%/m, and ns(6,r) = %ﬁl/m (23)

3. Main results and some consequences

In this section, we state our main results, and discuss sémeio consequences. We begin in Sect®bhby stating
some conditions on the true concentration ma@ixrequired in our analysis, including a particular type ofdher-
ence or irrepresentability condition. Secti®ri.2is devoted to illustrations of our irrepresentability asgtion for
some simple graphs. In Secti@r2, we state our first main result—namely, Theoreon consistency of the estimator
O, and the rate of decay of its error in elementwisg norm. Section3.3 is devoted to Theorerd on the model
selection consistency of the estimator. In Sectiofy we state and prove some corollaries of Theofiemegarding
rates in Frobenius and spectral norms. Finally, in Se@ié&we compare our results to some related works, includ-
ing a discussion on the relation between the log-determiestimator and the ordinary Lasso (neighborhood-based
approach) as methods for graphical model selection.

3.1. Conditionson covariance and Hessian

Our results involve some quantities involving the Hessifithe log-determinant barrie6), evaluated at the true
concentration matri©*. Using standard results on matrix derivativek [t can be shown that this Hessian takes the
form

" = Vg(O) =0 'ge !, (24)

where® denotes the Kronecker matrix product. By definitidif, is ap? x p? matrix indexed by vertex pairs, so
* ; ot 002 _ o+

that .ent-ryl“(j’kx(e’m.) cor-res.por?ds to thg secon-d par.tlal derl\./at%, evaluated aB = O*. When X has
multivariate Gaussian distribution, th&" is the Fisher information of the model, and by standard tesul cumulant
functions in exponential familie$], we have the more specific expresslbp = cov{X; X\, X, X} For

. i (k) (€m) ~ J
this reasonl™ can be viewed as an edge-based counterpart to the usualbrmeamatrix>>*.

The set of non-zero off-diagonal entries in the model cotreéipn matrix is denoted

E©7) = {(,j) eV xV |i#],05#0}, (25)

and we letS(©*) = {E(©*) U {(1,1),...,(p,p)} be the augmented set including the diagonal elements. We use
S¢(©*) to denote the complement &f(©*) in the set{1,...,p} x {1,...,p}, corresponding to all pair§,m)
for which ©;,, = 0. When it is clear from context, we adopt the shorth&hend S¢ respectively; also note that
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|S| = |E(©*)| + p = s + p. Finally, for any two subset§ and7” of V' x V, we usel'}.,, to denote theéT'| x |1”|
matrix with rows and columns df* indexed byI’ and7"” respectively.

Our main results involve thé,, /¢., norm applied to the covariance matbiX, and to the inverse of a sub-block of
the Hessiann™. First, we define the term

p
fpe = e = (l_Hllasz;p:er’ (26)
J:

corresponding to thé, -operator norm of the true covariance matrikx. Now consider the the matrix
FZ'S — [6*—1 ® @*_1]35’ c ]R(s—i-p)x(s-i-p)7
and the parameter

ke = [(T56) ™ oo 27)

Our analysis keeps explicit track of these quantities, abttiey can scale in a non-trivial manner with the problem
dimensionp.
Finally, we assume the Hessian satisfies the following typawtual incoherence or irrepresentability condition

Assumption 1. There exists some € (0, 1] such that

max [[Es(Tgs) b < (1-a). (28)

The underlying intuition is that this assumption limits ihduence that the non-edge terms, indexedssy can
have on the edge-based terms, indexedbyo elaborate on this intuition, let us define the zero-medge random
variablesby

Y = X; X —E[X;X,],  forallj, ke {1,2,...,p},

and note that'; ) , .., = E[Y{j,r) Y(e,m)]- Defining the vectol’s := {Y; 1), (j,k) € S}, then the incoherence

condition reduces to

max [E(V.YE)E(YsYS) M £ (1-a).
ecsSe

This condition shares an exact parallel with the incohexerandition for the Lassa’p, 28, 37], except as applied to
the edge variableg; ;) as opposed to the node variables. It enforces the requirement that there should be no edge
variableY(; ;) that isnotincluded in the graph (i.e(j, k) € S°) that is highly correlated with variables within the
true edge-sel’s. In the following section, we illustrate the form taken bystisptionl for some concrete cases of
graphical models.

Aremark on notation: although our analysis allows the qgtiast:s-, k- as well as the model sizeand maximum
node-degred to grow with the sample size, we suppress this dependenceroso as to simplify notation.

3.1.1. lllustration of irrepresentability: Diamond graph

Consider the following Gaussian graphical model exampenfiMeinshausen?[l]. Figure 2(a) shows a diamond-
shaped graply = (V, E), with vertex set” = {1, 2, 3,4} and with all edgegxcept(1,4). Introducing a parameter
p € [0,1/1/2], we consider the family of covariance matriceés with diagonal entries;; = 1 for all i € V; off-
diagonal elementy;; = p for all edges(i, j) € E\{(2,3)}; X33 = 0; and finally the entry corresponding to the
non-edge(1,4) is set asvi, = 2p?. It can verified tha{X*)~! respects the structure of the graph. For this family,
MeinshausenZ1] showed that—for any sample size—thepenalized log-determinant estimatrfails to recover
the graph structure f > —1 + (3/2)'/2 ~ 0.23. It is instructive to compare this necessary condition togbifficient
condition provided in our analysis, nhamely the incohereAssumptionl as applied to the Hessidn*. For this
particular example, a little calculation shows that Asstiompl is equivalent to the constraint

Apl(lpl+1) < 1,
9



3 4
(a) (b)

Fig 2: (a) Graph of the example discussed by Meinshauséln (b) A simple4-node star graph.

an inequality which holds for app € (—0.2017,0.2017). Note that the upper value2017 is just below the necessary
threshold discussed by Meinshauséf][ We can also compare this to the irrepresentability camattfor the Lasso
problems obtained by regressing each node on its neigheestlie discussion of the neighborhood-based approach
of Meinshausen andimann 2] in Section3.5.1); which requires only thek|p| < 1, i.e.,p € (—0.5,0.5). Thus,

in the regimelp| € [0.2017,0.5), the irrepresentability condition for the neighborhoaséd approach holds while
the log-determinant counterpart fails.

3.1.2. lllustration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphicdémillustrated in Figur@(b), which consists of a single
hub node connected to the rest of the spoke nodes. We comsfdar node graph, with vertex sét = {1,2,3,4}

and edge-setl = {(1,a) | a € {2,3,4}}. The covariance matriX* is parameterized by the correlation parameter
p € [—1,1]: the diagonal entries are setXly, = 1, for alli € V; the entries corresponding to edges are s&to= p

for (4,7) € E; while the non-edge entries are setgs = p? for (i,§) ¢ E. Consequently, for this particular example,
Assumptionl reduces to the constraipt (|p|+2) < 1, which holds for alp € (—0.414,0.414). On the other hand, the
irrepresentability condition for the nodewise Lasso peofs (cf. the neighborhood-based approach in Meinshausen
and Bihlmann p2]) allows for the full range € (—1,1). Thus, there is again an intenal € [0.414, 1) in which the
irrepresentability condition for the neighborhood-baapgdroach holds while the log-determinant counterpars fail

3.2. Ratesin elementwise £.,-norm

We begin with a result that provides sufficient conditionstloe sample size: for bounds in the elementwise, -
norm. This result is stated in terms of the tail functibrand its inverses ande (equations 13) and (14)), and so
covers a general range of possible tail behaviors. So aske imaore concrete, we follow the general statement with
corollaries for the special cases of exponential-type aghpmial-type tail functions, corresponding to sub-Gaais
and moment-bounded variables respectively.

In the theorem statement, the choice of regularizationteons,, is specified in terms of a user-defined parameter
T > 2. Larger choices of yield faster rates of convergence in the probability withickhthe claims hold, but also
lead to more stringent requirements on the sample size.

