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Abstract

We consider the problem of estimating expecta-
tions of vector-valued feature functions; a spe-
cial case of which includes estimating the co-
variance matrix of a random vector. We are in-
terested in recovery under high-dimensional set-
tings, where the number of features p is poten-
tially larger than the number of samples n, and
where we need to impose structural constraints.
In a natural distributional setting for this prob-
lem, the feature functions comprise the sufficient
statistics of an exponential family, so that the
problem would entail estimating structured mo-
ments of exponential family distributions. For
instance, in the special case of covariance esti-
mation, the natural distributional setting would
correspond to the multivariate Gaussian distribu-
tion. Unlike the inverse covariance estimation
case, we show that the regularized MLEs for co-
variance estimation, as well as natural Dantzig
variants, are non-convex, even when the regular-
ization functions themselves are convex; with the
same holding for the general structured moment
case. We propose a class of elementary con-
vex estimators, that in many cases are available
in closed-form, for estimating general structured
moments. We then provide a unified statistical
analysis of our class of estimators. Finally, we
demonstrate the applicability of our class of es-
timators via simulation and on real-world clima-
tology and biology datasets.
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1. Introduction
Covariance matrix estimation is an increasingly important
problem with applications in varied multivariate settings. A
motivating application for this paper is climate data anal-
ysis, specifically climate change detection (Ribes et al.,
2009), where covariance estimation is used for the compu-
tation of so-called Empirical Orthogonal Functions (Wikle
& Cressie, 1999), which in turn are used to determine cli-
mate variability indices such as the Arctic Oscillation. In
classical statistical settings where the number of observa-
tions n is much larger than the number of dimensions p,
a strong statistical estimator of the population covariance
matrix is the sample covariance matrix itself. Its strong sta-
tistical guarantees however fail to hold in high-dimensional
settings when p > n (Johnstone, 2001; Johnstone & Lu,
2004). A natural distributional setting for the covariance
estimation problem is when the random vector is multi-
variate Gaussian: in that case the sample covariance ma-
trix serves as the maximum likelihood estimator (MLE). In
high-dimensional regimes however, such MLEs are typi-
cally not consistent, and it is necessary to use structurally
constrained estimation involving regularized MLEs. We
show however that even with the use of convex regulariza-
tion functions, regularized MLE estimators for the covari-
ance matrix solve non-convex programs. We also show that
natural Dantzig variants (the Dantzig estimator technically
is defined for sparse linear regression) are also non-convex.

Practical high-dimensional covariance matrix estimators
have thus typically focused not on likelihood-based reg-
ularized programs, but on thresholding and shrinkage.
Ledoit & Wolf (2003) for instance proposed to shrink the
sample covariance matrix to the identity matrix. Bickel &
Levina (2008a); Rothman et al. (2009) proposed threshold-
ing estimators for covariance matrices under the structural
assumption that each row of the covariance matrix satis-
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fies a weak sparsity assumption; El Karoui (2008) consid-
ered an alternative notion of sparsity based on the num-
ber of closed paths of any length in the associated graph.
There has also been a line of work on banded covariance
matrices, where the entries of the covariance matrix are as-
sumed to decay based on their distance from the diagonal.
For such banded covariance matrices, Furrer & Bengtsson
(2007) proposed to shrink the sample covariance entries
based on this distance from the diagonal; and Bickel &
Levina (2008b); Cai et al. (2010) have analyzed the con-
sistency of such banded estimators. In recent years, there
have been considerable advances in estimation of high-
dimensional parameters under varied structural constraints
such as sparsity, group-sparsity, low-rank structure, etc.
However, these are largely restricted to regularized MLE
estimators, which for the covariance estimation case, as
noted above, lead to non-convex programs. This leads to
the following question:

“Can we provide tractable estimators with strong statistical
guarantees for high-dimensional covariance matrices under
general structural constraints?”

Note that under such general structural constraints (e.g.
group sparsity), the specific thresholding and shrinkage
based estimators discussed above, which are designed for
their specific structure, would not be applicable. Recall that
the population covariance matrix is the expectation of the
outer-product of a centered random vector with itself. In
this paper, we thus actually consider a generalization of the
above question:

“Can we provide tractable estimators with strong statistical
guarantees for expectations of general vector-valued fea-
ture functions (i.e. moments) under general structural con-
straints?”