Theorem 1. Consider a distribution satisfying the incoherence asgiong28) with parameterx € (0, 1], and the tall
condition(12) with parameterg (f, v..). Let® be the unique solution (cf. Lemma 3 on page 16) of the log+uié@tant
program(11) with regularization parametek,, = (8/a) §¢(n, p™) for somer > 2. Then, if the sample size is lower
bounded as

n > ny (1/max {0*7 6(1+8a"")d maX{Hz*HF*,KJ%*K/%*}}, p7>, (29)

then with probability greater thaih — 1/p™ =2 — 1, we have:
10



(@) The estimat® satisfies the elementwigg -bound:

10— 0% < {2(14+8a Ykp-} ds(n,p7). (30)
(b) It specifies an edge sﬂ(@) that is a subset of the true edge 9et0*), and includes all edgeg§, j) with
0751 > {2(148a ) kr-} df(n,p7).

If we assume that the various quantities:, xx -, « remain constant as a function 0i, p, d), we have the el-
ementwisel,, bound||® — O%||o = O(34(n,p™)), so that the inverse tail functiody (n,p”) from equation {4)
specifies rate of convergence in the element-wisenorm. In the following section, we derive the consequerafes
this /. -bound for two specific tail functions, namely those of exgutial-type witha = 2, and polynomial-type tails
(see Sectiorz.3). Turning to the other factors involved in the theorem stast, the quantitiesy- andxr- measure
the sizes of the entries in the covariance mafixand inverse Hessiafi™*) ~! respectively. Finally, the facti + 2)
depends on the irrepresentability condition, growing irtipalar as the incoherence parameiespproaches.

3.2.1. Exponential-type tails

We now discuss the consequences of Thedréondistributions in which the sample covariance satisfreexponential-
type tail bound with exponermt = 2. In particular, recall from Lemméathat such a tail bound holds when the variables
are sub-Gaussian.

Corollary 1. Under the same conditions as Theorémsuppose moreover that the variabl&s/,/%? are sub-
Gaussian with parameter, and the samples are drawn independently. Then if the sasigae satisfies the bound

n > Cpd*(1+ §)2 (Tlogp + log4) (31)
(0%

whereC; := {48v/2 (1+40?) max;(3};) max{ks-kKr+, Ko K. }}2, then with probability greater thah— 1/p™ 2,
the estimaté® satisfies the bound,

Tlogp + log4

10— 0% < {16\/5(1—4—402) max(X7) (1 + 8a~ )rp-} -

Proof. From Lemmal, when the rescaled variablés / /X7, are sub-Gaussian with parametetthe sample covari-
ance entries satisfies a tail bounlf, v.) with with v, = [ max;(3};) 8(1+40?)] “landf(n,8) = (1/4) exp(c.nd?),

wherec, = [128(1 + 40%)? max; (X};)?] ~!'. As a consequence, for this particular model, the invensetfonss ; (n, p™)
andn (0, p™) take the form

- log(4 p™ 1 log 4
Spnp) = 4B O Ao ma () | B ang (32a)

log{dp” log p + log 4
ag(d,p7) = % = 128(1 + 40%)% max(2,)? (Togpyog)'

(32b)

Substituting these forms into the claim of Theorgmnd doing some simple algebra yields the stated corollari/]

Whenkr-, ks, a remain constant as a function@f, p, d), the corollary can be summarized succinctly as a sample

size ofn = Q(d? log p) samples ensures that an eIementvﬁi,%eboundH(:) — 0% = O(4/ 1"%) holds with high
probability. In practice, one frequently considers grapith maximum node degreeisthat either remain bounded, or
that grow sub-linearly with the graph size (i.é.= o(p)). In such cases, the sample size allowed by the corollary can
be substantially smaller than the graph size, so that foiGaulssian random variables, the method can succeed in the
p > n regime.
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3.2.2. Polynomial-type tails

We now state a corollary for the case of a polynomial-typkftaiction, such as those ensured by the case of random
variables with appropriately bounded moments.
Corollary 2. Under the assumptions of Theordmsuppose the rescaled variablés/ /%% havedm! moments
upper bounded byK,,,, and the sampling is i.i.d. Then if the sample sizmatisfies the bound

n > Cod? (1+2)2p7/m, (33)

whereCy := {12m [m(K,, + 1)]77 max;(5;) max{rZ. kr-, x&. x%. } 1%, then with probability greater thar —
1/p™~2, the estimat® satisfies the bound,

~ 1 8 T/m
16 =%l < {dmm(Kp + ] (14 =)rr} /5

Proof. Recall from Lemma2 that when the rescaled variablé§/,/%;; have boundedm!" moments, then the

sample covariancE satisfies the tail conditioff (f, v.) with v, = 0, and with f(n, §) = c.n™§*™ with c. defined
asc, = 1/{m*" 122" (max; X},)*™ (K,, + 1) }. As a consequence, for this particular model, the inversetions
take the form

5 (b7 fe) P pr/m

Oy(n,pT) = T = {2mlm(K + 1)) max ¥} /=, and (34a)
/. \1/m T/m
_ T D /Cx 1 % P
(8, p7) % = {2m[m(K,, + 1)]>= max Eii}Q ( 52 ) (34b)
The claim then follows by substituting these expressiotts Tineoreml and performing some algebra. O

When the quantitiesxr-, kx+, o) remain constant as a function @f, p, d), Corollary2 can be summarized suc-
cinctly asn = Q(d? p™/™) samples are sufficient to achieve a convergence rate in etaise/..-norm of the order

H@ — 0% = O(y/ pTy/Lm), with high probability. Consequently, both the requirethpée size and the rate of con-

vergence of the estimator are polynomial in the number aélséasp. It is worth contrasting these rates with the case
of sub-Gaussian random variables, where the rates haveagasithmic dependence on the problem gize

3.3. Model selection consistency

Part (b) of Theoreni asserts that the edge ié((:)) returned by the estimator is contained within the true edge s
E(0*)—meaning that it correctlgxcludesall non-edges—and that it includes all edges that are “larglative to the
Sf(n,pf) decay of the error. The following result, essentially a mirefinement of Theorer, provides sufficient
conditions linking the sample sizeand the minimum value

Hmin i i 35
(.7 EBer) 190 59

for model selection consistency. More precisely, definestrent
M(8;0") = {sign®;) =sign®;;) V(i j) € E(©)} (36)

that the estimato® has the same edge set@s, and moreover recovers the correct signs on these edgdsiigt
notation, we have:

Theorem 2. Under the same conditions as Theorgénsuppose that the sample size satisfies the lower bound
n > ny <l/max {2mp (1+8a~) 0,1, v.,6(148a~1) d max{rs«rr-, n%*ﬁ%*}},p7>. (37)

Then the estimator is model selection consistent with highability asp — oo,
P[M(©;09] > 1-1/p7 2% = 1. (38)
12



In comparison to Theoreth the sample size requiremef differs only in the additional terM involv-
ing the minimum value. This term can be viewed as constrgihiow quickly the minimum can decay as a function
of (n, p), as we illustrate with some concrete tail functions.

3.3.1. Exponential-type tails

Recall the setting of Section.3.1, where the random variable{s?(i(k) /\/ 25+ are sub-Gaussian with parameter
Let us suppose that the parametgts-, kx+, ) are viewed as constants (not scaling withd). Then, using the
expressiong_2) for the inverse functiom; in this setting, a corollary of Theoremis that a sample size

n = Q((d*+0,7)7logp) (39)

min

is sufficient for model selection consistency with probiapgreater thari — 1/p™ 2. Alternatively, we can state that
n = Q(7d?log p) samples are sufficient, as along as the minimum value scalgg.a= Q(4/ 1"%).

3.3.2. Polynomial-type tails

Recall the setting of Sectio?.3.2 where the rescaled random variablEs/ /37 have boundedm!" moments.
Using the expressiors{) for the inverse functiom ¢ in this setting, a corollary of Theorefis that a sample size

n = Q((d*+6,;

min

)p7/™) (40)

is sufficient for model selection consistency with probigpireater thart — 1/p™—2. Alternatively, we can state than
n = Q(d?p™/™) samples are sufficient, as long as the minimum value scalgs;as- Q(p™/ 2™ //n).

3.4. Ratesin Frobeniusand spectral norm

We now derive some corollaries of Theorémoncerning estimation &* in Frobenius norm, as well as the spectral
norm. Recall that = |E(©*)| denotes the total number of off-diagonal non-zero®in

Corollary 3. Under the same assumptions as Theotemith probability at least —1/p™ 2, the estimatoP satisfies

16 -er < {26r-(1+ )}\W 57(n,p7),  and (41a)
16 -0, < {Q/QF*(I—F%)}min{\/is—&— )} 6(n,p"). (41b)

Proof. With the shorthand notation := 2k« (1 4+ 8/«) 6f(n p™), Theoreml guarantees that, with probability at

leastl — 1/p" 2, ||© — ©*|| < v. Since the edge set @ is a subset of that ob*, and©* has at mosp + s
non-zeros (mcludmg the diagonal elements), we conclbde t

P

~ ~ . ~ «271/2
16-61r = [Y@u-057+ 3 6y -0y
i=1 (i,j)EE
< vs+p,

from which the bound419 follows. On the other hand, for a symmetric matrix, we have

[6-0l: < 16-6x < dv, (42)
using the definition of the..-operator norm, and the fact th@tand©* have at most non-zeros per row. Since the
Frobenius norm upper bounds the spectral norm, the botiig follows.

O
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3.4.1. Exponential-type tails

For the exponential tail function case where the rescaledaa variablesy; / \/ET; are sub-Gaussian with parameter
o, we can use the expressid@®j for the inverse functioﬁf to derive rates in Frobenius and spectral norms. When the
quantitieskr-, k-, @ remain constant, these bounds can be summarized sucasalgample size = Q(d? log p)

is sufficient to guarantee the bounds

16 -e*lr = (9( (s1p) logp 10gp>, and (43a)
n
~ 3 2

with probability at least — 1/p” 2.

3.4.2. Polynomial-type tails

Similarly, let us again consider the polynomial tail casewhich the rescaled variates; /,/>7; have boundedm”
moments and the samples are drawn i.i.d. Using the expreé3# for the inverse function we can derive rates in
the Frobenius and spectral norms. When the quantifiesxx-, o are viewed as constant, we are guaranteed that a
sample sizer = Q(d? p7/™) is sufficient to guarantee the bounds

- T/m
B-elr = of L), ang (#4a)
n
e 3 21 7/ m

with probability at least — 1/p™ 2.

Remark:It is worth observing that our results also have implicagidar estimating the covariance matrix‘ in
operator norm. By Lemma, the estimated concentration matfxis positive definite, and hence can be inverted
to obtain an estimate of the covariance matrix, and we staikcé rates in Corollary 4 on pp. 15 of our extended
tech-report P5]. These rates are equivalent to those obtained by and LéVjrend El Karoui [L(] for thresholding
estimators, as applied to spars@/ariance matriceswhereas our rates are applicable to spamgerse covariance
matrices.

3.5. Comparisonsto other results

In this section, we compare our results against those in selagd work.

3.5.1. Comparison to neighbor-based graphical model sielec

Suppose thaX follows a multivariate Gaussian distribution, so that tiheicture of the concentration matri®*
specifies the structure of a Gaussian graphical model. $rctise, the neighborhood-based method, first proposed by
Meinshausen andihimann P2], estimates the full graph structure by performingfafregularized linear regression
(Lasso)—of the formX; = Z#i 0;;X; + W— of each node on its neighbors and using the support of tiveasd
regression vectadf to predict the neighborhood set. These neighborhoods arectbmbined, by either an OR rule or
an AND rule, to estimate the full graph. It is interesting tovpare our conditions for graphical model consistency of
the log-determinant approach, as specified in Thedteimthose of the Lasso based neighborhood selection method.
Various aspects of the high-dimensional model selectiosistency of the Lasso are now understodg P9, 37]. It

is known that mutual incoherence or irrepresentabilityditions are necessary and sufficient for its success”].

In terms of scaling, Wainwright’] shows that the Lasso succeeds with high probability if amgl  the sample size
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scales as < c({d + 0,,2 }log p), assuming sub-Gaussian noise wheie a constant determined by the covariance

matrix ¥*. By a union bound over thg nodes in the graph, it then follows that the neighbor-basegtyselection
method in turn succeeds with high probability.it= Q({d + 0.2 } log p).

For comparison, consider the application of Theotzin the case where the variables are sub-Gaussian (which
includes the Gaussian case). For this setting, we have baethe scaling required by Theoretis n = Q({d? +
9;?11} log p), so that the dependence of the log-determinant approaéh;qris identical, but it depends quadratically
on the maximum degreé. We suspect that that the quadratic dependeRcmight be an artifact of our analysis,
but have not yet been able to reduce ittoOtherwise, the primary difference between the two methsds the
nature of the irrepresentability assumptions that are sagoour method requires Assumptibion the Hessiam™,
whereas the neighborhood-based method imposes the saeneftgpndition on a set gf covariance matrices, each
of size(p — 1) x (p — 1), one for each node of the graph. In sectidf.2we showed two cases where the Lasso
irrepresentability condition holds, while the log-detémemt requirement fails. However, in general, we do not know
whether the log-determinant irrepresentability stricslynore restrictive than its analog for the Lasso.

3.5.2. Comparison to past work

We now discuss in some detail the differences between oulti@sd past work 18, 27]. In the first paper to analyze
high-dimensional aspects of the log-determinant estim@tt), Rothman et al.f /] consider the case of multivariate
Gaussian data, in which case the estimator coincides wélfthhegularized Gaussian MLE. In this setting, they

obtained convergence rates in Frobenius norfi@f- ©* || = O(\/%). Since the Frobenius norm upper
bounds the spectral norm, they also obtained the same gmmex rate for the spectral norm. In this paper, for

whered denotes the maximum number of non-zeros per row (or the maxiategree of the graph). For graphs with
degrees that do not grow too quickly (i.e., under the indgtuaf < s + p, which holds for bounded degree graphs
among others), then the rate obtained here is faster. Todag, ¢the Rothman et al2]] analysis involved milder
restrictions on the inverse covariance, namely only a ldveemd on its eigenvalues, whereas our results (since they
were derived via model selection consistency) requirexhggr conditions on the matrix and its incoherence progerti
(via the parametersy- andky+ anda). On the other hand, the analysis of this paper applies stiatawore generally
to random vectors with tail behavior other than sub-Gaussidere we obtained different rates depending on the
heaviness of the tails.

In addition, Rothman et al2[/] proposed a slightly different estimator thdli) for the multivariate Gaussian case:
they first estimate the correlation matrix by solving theguean (L1) with the sample correlation matrix substituted in
place of the sample covariance matrix, and use this to obtagstimate of the concentration matrix. They obtained a

an improved/, operator norm convergence rate for this estimator—narfjely.- ©*[|, = (9(\ / %)—Which

is better whers < p. Although this yields improvements for very sparse grafdrsany connected graph, the number
of edges scales as= 2(p), in which case it is not substantially better than the ondirestimator. Nonetheless, it
would be interesting to extend our analysis to their “imgaivestimator to see if one could improve the bound in
(43b).

In subsequent work, Lam and Far] proposed a generalization of the log-determinant estm@tl) involving
more general regularization functions. Most germane ®dlscussion are their results fQrregularization, in which
case their estimator is equivalent to the log-determinatitnator (L1), and their Frobenius an€, operator norm
convergence rates match those in Rothman et?a]. [n addition, Lam and Fanlf] provide a result on model-
selection consistency of the estimatad), but one which needs fairly restrictive conditions on tpearsity of the
graph and the sample size. In particular, they require trahtimber of edges be upper bounded as= O(,/p),
and that the sample size be lower bounded as2((s + p) log p). Note that the first condition limits their result to
graphs that are very sparse, in particular excluding anyected graph, or any graph with constant node degtees
(for which s = dp/2). Additionally, the lower bound on the sample size implieattconsistency cannot be obtained
in the high-dimensional setting wifh > n. In contrast, we guarantee model selection consistendysainple size
n = Q(d? logp), which allows for connected graphs and constant degreehgrap well as for high-dimensional
scaling. Note that our result is based on the incoherencditbmmimposed in Assumptiofh.

variables with sub-Gaussian tails, we obtained converémespectral norm at the rateé \/w ,
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4. Proofs of main result

In this section, we work through the proofs of Theorehasmd2. We break down the proofs into a sequence of lemmas,
with some of the more technical aspects deferred to appesd@ur proofs are based on a technique that we call a
primal-dual witness methodised previously in analysis of the Lass@][ It involves following a specific sequence of
steps to construct a pa(l@ Z ) of symmetric matrices that together satisfy the opumaiuydltlons associated with the
convex programi(1) with high probability Thus, when the constructive procedure succe@ds,equalto the unique
solution® of the convex programi(l), andZ is an optimal solution to its dual. In this way, the estimatoinherits
from © various optimality properties in terms of its distance te ttuth©*, and its recovery of the signed sparsity
pattern. To be clear, our procedure for constructings not a practical algorithm for solving the log-determinant
problem (L1), but rather is used as a proof technique for certifying thledvior of the)/ -estimator {1).