Note that a natural distributional assumption for this gen-
eral problem entails the random vector being drawn from
an exponential family with sufficient statistics set to the
feature functions, so that the task reduces to recovering
the moment parameters of this exponential family. Even
in this general structured moment setting, we show that the
regularized MLE estimator, even with convex regulariza-
tion functions, as well as a natural Dantzig variant, lead to
non-convex programs. We note that this problem of recov-
ering structured moments has been the subject of much less
investigation when compared to the estimation of struc-
tured canonical parameters of such exponential family dis-
tributions (e.g. estimation of structured inverse covariance
matrices). We conjecture this is in part because regular-
ized MLEs for the estimation of such structured canoni-
cal parameters lead to convex programs, unlike the case
with structured moments. The estimation of structured mo-
ments is nonetheless an important problem: it not only
includes the important covariance matrix problem, which

corresponds to the multivariate Gaussian exponential fam-
ily case, but also the graphical model inference problem of
estimating moment parameters for general positive graphi-
cal distributions such as Ising models.

Our approach to addressing the questions above involves an
estimator that solves for a parameter with minimum struc-
tural complexity subject to certain very simple structural
constraints. Our estimator is reminiscent of the form of the
Dantzig estimator (Candès & Tao, 2007) for sparse linear
regression, but it is actually available in closed form for the
sparse covariance case, and corresponds to very simple op-
erations in other structural constraint settings. Our class of
algorithms are thus not only computationally practical, but
also highly scalable. Interestingly, even though the class of
estimators is elementary, in our unified statistical analysis
of our class of algorithms for general structural constraints,
we show that they come with strong statistical guarantees
with near-optimal convergence rates. We illustrate the ap-
plicability of our framework via simulation and by applying
it to two real-world problems, one on climate analysis, and
the other on 3-D organization of chromosomes.

2. Setup
Let X ∈ Rp be a random vector with distribution P, and
let {Xi}ni=1 denote n i.i.d. observations drawn from P. In
this paper, we consider the task of estimating some mo-
ment parameter µ∗ := E[φ(X)] of this distribution, where
φ : Rp 7→ Rm is some vector-valued feature function
of interest. In the analysis to follow, it will be useful to
consider the empirical expectation of the feature function,
µ̂n = 1

n

∑n
i=1 φ(Xi).

2.1. Example: Estimating Covariance Matrices

A key example of the above problem is the estimation of the
covariance matrix Σ∗ = E[(X − E(X))(X − E(X))>].
The empirical covariance matrix is then given by Σ̂n =
1
n

∑n
i=1

(
Xi−X

)(
Xi−X

)>
, where X = 1

n

∑n
i=1Xi. A

natural distributional setting for such covariance estimation
is when the random vectorX is multivariate Gaussian, with
mean µ∗, and covariance matrix Σ∗:

P(X;µ∗,Σ∗) ∝ exp
(
− 1/2(X − µ∗)Σ∗−1(X − µ∗)T

)
.

Under this distributional setting, a natural estimator of the
covariance matrix is the regularized Gaussian maximum
likelihood estimator:

minimize
Σ�0

{
〈〈Σ−1, Σ̂n〉〉+ logdet(Σ) + λnR(Σ)

}
, (1)

where R(Σ) is an arbitrary penalty function encouraging
specific structure in the covariance matrix, and λn is the
corresponding regularization parameter. For instance, a
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structural assumption of sparsity of the underlying covari-
ance matrix would suggest the use of the element-wise `1
norm regularization function.

Another natural estimator is based on the Dantzig estima-
tor (Candès & Tao, 2007). The Dantzig estimator was de-
veloped for sparse linear regression, and estimates the pa-
rameter with the minimum `1 norm that at the same time
satisfies a constraint entailed by the stationary condition of
the `1-regularized least squares estimator. Following this
resume, we first derive the stationary condition of (1) as

−Σ−1Σ̂nΣ−1 + Σ−1 + λnz = 0,

where z here is the subgradient of R(Σ). Assume the
following dual function R∗(·) is well-defined: R∗(A) =

supΣ:R(Σ)6=0
〈A,Σ〉
R(Σ) . WhenR(·) is a vector or matrix norm

for instance, R∗(·) is the corresponding dual norm. The
subgradient z then has the following property thatR∗(z) ≤
1 (Watson, 1992), which in turn entails R∗

(
Σ−1(Σ̂n −

Σ)Σ−1
)
≤ λn. Thus, the counterpart of the Dantzig es-

timator for estimating the structured covariance matrix of
multivariate Gaussian can be written as

minimize
Σ

R(Σ)

s.t.R∗
(

Σ−1(Σ̂n − Σ)Σ−1
)
≤ λn. (2)

Unfortunately, it can been seen both the estimators in (1)
and (2) are non-convex, as stated in the following proposi-
tion.