4.1. Primal-dual witness approach

As outlined above, at the core of the primal-dual witnesshoettare the standard convex optimality conditions that
characterize the optimus@ of the convex programl(l). For future reference, we note that the sub-differentighe
norm|| - |1, evaluated at som® consists the set of all symmetric matricés= RP*? such that

0 ifi=j
Zij = Slgr‘(@m) ifi£j and@ij #0 (45)
S [—1,4—1} if 4 #*j and@ij =0.
The following result is proved in Appendix:

Lemma 3. For any A,, > 0 and sample covariarlcﬁ with strictly positive diagonal elements, tlie-regularized
log-determinant probler(iL1) has a unique solutio® - 0 characterized by

S-07'+MZ = 0, (46)
whereZ is an element of the subdifferentil© |1 ..

Based on this lemma, we construct the primal-dual witnesien (0, Z) as follows:

(a) We determine the matri® by solving the restricted log-determinant problem

= i ) — log det Anll©]1.0f }- 47
C arg  omin  {((6, E) —logdet(©) + AulO]1.on} (47)

Note that by construction, we ha@ - 0, and moreoveBs. = 0. ~
(b) We chooseZ as a member of the sub-differential of the regularigzeff; s, evaluated a®.
(c) Foreach(s, j) € S°, we replaceZ;; with the quantity

%{ — i+ Caafs (48)

which ensures that constructed matri(:ésZ) satisfy the optimality conditioré(5).
(d) We verify thestrict dual feasibilitycondition

Zy| < 1 forall (i,5) € S°.

To clarify the nature of the construction, steps (a) thro(mrsuffice to obtain a pa|(r@ Z) that satisfy the opti-
mality conditions 46), but donot guarantee thaZ is an element of the sub- dlfferentla||@||1 off- By construction,

specifically step (b) of the construction ensures that thees? in S satisfy the sub-differential conditions, sinZe
is a member of the sub- dlfferent|@||®||1,off}s. The purpose of step (d), then, is to verify that the remajelements

of Z satisfy the necessary conditions to belong to the subrdifiel.
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If the primal-dual witness construction succeeds, therctis as awitnessto the fact that the solutio® to the
restricted problem4?7) is equal to the solutio® to the original (unrestricted) problem1). We exploit this fact in
our proofs of Theorems and2 that build on this: we first show that the primal-dual witnesshnique succeeds with
high-probability, from which we can conclude that the suppdthe optimal solutior® is contained within the sup-
port of the true®*. In addition, we exploit the characterization®fprovided by the primal-dual witness construction
to establish the elementwigg, bounds claimed in Theorefin Theoren? requires checking, in addition, that certain
sign consistency conditions hold, for which we require Ioweunds on the value of the minimum valég;,. Note
that if (d) fails then the converse holds and we can conclbaethe support of the optimal solutiéhis not contained
within the support of the tru®*. This claim follows from uniqueness of the solutién and the fact that any solution
of the convex programil(l) must satisfy the stationary conditiofd).

In the analysis to follow, some additional notation is usefée letWW € RP*? denote the “effective noise” in the
sample covariance matrix—namely, the quantity

W o= S—(e9)h (49)

Second, we usA = © — ©* to measure the discrepancy between the primal witnessxtatind the trutt©*. Note
that by the definition 0P, Ag. = 0. Finally, recall the log-determinant barrigrfrom equation §). We let R(A)

denote the difference of the gradieviy((:)) = ©~! from its first-order Taylor expansion arouf. Using known
results on the first and second derivatives of the log-detemh function (see p. 641 in Boyd and Vandenberghg [

this remainder takes the form

R(A) = 6 '-—o'+eor Ao (50)

4.2. Auxiliary results

We begin with some auxiliary lemmata, required in the pragfeur main theorems. In Sectigh2.1, we provide
sufficient conditions on the quantitié® and R for the strict dual feasibility condition to hold. In Seatid.2.2 we
control the remainder term®(A) in terms of A, while in Section4.2.3 we controlA itself, providing elementwise
{s bounds oM. In Sectior4.2.4 we show that under appropriate conditions on the minimuleevd,,;,,, the bounds

in the earlier lemmas guarantee that the sign consistenagtittan holds. All of the analysis in these sections is
deterministicn nature. In Sectiod.2.5 we turn to the probabilistic component of the analysisyjlioag control of
the noiséV in the sample covariance matrix. Finally, the proofs of Theews1 and2 follows by using this probabilistic
control of W and the stated conditions on the sample size to show thatetieendginistic conditions hold with high
probability.

4.2.1. Sufficient conditions for strict dual feasibility

We begin by stating and proving a lemma that provides sufficiendition for strict dual feasibility to hold, so that
Lemma 4 (Strict dual feasibility) Suppose that

a N,
8

max { [Wllo, [R(A)[lo} < (51)

Then the vectoZg. constructed in step (c) satisfié€s. || < 1, and therefored = ©.

Proof. Using the definitions49) and 60), we can re-write the stationary conditioff] in an alternative but equivalent
form

O A L W — R(A) + M\ Z =0. (52)
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This is a linear-matrix equality, which can be re-writteraasordinary linear equation by “vectorizing” the matrices.
We use the notatiomec(A), or equivalentlyA for the vector version of the set or matriobtained by stacking up
the rows ofA into a single column vector.

vec (0*7'AO* ) = (0" 'we A = ™A

In terms of the disjoint decompositighand 5S¢, equation $2) can be re-written as two blocks of linear equations as
follows:

FESES + WS — RS + AnZ:S 0 (53a)
[iegAg 4+ Wse — Rge + AZge = 0. (53b)

Here we have used the fact that. = 0 by Eonstruction.
Sincel'% ¢ is invertible, we can solve fo ¢ from equation $3g as follows:

— « —1 — — =~
Substituting this expression into equati3k), we can solve foZg. as follows:
1 1 1

7 c == — *c E R c — 7_ c
7 n, oot s =
1 * * -1, 75 D * * -1z 1 T/ D
== _TFSCS(FSS’) (WS - RS) + Fscs(rss) ZS - T(WSC — RSC)' (54)
n n

Taking thel., norm of both sides yields

1Zs

1 * * -1 1/ 5)
o < 3= IT5es(Tss) Moo (1Wslloo + | Rislloc)
* * -1z 1 Ve D
+ 055 (Tss) Zslloo + 3= (1Wslloo + | Rslloc)-

Recalling Assumptiori, we obtain that|F*cs(ng)712:Sc o < (1 — «), so that we have

2—«

Zsello <
1Zsellee <

(IWslloo + 1Rsloc) + (1 — ), (55)

where we have used the fact tHafs||. < 1, sinceZ belongs to the sub-differential of the notm |1 o by
construction. Finally, applying assumptidsil from the lemma statement, we have

M(O‘in)ﬂpa) <% - <1

1 Zsellos < .

< N,

as claimed.

4.2.2. Control of remainder term

Our next step is to relate the behavior of the remainder t&int¢ the deviatiom\ = 0 - 0.