Proposition 1. The estimation problems in (1) and (2)
are both non-convex, even when the regularization function
R(·) itself is a convex function.

It thus remains to derive convex tractable estimators for
structured covariance matrices, even under natural distri-
butional settings.

2.2. Estimating General Moments

The development in the previous section for the specific
example of structured covariance matrices extends to the
general problem of estimating expected feature functions
µ∗ := E[φ(X)]. As in the covariance estimation case,
a natural distributional setting is when the random vector
X is distributed as an exponential family, with sufficient
statistics set φ(X):

P(X; θ) = exp
{
〈θ, φ(X)〉 −A(θ)

}
. (3)

Suppose that this is a minimal exponential family, so that
the parameter θ(µ) that gives rise to expected sufficient
statistics (hereafter, moments) µ is obtained as θ(µ) =
∇A∗(µ) whereA∗(·) is the conjugate dual function toA(·)

(see Wainwright & Jordan (2008) for an expanded discus-
sion of exponential families and moments). When the dis-
tribution (3) belongs to such a minimal exponential family,
it can then be re-written using moment-based parameters
as: P(X;µ) = exp

{
〈θ(µ), φ(X)〉 −A(θ(µ))

}
.

Remark. Note that the earlier multivariate Gaussian co-
variance estimation problem can be re-written in this
setting. Specifically, the multivariate Gaussian distri-
bution can be written in canonical parameterization (or
Gaussian Markov random fields) as: P(X; θ,Θ) =

exp
{
〈θ,X〉 + 〈Θ, XXT 〉 − A(θ,Θ)

}
, where A(θ,Θ) =

1/2 log(n log(2π)) − log det(−2Θ) − 1/4 θTΘ−1θ. The
moments of this distribution are given as µ = E[X] =
−1/2Θ−1θ, and E[XXT ] = µµT − 1/2Θ−1; so that the
centered second moment is given as Σ = E[(X − µ)(X −
µ)T ] = −1/2Θ−1. Note that the multivariate Gaussian can
be equivalently parameterized (as in the previous section)
in terms of these moments as:

P(X;µ,Σ) ∝ exp
{
− 1/2(X − µ)Σ−1(X − µ)T

}
.

Given the empirical moments, µ̂n = 1
n

∑n
i=1 φ(X(i)), the

negative log-likelihood can then be written as:

L(µ) := −〈θ(µ), µ̂n〉+A
(
θ(µ)

)
,

so that a regularized MLE with a regularization function
R(·) is given as:

minimize
µ

{
− 〈θ(µ), µ̂n〉+A

(
θ(µ)

)
+R(µ)

}
, (4)

which can be seen to be non-convex in general. Let us con-
sider the Dantzig variant in this general setting. The gradi-
ent of the negative log-likelihood is given by

∇L(µ) = −∇2A∗(µ) µ̂n +∇2A∗(µ)∇A
(
θ(µ)

)
= ∇2A∗(µ)

(
− µ̂n + µ

)
.

Thus, the “Dantzig” variant of the structured moment esti-
mator then takes the form:

minimize
µ

R(µ)

s. t. R∗
(
∇2A∗(µ)(µ− µ̂n)

)
≤ λn, (5)

which too can be seen to non-convex in general, as we al-
ready observed in (1) and (2) as a special case.