Lemma 5 (Control of remainder) Suppose that the elementwisg-bound||A ||, < 3K;*d holds. Then the matrix

J = ZZCZO(—l)’f(G)*‘lA)k satisfies thé ,.-operator norm||J7 ||, < 3/2, and moreover, the matrix

R(A) = o 'Ae* 'AJo !, (56)

has elementwisé,,-norm bounded as

3
IR(A) e < SAlAI% - (57)

We provide the proof of this lemma in Appendixusing matrix expansion techniques.
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4.2.3. Sufficient conditions fdr, bounds

Our next lemma provides control on the deviatiin= © — ©*, measured in elementwigeg, norm.

Lemma 6 (Control of A). Suppose that
1
3ks+d’ 3%, Kr«d

7= 2K~ ( Wl + )\n) < min{

1. (58)

Then we have the elementwisg bound
[Ale =16 =07l < 7 (59)

We prove the lemma in Append; at a high level, the main steps involved are the following. Mégin by noting
that©s. = ©%. = 0, so that||Al|« = ||As|l«. Next, we characteriz®g in terms of the zero-gradient condition
associated with the restricted probleAY), We then define a continuous m&p: As — F(Ag) such that its fixed
points are equivalent to zeros of this gradient expressidarms ofAg = Og — ©%. We then show that the function
F maps the,.-ball

B(r) = {Os||Osllec <7} with 7 := 260« (|[W][oo 4+ An), (60)

onto itself. Finally, with these results in place, we canlgf@rouwer’s fixed point theorem (e.g., p. 161; Ortega and
Rheinboldt P3]) to conclude tha#' does indeed have a fixed point insiglgr).

4.2.4. Sufficient conditions for sign consistency
A lower bound on the minimum valu&,,;,, when combined with Lemmé immediately yields a guarantee on the
sign consistencyf the primal witness matri®.

Lemma 7 (Sign Consistency of Oracle Estima@b. Suppose the conditions of Lem&old, and further that the
minimum absolute valug,,;,, of non-zero entries in the true concentration matdiX is lower bounded as

emin Z 4'“51“ (”W”oo + )\n)v (61)
then signi©s) = sign(©%) holds.

Proof. From the boundX9), we have\éij - 05| <7, V(i,j) € S. Combining the definition¥8) of r with the

bound 61) on0,,;, yields that for all(, j) € S, the estimaté,;j cannot differ enough fror®;; to change sign.
O

4.2.5. Control of noise term

The final ingredient required for the proofs of Theorelrend?2 is control on the sampling noidé& = S — 2. This
control is specified in terms of the decay functipfrom equation {2).

Lemma 8 (Control of Sampling Noise)For any~ > 2 and sample size such that ¢ (n, p™) < 1/v., we have

PlWle = dp(n,p7)| <

— p'r—2

— 0. (62)
Proof. Using the definition 12) of the decay functiorf, and applying the union bound over afl entries of the noise
matrix, we obtain that for alh < 1/v,,
P[max [Wy;| > 6] < p*/f(n,d).
%57

Settings = &4 (n, p7) yields that
P[H}3X|Wij| >6p(n,p")] < P?/[f(n,8p(n,p7))] = 1/p7 3,

as claimed. Here the last equality follows sirfde., 5¢(n,p7)) = p7, using the definition¥4) of the inverse function
df. O
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4.3. Proof of Theorem 1

We now have the necessary ingredients to prove Thedrewie first show that with high probability the witness
matrix © is equal to the solutio® to the original log-determinant probler1), in particular by showing that the
primal-dual witness construction (described in in Sectial) succeeds with high probability. Let denote the event
that ||| < 05(n,p7). Using the monotonicity of the inverse tail functiott, the lower lower bound2(9) on the
sample sizer implies thatd;(n,p™) < 1/v,. Consequently, Lemm&implies thatP(A) > 1 — ﬁ Accordingly,
we condition on the evend in the analysis to follow.

We proceed by verifying that assumptidsil) of Lemma4 holds. Recalling the choice of regularization penalty
A = (8/a) b4 (n,p7), we have|[IW | < (a/8)\,. In order to establish conditior5{) it remains to establish the
bound||R(A)[| < 23=. We do so in two steps, by using Lemnasnd5 consecutively. First, we show that the
condition 68) required for Lemma to hold is satisfied under the specified conditionswend \,,. From Lemma8
and our choice of regularization constant = (8/a) §;(n,p7),

8\ -
2I€F*(||W“oo+)\n) S 2K/F* <1+a> 5f(n7p7—)7

providede(n,pT) < 1/v,. From the lower bound2@) and the monotonicity1(5) of the tail inverse functions, we
have
1

3:‘{2* d 3/&2* RT*

2mp*<1+ >5f(np) < min { d}’ (63)

showing that the assumptions of Lemghare satisfied. Applying this lemma, we conclude that

8\ -
18 < 20 ([Wlloo +An) < QHF*(1+*) 57(n,p7). (64)

Turning next to Lemm&, we see that its assumptigah ||, < 5-—— holds, by applying equation§g) and 64).
Consequently, we have

3
IB(A)le < 5d 1A% A3
8\2, = -
< Gndentod(1+ ) 16 (n,p7)]?
8\2- al
_ 3 2 °© T n
= {GI{ZM%F* d (1 + a) of(n,p )} g
a,
< o
- 8
as required, where the final inequality follows from our citind (29) on the sample size, and the monotonicity

property (L5).
Overall, we have shown that the assumptibf) (of Lemma4 holds, allowing us to conclude thél @ The

estimator© then satisfies thé,.-bound ©64) of ©, as claimed in Theoreri(a), and moreover, we hatg. = Oge =
0, as claimed in Theorert(b). Since the above was conditioned on the evgrthese statements hold with probability
P(A) > 1 - 5.

p

4.4. Proof of Theorem 2

We now turn to the proof of Theoreg A little calculation shows that the assumed lower bousid 6n the sample
sizen and the monotonicity propertyl §) together guarantee that

Omin > Akps (1 + %) 5(n,p7)

Proceeding as in the proof of Theoreimwith probability at least — 1/p™ 2, we have the equalitfé =0, and
also that||© — O* o < fmin/2. Consequently, Lemmacan be applied, guaranteeing that sigh) = sigrm(@)ij)
for all (4,5) € E. Overall, we conclude that with probability at ledst- 1/p™ 2, the sign consistency condition
sign(©};) = sign(©;;) holds for all(i, j) € £, as claimed.
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(@ (b) (©
Fig 3. lllustrations of different graph classes used in simulations. (a) Chain ). (b) Four-nearest neighbor grid & 4)
and (c) Star-shaped grapth € {1,...,p — 1}).

5. Experiments

In this section, we illustrate our results with various expental simulations, reporting results in terms of thelyaro
bility of correct model selection (Theore®) or the/,.-error (Theorendi). For these illustrations, we study the case
of Gaussian graphical models, and results for three diffestasses of graphs, namely chains, grids, and star-shaped
graphs. In addition to varying the triple:, p, d), we also report results concerning the role of the parameter,

kp= andfy;, that we have identified in the main theorems. For all resejp®rted here, we solved the resultifig
penalized log-determinant prografil} using thegl asso program of Friedman et all [], which builds on the block
co-ordinate descent algorithm of d’Agpnont et al. §].

Figure3illustrates the three types of graphs used in our simulaticmain graphs (panel (a)), four-nearest neighbor
lattices or grids (panel (b)), and star-shaped graphs (geX)eFor the chain and grid graphs, the maximal node degree
d is fixed (by definition) tod = 2 for chains, and! = 4 for the grids. Consequently, these graphs can capture the
dependence of the required sample sizmly as a function of the graph sigeand the paramete(gy-, £+, Omin)-

The star graph allows us to vary baflandp, since the degree of the central hub can be varied betiveexdp — 1.
For each graph type, we varied the size of the graphdifferent ranges, fromp = 64 upwards tg = 375.

For the chain and star graphs, we define a covariance matriwith entries¥’, = 1 foralli = 1,...,p, and
37 = pforall (i, j) € E for specific values op specified below. Note that these covariance matrices afieisut to
specify the full model. For the four-nearest neighbor griin, we set the entries of the concentration madix= w
for (i,7) € E, with the valuew specified below. In all cases, we set the regularizationrpatar \,, proportional to
V/log(p)/n, as suggested by Theorerhsand 2, which is reasonable since the main purpose of these siionsat
is to illustrate our theoretical results. However, for gahelata sets, the relevant theoretical parameters camnot b
computed (since the true model is unknown), so that a daterdapproach such as cross-validation might be required
for selecting the regularization parameigr.

Given a Gaussian graphical model instance, and the numtzamaples:, we drew N = 100 batches of: inde-
pendent samples from the associated multivariate Gaudssiibution. We estimated the probability of correct miode
selection as the fraction of th€ = 100 trials in which the estimator recovers the signed-edgexsettly.

Note that any multivariate Gaussian random vector is subis&lan; in particular, the rescaled variafég/ />3,
are sub-Gaussian with parameter= 1, so that the elementwisg -bound from Corollaryl applies. Suppose we
collect relevant parameters suchégs, and the covariance and Hessian-related tetgs ~r~ anda into a single
“model-complexity” termK defined as

Rr*

K = [(1+8a ') (max X)) max{rs« K-, K K, W} . (65)
Then, as a corollary of Theore#ya sample size of order
n = Q(K>d*rlogp), (66)
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is sufficient for model selection consistency with probipgreater thari — 1/p™ 2. In the subsections to follow, we
investigate how the empirical sample sizeequired for model selection consistency scales in ternggagh sizep,
maximum degred, as well as the “model-complexity” terii defined above.

Chain graph Chain graph
1r 1r
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Fig 4. Simulations for chain graphs with varying number of nogesdge covariances;; = 0.20. Plots of probability of
correct signed edge-set recovery plotted versus the ordinaryjiesaimen in panel (a), and versus the rescaled sample size
n/log p in panel (b). Each point corresponds to the average ttrials.

5.1. Dependence on graph size

Panel (a) of Figurel plots the probability of correct signed edge-set recoveairast the sample size for a chain-
structured graph of three different sizes. For these chaiplts, regardless of the number of nogethe maximum
node degree is constadit= 2, while the edge covariances are sekas= 0.2 for all (i, j) € E, so that the quantities
(kx+, kp+, ) remain constant. Each of the curve in panel (a) correspandsiifferent graph sizg. For each curve,
the probability of success starts at zero (for small samigkess), but then transitions to one as the sample size is
increased. As would be expected, it is more difficult to penfanodel selection for larger graph sizes, so that (for
instance) the curve fgy = 375 is shifted to the right relative to the curve fpr= 64. Panel (b) of Figuret replots

the same data, with the horizontal axis rescale@lbylog p). This scaling was chosen because for sub-Gaussian tails,
our theory predicts that the sample size should scale Ibgaically with p (see equationgg)). Consistent with this
prediction, when plotted against the rescaled samplersizeg p, the curves in panel (b) all stack up. Consequently,
the ratio(n/log p) acts as an effective sample size in controlling the succes®del selection, consistent with the
predictions of Theorer for sub-Gaussian variables.

Figure5 shows the same types of plots for a star-shaped graph witti freximum node degre¢ = 40, and
Figure 6 shows the analogous plots for a grid graph with fixed degree4. As in the chain case, these plots show
the same type of stacking effect in terms of the scaled sasipda/ log p, when the degreé and other parameters
(e, kr=, kx+)) are held fixed.

5.2. Dependence on the maximum node degree

Panel (a) of Figure plots the probability of correct signed edge-set recoveygirest the sample size for star-
shaped graphs; each curve corresponds to a different cbioicaximum node degreé allowing us to investigate the
dependence of the sample size on this parameter. So as toldbese comparisons, the models are chosen such that
guantities other than the maximum node-degteee fixed: in particular, we fix the number of noges: 200, and the
edge covariance entries are sebtds= 2.5/d for (i, j) € E so that the quantitie§s-, xr-, ) remain constant. The
minimum valued,,,;, in turn scales a$/d. Observe how the plots in panel (a) shift to the right as theimam node
degreel is increased, showing that star-shaped graphs with higigreds are more difficult. In panel (b) of Figuie
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Star graph Star graph
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Fig 5. Simulations for a star graph with varying number of nogleixed maximal degred = 40, and edge covariances
Xj; = 1/16 for all edges. Plots of probability of correct signed edge-set regoxgrsus the sample sizein panel (a),
and versus the rescaled sample sizéog p in panel (b). Each point corresponds to the average dver 100 trials.

4-nearest neighbor grid 4-nearest neighbor grid
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Fig 6. Simulations for2-dimensional lattice witl-nearest-neighbor interaction, edge strength interacéjns= 0.1, and

a varying number of nodes Plots of probability of correct signed edge-set recovery versusaimple size: in panel (a),
and versus the rescaled sample siZéog p in panel (b). Each point corresponds to the average &ver 100 trials.
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Truncated Star with Varying d Truncated Star with Varying d
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Fig 7. Simulations for star graphs with fixed number of nogles 200, varying maximal (hub) degre& edge covariances
¥}; = 2.5/d. Plots of probability of correct signed edge-set recovery versusdinple size: in panel (a), and versus the
rescaled sample size/d in panel (b).

we plot the same data versus the rescaled sample:gizeRecall that if all the curves were to stack up under this
rescaling, then it means the required sample siseales linearly withi. These plots are closer to aligning than the
unrescaled plots, but the agreement is not perfect. Inqodaiti observe that the curve= 100 (right-most in panel
(a)) remains a bit to the right in panel (b), which suggesas #hsomewhat more aggressive rescaling—perh#ps
for somey € (1,2)—is appropriate.

Note that forf.,;, scaling asl/d, the sufficient condition from Theore®) as summarized in equatioff), is
n = Q(d?logp), which appears to be overly conservative based on theseTdais, it might be possible to tighten
our theory under certain regimes.

5.3. Dependence on covariance and Hessian terms

Next, we study the dependence of the sample size requiredddel selection consistency on the model complexity
term K defined in 65), which is a collection of the quantities:-, xr~ and« defined by the covariance matrix and
Hessian, as well as the minimum valig;,,. Figure8 plots the probability of correct signed edge-set recovengus

the sample size for chain graphs. Here each curve corresponds to a diffsgdting of the model complexity factor

K, but with a fixed number of nodgs= 120, and maximum node-degree= 2. We varied the actoK by varying

the valuep of the edge covariances,;; = p, (i,j) € E. Notice how the curves, each of which corresponds to a
different model complexity factor, shift rightwards &Sis increased so that models with larger valueg<ofequire
greater number of samplesto achieve the same probability of correct model selecfitvese rightward-shifts are in
gualitative agreement with the prediction of Theorgnbut we suspect that our analysis is not sharp enough to make
accurate quantitative predictions regarding this scaling

5.4. Convergenceratesin elementwise £,-norm

Finally, we report some simulation results on the convergeate in elementwisgé-norm. According to Corollary,

in the case of sub-Gaussian tails, the elementéisenorm should decay at the raf#(/ 1"%). Figure9 shows the
behavior of the elementwigg -norm for star-shaped graphs of varying size3he results reported here correspond
to the maximum degreé = [0.1p]; we also performed analogous experimentsdor O(logp) andd = O(1),
and observed qualitatively similar behavior. The edgeedations were set as;; = 2.5/d for all (i, j) € E so that
the quantitiegxx-, kr+, o) remain constant. With these settings, each curve in Fi§werresponds to a different
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Chain graph with varying K
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Fig 8. Simulations for chain graph with fixed number of noges= 120, and varying model complexitys. Plot of
probability of correct signed edge-set recovery versus the sanaple.s
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Fig 9. Simulations for a star graph with varying number of nogesiaximum node degreé= [0.1p]|, edge covariances
Xj; = 2.5/d. Plot of the element-wis&,, norm of the concentration matrix estimate erffér— ©* ||, versus the rescaled
sample sizex/ log(p).

problem size, and plots the elementwisg-error versus the rescaled sample sizdog p, so that we expect to see
curves of the formf () = 1/+/t. The curves show that when the rescaled sample(sizéog p) is larger than some

threshold (roughlyt0 in the plots shown), the elementwige, norm decays at the raug 10%, which is consistent
with Corollary 1.