We thus get a counterpart of the proposition in the struc-
tured covariance case:

Proposition 2. The estimation problems in (4) and (5) are
both non-convex programs for general exponential fami-
lies, even when the regularization function R(·) itself is a
convex function.
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2.3. Other Examples

Other important examples of multivariate exponential fam-
ilies where computing moments is of interest include the
Ising model (see Ravikumar et al. (2010) and references
therein) and the multivariate Bernoulli distribution (Dai
et al., 2013). Indeed, probabilistic graphical model dis-
tributions in general, when positive, can be expressed as
exponential family distributions, and computing moments
of the resulting exponential families constitutes the impor-
tant problem of graphical model inference; see Wainwright
& Jordan (2008) for additional discussion and examples.

In the next section, we propose an elementary estimator,
that is not only convex, but also has a closed form in many
cases. In the section following that, we show that the es-
timator while elementary, nonetheless comes with strong
statistical guarantees.

3. The Elem-Moment Estimator
The previous section showed that even under natural distri-
butional settings, natural estimators such as the regularized
MLE, as well as a Dantzig variant, yield non-convex opti-
mization problems for recovering structured moments. In
this paper, we thus consider the following elementary esti-
mator, which we call the “Elem-Moment” estimator, that is
specified by a regularization functionR(·):

minimize
µ

R(µ)

s. t.R∗(µ̂n − µ) ≤ λn. (6)

whereR∗(·) is the dual function.

It can be seen that the estimator in (6) solves a convex pro-
gram, unlike the regularized MLE and Dantzig variants dis-
cussed in the previous section. Moreover, while it is remi-
niscent of the Dantzig estimator (Candès & Tao, 2007), for
many typical settings of the regularization function R(·),
the elementary estimator is available in closed-form.

Suppose for instance the regularization function R(·) is
given by an “atomic” gauge function, as defined in Chan-
drasekaran et al. (2010). Specifically, suppose we are given
a set A := {aj}j∈I of very “simple” objects or “atoms”,
and that the regularization functionR(µ) can be written as

R(µ) = inf
c

{∑
j∈I

cj : µ =
∑
j∈I

cjaj ,aj ∈ A, cj ≥ 0
}
. (7)

There, they showed that this class includes many popu-
lar regularization functions including the `1 norm, `1/`q
norms, the nuclear norm, and others.

The following proposition then specifies the solution of (6)
withR(·) set to such an atomic norm.

Proposition 3. Suppose R(·) is an “atomic” gauge func-
tion as specified by (7). Suppose also that the optimal co-
efficients solving (7) with µ set to the sample expected suf-
ficient statistics µ̂n, are given as {ĉi}i∈I , so that µ̂n =∑
i∈I ĉiai, and R(µ̂n) =

∑
i∈I ĉi. Then, the optimal so-

lution µ̂ of (6) is given by

µ̂ =
∑
i∈I

max{ĉi − λn, 0}ai.

Remark. As a special case of the above, consider the
use of `1 regularization for off-diagonals (for recovering
a sparse covariance matrix for instance). The regular-
ization function R(·) can then be written as ‖Σ‖1,off :=∑
i 6=j |Σij |. The corresponding dual-norm can then be

shown to be equal to: ‖Σ‖∞,off := maxi 6=j |Σij |. Our ele-
mentary estimator (6) with this setting of the regularization
function then takes the following form:

minimize
Σ

‖Σ‖1,off

s. t. ‖Σ̂n − Σ‖∞,off ≤ λn. (8)

It can be seen the solution is given by the element-wise
soft-thresholding of Σ̂n (only for off-diagonal entries), so
that Σ̂ = Sλn(Σ̂n), where [Sλ(u)]i = sign(ui) max(|ui|−
λ, 0), is the soft-thresholding function.

4. Error Bounds
In this section, we show that the ease of computing our
class of estimators does not come at the cost of strong sta-
tistical guarantees. We provide a general analytical frame-
work for deriving error bounds for our class of estima-
tors (6) in a high-dimensional setting, where the expected
feature function µ∗ = E[φ(X)] has some “structure”.

For a formalization of the notion of structure, we fol-
low the unified statistical framework of Negahban et al.
(2012). There, they use subspace pairs (M,M⊥), where
M ⊆ M, to capture any structured parameter. M is the
model subspace that captures the constraints imposed on
the model parameter, which is typically low-dimensional.
On the other hand,M⊥ is the perturbation subspace of pa-
rameters that represents perturbations away from the model
subspace. Following their terminology, we assume that the
regularization function in (6) is decomposable with respect
to a subspace pair (M,M⊥):

(C1) R(u+v) = R(u) +R(v), ∀u ∈M, ∀v ∈M⊥.
Such decomposability captures the suitability of a regular-
ization function R(·) to particular structure. As Negah-
ban et al. (2012) showed, for standard structural constraints
such as sparsity, low-rank, etc., we can define correspond-
ing low-dimensional model subspaces, as well as regular-
ization functions that are decomposable with respect to the
corresponding subspace pairs.
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Example 1. Given any subset S ⊆ {1, . . . , p} of the co-
ordinates, letM(S) be the subspace of vectors in Rp that
have support contained in S. It can be seen that any param-
eter θ ∈ M(S) would be atmost |S|-sparse. For this case,
we useM(S) = M(S), so thatM⊥(S) = M⊥(S). Ne-
gahban et al. (2012) show that the `1 norm R(θ) = ‖θ‖1,
commonly used as a sparsity-encouraging regularization
function, is decomposable with respect to subspace pairs
(M(S),M⊥(S)).

We also use their definition of subspace compatibility
constant that captures the relative value between the
regularization function R(·) and the error norm ‖ · ‖,
over vectors in the subspace M: Ψ(M, ‖ · ‖) :=

supu∈M\{0}
R(u)
‖u‖ . We also define the projection operator

ΠM̄(u) := argminv∈M̄ ‖u− v‖2.

For technical simplicity, we consider the case where µ∗ is
exactly structured with respect to some subspace pair:

(C2) There exists a structured subspace-pair (M,M⊥)
such that the model parameter satisfies ΠM⊥(µ∗) = 0.

Theorem 1. Suppose we solve the estimation problem (6),
such that true structured moment satisfies Condition (C2),
the regularization function satisfies Condition (C1), and the
constraint term λn is set as λn ≥ R∗(µ̂n − µ∗). Then, the
optimal solution µ̂ of (6) satisfies:

R∗(µ̂− µ∗) ≤ 2λn , (9)

‖µ̂− µ∗‖2 ≤ 4λnΨ(M) , (10)

R(µ̂− µ∗) ≤ 8λnΨ(M)2 . (11)

We note that Theorem 1 is a non-probabilistic result, and
holds deterministically for any selection of λn or any dis-
tributional setting of the covariates X . While Theorem 1
builds on concepts and notations such as decomposable
regularization functions from Negahban et al. (2012), it is
worthwhile to note that their analysis does not apply to our
class of estimators: there they consider regularized convex
programs, whereas here, we consider an elementary class
of constrained programs. Moreover, unlike their case, the
form of our estimators also allows us to provide bounds in
R∗(·) norm, which guarantee the estimates are structured,
under similar conditions to those imposed on convex regu-
larized programs in Negahban et al. (2012).

While the result in Theorem 1 seems a bit abstract, in the
sequel, we provide corollaries that obtain concrete instan-
tiations of Theorem 1 for specific settings of the feature
functions, structures and regularization functionsR(·), and
distributional assumptions on X .

4.1. Bounds for Covariance Estimation

In what follows, we shall assume that the components ofX
are sub-Gaussian, that is, there exist some constants c0 ≥ 0

and T > 0, such that for any |t| ≤ T ,

E
(
etX

2
i

)
≤ c0, i = 1, . . . , p .

This condition is satisfied for instance if X follows a mul-
tivariate normal distribution or if the entries of X are
bounded. For simplicity, we also assume that E(X) = 0,
so that E(XX>) = Σ∗.

4.1.1. COVARIANCE MATRICES WITH ELEMENT-WISE
SPARSITY OF OFF-DIAGONALS

As a concrete example, we first consider the case where the
true covariance Σ∗ has sparse off-diagonals: it has at most
k non-zero off-diagonal elements. A natural variant of our
elementary estimator in (6) under this assumption would be
the one withR(·) := ‖ · ‖1,off as in (8).

Corollary 1. Suppose that λn = M
√

log p
n for a suffi-

ciently large constant M . Then, with probability at least
1− C1 exp(−C2nλ

2
n), we have

‖Σ̂− Σ∗‖∞,off ≤ 2M

√
log p

n
,

‖Σ̂− Σ∗‖F ≤ 4M

√
k log p

n
,

‖Σ̂− Σ∗‖1,off ≤ 8Mk

√
log p

n
,

for some constants C1, C2 > 0.