6. Discussion

The focus of this paper is the analysis of the high-dimeradisnaling of the/;-regularized log determinant prob-
lem (11) as an estimator of the concentration matrix of a randomove@ur main contributions were to derive
sufficient conditions for its model selection consistenswall as convergence rates in both element#isenorm, as
well as Frobenius and spectral norms. Our results allow fange of tail behavior, ranging from the exponential-type
decay provided by Gaussian random vectors (and sub-Gaumssia generally), to polynomial-type decay guaranteed
by moment conditions. In the Gaussian case, our results inaveal interpretations in terms of Gaussian Markov
random fields.
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Our main results relate the i.i.d. sample sizi® various parameters of the problem required to achievsistamcy.
In addition to the dependence on matrix sizenumber of edges and graph degreé, our analysis also illustrates
the role of other quantities, related to the structure ofcinvariance matrixa* and the Hessian of the objective func-
tion, that have an influence on consistency rates. Our maumagstion is an irrepresentability or mutual incoherence
condition, similar to that required for model selection sistency of the Lasso, but involving the Hessian of the log-
determinant objective functiorlL{), evaluated at the true model. Such an irrepresentabitibdition is typical for
obtaining model selection consistency, but is not necggsabounds on Frobenius and spectral normg.[When
the distribution ofX is multivariate Gaussian, this Hessian is the Fisher inftiom matrix of the model, and thus can
be viewed as an edge-based counterpart to the usual nodé-t@smriance matrix. We report some examples where
irrepresentability condition for the Lasso hold and the dtegerminant condition fails, but we do not know in general
if one requirement dominates the other. In addition to thibseretical results, we provided a number of simulation
studies showing how the sample size required for consigtecaies with problem size, node degrees, and the other
complexity parameters identified in our analysis.

There are various interesting questions and possible sigtento this paper. First, in the current paper, we have
only derived sufficient conditions for model selection detency. As in past work on the Lass®d], it would also
be interesting to derive @onverse resui-namely, to prove that if the sample sizes smaller than some function of
(p, d, s) and other complexity parameters, then regardless of theebbregularization constant, the log-determinant
method fails to recover the correct graph structure. Seaohile this paper studies the problem of estimating a fixed
graph or concentration matrix, a natural extension woutmhathe graph to vary over time, a problem setting which
includes the case where the observations are dependenndtance, Zhou et al.3[f study the estimation of the
covariance matrix of a Gaussian distribution in a time-iragysetting, and it would be interesting to extend results of
this paper to this more general setting.
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Appendix A: Proof of Lemma 3

In this appendix, we show that the regularized log-deteamiprogram {1) has a unique solution whenevgy > 0,
and the diagonal elements of the sample covaridiiteare strictly positive. By the strict convexity of the log-
determinant barrierd], if the minimum is attained, then it is unique, so that it sns to show that the minimum
is achieved. If\,, > 0, then by Lagrangian duality, the problem can be written irruivalent constrained form:

{(O, =) —logdet(0)} (67)

min
0eSY 10|10t <C(An)

for someC()\,,) < +oo. Since the off-diagonal elements remain bounded withir/tReall, the only possible issue
is the behavior of the objective function for sequences \pitksibly unbounded diagonal entries. Since énin
the constraint set is positive-definite, its diagonal estare positive. Further, by Hadamard's inequality for {pasi
definite matrices4], we havelog det © < >~*_, log ©;;, so that

P P
Z@niﬁ—logdete) > Z{@niﬁ*log@m}.

=1 1=1
As long asig > 0foreachi = 1,...,p, this function is coercive, meaning that it diverges to ijifor any sequence

[(©11,...,0},)|l2 = +oc. Consequently, the minimum is attained, and as argued alsoakso unique.

Returning to the penalized form 1), by standard optimality conditions for convex programmairix(:) eSh is
optimal for (L1) if and only the zero matrix belongs to the sub-differentiaihe objective, or equivalently if and only
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if there exists a matri¥ in the sub-differential of the off-diagonal noriin ||; o« evaluated a® such that

as claimed.

Appendix B: Proof of Lemma 5

We write the remainder in the form
R(A) = (O +A) -0 ro AT

By sub-multiplicativity of the| - ||, matrix norm, for any twg x p matricesA, B, we have| A Bl|oo < || Alloc || Blloos
so that

(S [Chal NS

<
< rpe df[Aflee < 1/3, (68)

where we have used the definitionsgf-, the fact that\ has at most non-zeros per row/column, and our assumption
[[Allec < 1/(3xx-p). Consequently, we have the convergent matrix expansion

1

(0 +A)" = (er(I+e*'A))”
= (1+e'a) (o)

oo

= Y (-nFerta)(en™

k=0

-1

_ (__)*—1 _@*—1A@*—1+Z(_1)k<6*—1A)k<6*>
k=2
_ @*_1—("')*_IA@*_l+@*_1A®*_1AJ@*_17
whereJ = Z,;";O(—l)k(@*‘lA)k.
We now prove the bound{) on the remainder as follows. Let denote the unit vector with in positioni and
zeroes elsewhere. From equatiég)( we have

IR(A)le = max|efO A O AT e
3

< max O A max |07 ATO ey,
i J

which follows from the fact that for any vectoasb € R?, |a”b| < ||a||«||b]|1. This in turn can be simplified as,

IR(A)]lw < max|lef € 1 Al mgXll@*_IAJG*_lejlll

since for any vecton € R?, ||uT Al < [Jull1]]A] s, Where||A||« is the elementwisé,.-norm. Continuing on, we
have
*—1 x*—1 *—1
[R(A)o < 10" oo [IAllo | IO ATO™ 1,
where||Ally := max|,, =1 ||Az]|; is the/;-operator norm. SincpAl; = A" |, we have

[1R(A)]lo 1Al Ol 07 ITAO" (69)

Ao m2- 107 Z NI T Nocll ANl

IAIA

27



Recall that/ = EZiO(—l)k(G)*’lA)k. By sub-multiplicativity of|| - ||, matrix norm, we have

= <
1= 16 Il Al

'] L 3
177 e < > Ak, < 5

k=0
since||0* ! Al < 1/3 from equation 8). Substituting this in§9), we obtain

1B(A)[loo

A

3 x—1
51 Alee £+ 10" 12N Al

3
< SN R,

where the final line follows sinckA ||, < d||A||~, and sinceA has at most non-zeroes per row/column.

Appendix C: Proof of Lemma 6

By following the same argument as Lemma 3 in Appendlixwe conclude that the restricted proble#v) has a

unique optimun®. If we take partial derivatives of the Lagrangian of the niegtd problem 47) with respect to the
unconstrained elemen&g, these partial derivatives must vanish at the optimum, ingathat we have the zero-
gradient condition

G(Os) = —[0Ys+Ss+AZs = 0. (70)

To be clear is thep x p matrix with entries inS equal to© s and entries irb“ equal to zero. Since this zero-gradient
condition is necessary and sufficient for an optimum of thgraagian problem, it has a unique solution (namely).
Our goal is to bound the deviation of this solution fr@, or equivalently to bound the deviatidh = © — ©*.
Our strategy is to show the existence of a solutioro the zero-gradient conditio@) that is contained inside the
ball B(r) defined in equation(). By uniqueness of the optimal solution, we can thus corethdt® — ©* belongs

this ball. In terms of the vectah g = O¢ — O g, let us define a map’ : RISI — RIS via
F(As) = —(T%s) (G(O% + Ag)) + As, (71)

whereG denotes the vectorized form 6f. Note that by construction’’(Ag) = Ag holds if and only ifG(©% +
Ag) =G(Og) =0.

We now claim tha#' (B(r)) € B(r). SinceF' is continuous an@(r) is convex and compact, this inclusion implies,
by Brouwer’s fixed point theoren?f], that there exists some fixed poidts € B(r). By uniqueness of the zero
gradient condition (and hence fixed pointsi, we can thereby conclude thé®s — ©%|| . < 7.