It is instructive to compare the results of this corollary to
those in Bickel & Levina (2008a); Rothman et al. (2009)
where authors consider estimating covariance matrices by
thresholding, however they focus on the matrices that are
invariant under permutations. We note that an applica-
tion of our Theorem 1 is able to provide tighter bounds
by decoupling the probabilistic component from the non-
probabilistic bound; for instance, compare our consistent
`2 (or Frobenius norm) error bound in (10) against that in
Theorem 2 of Bickel & Levina (2008a) where authors pro-

vide the bound of ‖Σ̂−Σ∗‖F = O
(√

kp log p
n

)
. Moreover,

our results can be applied to any covariance matrix beyond
subset of matrices discussed in Bickel & Levina (2008a);
Rothman et al. (2009).

4.1.2. COVARIANCE MATRICES WITH ELEMENT-WISE
GROUP SPARSITY

Suppose the indices {1, . . . , p} × {1, . . . , p} of the covari-
ance matrix entries are partitioned into L disjoints groups
G = {G1, . . . , GL}. Let d denote the maximum group
cardinality maxLj=1 |Gj |. Suppose that Σ∗ is group-sparse
with respect to this set of groups, so that |{j ∈ {1, . . . , L} :
Σ∗Gj 6= 0| ≤ k, where Σ∗Gj is the vector comprising en-
tries of Σ∗ corresponding to the indices in Gj . Thus, the
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element-wise support of Σ∗ can be expressed as the union
of at most k groups in G. A natural regularization function
R(·) for this setting is the group-structured norm

‖Σ‖G,ν :=

L∑
l=1

‖ΣGl‖ν , where ν ≥ 2, (12)

where ‖ · ‖ν is the element-wise `ν vector norm.
Corollary 2. Suppose that we solve the variant of
the elementary estimator in (6), with the regulariza-
tion function R(·) set to the group-structured norm in
(12), and with the constraint penalty λn set as λn =
Md1/ν?

√
(log d+ logL)/n for a sufficiently large con-

stant M > 0. Then, with probability at least 1 −
C1 exp(−C2nλ

2
n), we have

‖Σ̂− Σ∗‖∗G,ν ≤ 2Md1/ν?
√

(log d+ logL)/n ,

‖Σ̂− Σ∗‖F ≤ 4Md1/ν?
√
k(log d+ logL)/n ,

‖Σ̂− Σ∗‖G,ν ≤ 8Mkd1/ν?
√

(log d+ logL)/n

where ‖Σ‖∗G,ν := maxg ‖ΣGg‖ν∗ for a constant ν∗ satis-
fying 1

ν + 1
ν∗ = 1.

5. Extension to Superposition Structures
While there have been considerable advances in struc-
turally constrained high-dimensional estimation in recent
years, there has been an increasing realization, especially
in the context of matrix decomposition problems, that typ-
ical structural constraints such as sparsity, group-sparsity,
etc. are too stringent, and may not be very realistic. Over
the last few years, there has been an emerging line of work
that addresses this issue by “mixing and matching” dif-
ferent structures (Chandrasekaran et al., 2011; Hsu et al.,
2011; McCoy & Tropp, 2011; Xu et al., 2012; Jalali et al.,
2010; Agarwal et al., 2012; Yang & Ravikumar, 2013). As
an illuminating example, consider the principal component
analysis (PCA) problem, where we are given i.i.d. random
vectors Xi ∈ Rp where Xi = Ui + vi. Ui ∼ N(0,Θ∗),
with a low-rank covariance matrix Θ∗ = LLT , for some
loading matrix L ∈ Rp×r, corresponds to the set of low-
dimensional observations without noise; and vi ∈ Rp is
a noise/error vector that is typically assumed to be spher-
ically Gaussian distributed, vi ∼ N(0, σ2Ip×p) , or in
ideal settings vi = 0. The goal in PCA is to then recover
the covariance matrix Θ∗ from samples {Xi}ni=1, with the
“clean” structural constraint that Θ∗ is low-rank. However,
in realistic settings, with outliers, the noise vector may be
distributed as vi ∼ N(0,Γ∗), where Γ∗ is elementwise
sparse. In this case, the covariance matrix of Xi has the
form Σ∗ = Θ∗ + Γ∗, where Θ∗ is low-rank, and Γ∗ is
sparse. Thus, Σ∗ is neither low-rank nor sparse, but a su-
perposition of two matrices, one of which is low-rank, and
the other which is sparse.

The emerging line of work indicated above that address
such superposition-structure is again based on regularized
MLEs, which would have the same non-convexity caveats
for our general structured moment problem, as detailed in
the previous sections for even clean structural constraints.
In this section, we thus extend our “Elem-Moment” estima-
tors in (6) to cover such “superposition-structure” as well.

To set up our notation, we assume that the true moment is
given as µ∗ =

∑
α∈I µ

∗
α, where µ∗α is a “clean” structured

parameter with respect to a subspace pair (Mα,M⊥α ), for
Mα ⊂ Mα. For instance, the individual components µ∗α
could individually be sparse, low-rank, column-sparse, etc.,
while the overall moment parameter µ∗ is none of these
structures per se, just a superposition of these.

Our “Elem-Moment” class of estimators in (6), naturally
extends to these superposition-structured problems as fol-
lows, in what we call “Elem-Super-Moment” estimators:

minimize
µ1,µ2,...,µ|I|

∑
α∈I

λαRα(µα)

s. t.R∗α
(
µ̂n −

∑
α∈I

µα

)
≤ λα for ∀α ∈ I. (13)

This class of problems can be solved via simple closed-
form operations by employing the parallel proximal algo-
rithm of Combettes & Pesquet (2008). The details of the
algorithm are presented in the Supplementary Materials.

5.1. Error bounds

As a natural extension of (C2), we assume that each com-
ponent exactly µ∗α lies in its structured subspace:

(C3) ΠM⊥α (µ∗α) = 0, ∀α ∈ I .

In recent work, Yang & Ravikumar (2013) extend the anal-
ysis of regularized convex programs of Negahban et al.
(2012) from the vanilla structural constraint case to the su-
perposition structural constraint case. Their analysis how-
ever is restricted to specialized regularized convex pro-
grams, and is not applicable to our class of elementary con-
strained “Elem-Super-Moment” estimators in (13). In the
sequel, we thus derive an extension of our Theorem 1 to
this superposition-structured setting.

We borrow the following condition from Yang & Raviku-
mar (2013), which is a structural incoherence condition en-
suring that the non-interference of different structures:

(C4) (Structural Incoherence) Let Ω :=

maxγ1,γ2

{
2 +

3λγ1Ψγ1 (M̄γ1
)

λγ2Ψγ2 (M̄γ2
)

}
. For any α, β ∈ I ,

max
{
σmax

(
PM̄α

PM̄β

)
, σmax

(
PM̄α

PM̄⊥β
)
,

σmax

(
PM̄⊥α PM̄⊥β

)}
≤ 1

16Ω2 where PM̄ denote the
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Table 1. Average performance measures and standard errors for sparse plus low-rank covariance estimation.
Method Spectral Frobenius Nuclear Matrix 1-norm

n=100,p=200
Elem-Super-Moment 7.10 (0.15) 8.56(0.18) 35.87 (0.43) 11.65 (0.12)

Thresholding 8.30 (0.17) 10.43 (0.11) 45.84 (0.39) 19.85 (0.21)
Well-conditioned 12.22 (0.12) 13.19 (0.17) 48.11 (0.45) 23.89(0.18)

n=100,p=400
Elem-Super-Moment 25.63 (0.54) 26.67 (0.49) 198.76 (1.31) 50.77 (0.72)

Thresholding 33.55 (0.49) 41.91(0.60) 331.41 (2.05) 67.64 (0.73)
Well-conditioned 35.71 (0.50) 34.83 (0.46) 207.97(2.27) 93.60 (0.91)

matrix corresponding to the projection operator for the
subspaceM.

Under these two mild conditions, we can provide the fol-
lowing statistical guarantees for our estimators:
Theorem 2. Suppose that the true structured moment µ∗

satisfies conditions (C3) and (C4). Furthermore, suppose
we solve elementary estimators in (13) setting the con-
straint parameters λα such that λα ≥ R∗α(µ̂n−µ∗). Then,
the optimal solution {µ̂α}α∈I of (13) satisfies the follow-
ing error bounds:

R∗α(µ̂− µ∗) ≤ 2λα , (14)

Rα(µ̂α − µ∗α) ≤ 16|I|
λα

(
max
α∈I

λαΨ(Mα)
)2

, (15)

‖µ̂− µ∗‖F ≤ 4
√

2|I|max
α∈I

λαΨ(Mα) . (16)

where µ̂ =
∑
α∈I µ̂α, and µ∗ =

∑
α∈I µ

∗
α.