Let A € RP*P denote the zero-padded matrix, equaltg on S and zero orb°. By definition, we have

GOs+As) = —[(© +A) s+ s+ AZs
= [~ 1@ +A) s+ [0 s] + [Es — [0 5] + \Zs
= [~ 1O +A) s +[0"s] + Ws + A\ Zs, (72)

where we have used the definitidii = 3 — %*.
For anyAg € B(r), we have

0" Alle [Ch NS

<
< rme d]|Also, (73)

where ||Al| denotes the elementwide,-norm (as opposed to the-operator norm|A| ), and the inequality
follows sinceA has at mostl non-zero entries per row/column.
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By the definition 60) of the radiusr, and the assumed upper bouriB)( we have||All. < r < ﬁ S0
that the results of Lemma apply. By using the definition50) of the remainder, taking the vectorized form of the
expansion%6), and restricting to entries ifi, we obtain the expansion

vee (0 +A) 7 =0 ) +ThAs = vec((©'A)2J0* 7). (74)
Using this expansion/@) combined with the expressioiiZ) for G, we have
FlAs) = —( ES)_lé(@g + Ag) + Ag
(Tss) " vee {[(©7 +A) " = ']y = Ws — M Zs} + As
(D5s) " vee [(©° 712270 1 — (Isg) ™! (W + AnZs) .

Ty T

The second term is easy to deal with: using the definitipn= [|(I'§g) ! [loc, We havel| Ty || so < k= (W]l +

An) = 7/2. It now remains to show thafl; || < r/2. We have

1T lee < k- vec[(@**m)w@**]SHOo
<

wr+ [ R(A) oo,
where we used the expanded fora®) of the remainder. Applying the boun87) from Lemmab, we obtain

3 3
ITi e < §dﬁ%*ﬁp* Al < §d/€%*l€r‘* r2.

Sincer < 35371&(1 by assumptiong8), we conclude that
s FD*

3. 5 1

||T1||IXJ S idﬁlz*ﬁr‘* WT = 7'/2,
thereby establishing the claim.
Appendix D: Proof of Lemma 1
For each pai(i, j) andv > 0, define the event

L m (k) o ( .
Ay) = {I> ST xPXW w5 > v}
k=1

As the sub-Gaussian assumption is imposed on the vari@mgﬁ} directly, as in Lemma A.3 of Bickel and Levina
[2], our proof proceeds by first decoupling the prodquﬁ)X;k). For each paiti, j), we definep;; = X7,/ /37,37,

.
and the rescaled random variabf§" := Xi(f)/, /3% Noting that the strict positive definiteness¥f implies that
lp;;| < 1, we can also define the auxiliary random variables

). k), ® ) 0 _ )
v =x"+ X" and v .=X® - XM (75)

With this notation, we then claim:

Lemma 9. Suppose that eacﬁfk) is sub-Gaussian with parametet Then for each node pait, j), the following
properties hold:

(@) Forallk =1,...,n,the random variableéf,ff) and Vigk) are sub-Gaussian with parametets.
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(b) For all v > 0, the probabilityP[A;; ()] is upper bounded by

- N 2nv
|Z _21+pz])| m +]P>|Z (1_pij)|>ﬁ]

k=1 k=1
Proof. (a) For anyr € R, we have

E[exp(rUi(f))] = E{exp (r)?,(k)) exp (r)?(_’“))} < ]E[exp( )?,(’“))]1/2 [exp (27")?;]9))}1/2,

7 J 7
where we have used the Cauchy-Schwarz inequality. Sinomtiubles)_(fk) and)_(](.k) are sub-Gaussian with param-
etero, we have

1/2 r2 r2

E[exp (2r )?i(k))] 2 E {exp (27‘)_(;-]9))} < exp(o?—=) exp(o?—=),

o) thatUi(f) is sub-Gaussian with parameter as claimed.
(b) By straightforward algebra, we have the decomposition

n

S XX o) = {5 Z{X““ X2 —21+p5t}—{ Z{X*“ X2 o1 i),

k=1

By union bound, we obtain th&[A,; ()] is upper bounded by

PSS OPP =201+ 93| 2 5 z*z*} P12 0| > |, (79)
k=1 1mw=7y] k=1 17
which completes the proof of Lemn®b). O

To complete the proof of Lemma 1, it remains to upper boundah@robabilities

U Z L+ pi5)| = > }
K D
and
dnv
VR =20 5| > ],
U Z pi})| = Sy
Forallk € {1,...,n} and node-pairéi, j) € V x V, define the random variablé€s;,;; as follows:
k *
Ly = (Ui(j ))2 —2(1+pj;).
If we can obtain a boun#® > 0 such that
. [ (12435 q < B,
m>2 m!

it then follows from Bernstein’s inequality based on momesnditions that:

PUZV&UH Znt} §2exp(_ngnm)' (77)
Furthermore for < B,
P[’Z|Zk;ij\| Znt} SQeXp<—%>~ (78)
k=1
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Using the bounda + b)™ < 2™(a™ + b™) we obtain the inequality:
E(Zki|™) < 2" (EBOUG ™) + 20+ p5)™)- (79)

Recalling than(f) is sub-Gaussian with parameter, from Lemma 1.4 of Buldygin and Kozachenkd fegarding
the moments of sub-Gaussian variates, we HE\NUZ»(;“)P’”] < 2(2m/e)™(20)?™. Making note of the inequality
m! > (m/e)™, it follows thatE[|U" 2] /m! < 23™+15%™. Combined with equatior7g), we obtain

my71/m *
E(|Zki;1™) / < ol/m (24m+10_2m)1/m+ 4(1+Pij)
m) - (m')l/m
401+ pjj)
1/m 1/m 2 vJ
< 2 (2 16 0° + (mh)i/m >,

where we have used the inequality+ y)'/™ < 21/™(z1/™ 4 y1/™) valid for any integern € N and real numbers
x,y > 0. Since the bound is a decreasing functiomqfit follows that

E(|Zk;i;1™ o 1/2 [ o1 AL+ piy)
—= < 212 (2Y2160% + ——
" { m - RENCINE

< 3207 +8=28(1+40?),
where we have used the fact that, | < 1. Applying Bernstein's inequality/g) with ¢ =
noting that( ) < (&), for v < 8(max; ¥%)(1 + 402),

Ve
4nv 2nv

(k)y2 _ _
PUI;(UW f o202 z;;z;}] < zexp { maxi(Zz‘i)2128(1+402)2}'

andB = 8(1+40?),

max; E*

max; E*

2

A similar argument yields the same tail bound for the desratnvolving Vig.k). Consequently, using Lemn®gb), we
conclude that

m/2

PlA;(v)] < dexp{ - max;(¥};)? 128 (1 + 40?)? -

valid for v < 8(max; X%,) (1 + 40?), as required.

Appendix E: Proof of Lemma 2

Define the random variablé@i(f) = Xi(k)X;k)
inequality, we obtain

7j» and note that they have mean zero. By applying the Chebyshev

‘Z ‘ >nV _ ZW(k nl/)Qm]
[(zk W

— n2m I/2m

(80)

We now apply Rosenthal’s inequalityq] to obtain that there exista constant,,,, depending only om:, such that

Z W(k)

AN
Q
5
&
RS
i-
ﬁ
M:
i)
El
Z
o
3
S~—

(81)
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i
=
=
3
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3
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2For precise values af’,,, see RosenthaPf].



Turning to each individual expectation, we have

&
=
=
T
3

A

< oM XMy o my
< (R ) 4 )

(i)

<2 [ET A+ [T,

g

|
=

where inequality (i) follows sincéa + b)*™ < 22™(a*™ + b*™); inequality (ii) follows from the Cauchy-Schwartz

inequality; and inequality (iii) follows from the assumedment bound or]E[(Xi(k))“m]. Therefore form = 1, we
have the have the bound.

E(WP)] < aESizs, + 252,

(%3 ]j

and hence
- k m m._m * \vk 1M * 12m
(PEWFY)™ < 22 (S555)7 + [Z5).
k=1
Combined with the earlier boun@1) and noting that, < n™, we obtain

E[(S" W)™ < 22 Cn™ (Ko + DIZ5E;]™ + [Z5127),
k=1

using the Cauchy-Schwartz inequality. Substituting batt the Chebyshev bound@) yields the tail bound

S]] = LR I )
P DI P

nmy2m ’

which establishes the claim.
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