5.2. Covariance Matrices with Low-rank plus
Element-wise sparse Structures

As an illustration of superposition structured moments, we
consider the case where Σ∗ = Σ∗1 + Σ∗2, and where Σ∗1 is a
low-rank matrix, and Σ∗2 is an element-wise sparse matrix.
The natural selection from the estimation class (13) would
be the following:

minimize
Σ1,Σ2

λ1|||Σ1|||∗ + λ2‖Σ2‖1,off

s. t. |||Σ̂n − (Σ1 + Σ2)|||2 ≤ λ1

‖Σ̂n − (Σ1 + Σ2)‖∞,off ≤ λ2, (17)

where ||| · |||∗ and ||| · |||2 represent the nuclear norm and spec-
tral norm of a matrix, respectively. Then, the consistency of
this estimator can be easily derived as the following corol-
lary of Theorem 2:
Corollary 3. Suppose that the true structured covariance
matrix is given as Σ∗ = Σ∗1 + Σ∗2, where k1 and k2 denote
the rank of Σ∗1 and the number non-zero elements of Σ∗2, re-
spectively. Also suppose we solve the elementary estimator

variant in (17) setting λ1 = M1

√
p
n and λ2 = M2

√
log p
n

for sufficiently large constants M1,M2 > 0. Then, with
probability at least 1 − 2 exp(−Cp), the solution Σ̂ satis-
fies the following error bounds:

|||Σ̂− Σ∗|||2 ≤ 2M1

√
p

n
, ‖Σ̂− Σ∗‖∞,off ≤ 2M2

√
log p

n
,

‖Σ̂− Σ∗‖F ≤ 8 max

{
M1

√
k1p

n
, M2

√
k2 log p

n

}
,

|||Σ̂− Σ∗|||∗ ≤ 32
M1

√
n
p

[
max

{
M1

√
k1p
n

, M2

√
k2 log p

n

}]2
,

‖Σ̂− Σ∗‖1,off ≤ 32
M2

√
n

log p

[
max

{
M1

√
k1p
n

, M2

√
k2 log p

n

}]2
.

6. Experiments
Simulation We first confirm the usefulness of our frame-
work in the presence of superposition structures. Specif-
ically, we focus on covariance estimation where the true
covariance has a sparse plus low-rank structure. We con-
sider Σ∗ = Σ∗1 + Σ∗2, where Σ∗1 = 0.5(1p1

T
p ). and

Σ∗2 = Ip/5 ⊗ (0.2(151T5 ) + 0.2I5), where ⊗ denotes the
Kronecker product. We perform 100 simulation runs. For
each simulation run, we generate n = 100 observations
from N(0,Σ∗). We compare our “Elem-Super-Moment”
estimator with the thresholding method of Bickel & Lev-
ina (2008a) and the well-conditioned estimator of Ledoit
& Wolf (2003). For each method, the tuning parameters
are set using 5-fold cross validation with Frobenius norm
as described in Bickel & Levina (2008a). We consider
p = 200, 400.As performance measures, we used the spec-
tral, Frobenius, nuclear and matrix 1-norm of the difference
between estimated and true covariance. The results pre-
sented in Table 1 show that “Elem-Super-Moment” clearly
outperforms the other methods. In addition, our method
is able to recover the sparsity pattern of the sparse com-
ponent with True Positive and True Negative rates greater
than 99.50% and 95.24% respectively.

Climate dataset We demonstrate the applicability of our
class of estimators on a climatology dataset. We used 4-
times daily surface temperature data from NCEP/NCAR
Reanalysis 1. The data is for the year 2011 and uses a 2.5
degree latitude x 2.5 degree longitude global grid covering
90N - 90S, 0E - 357.5E, so that we have 144 × 73 loca-
tions. We considered each location as a feature, so that
p = 144× 73 = 10512, and used observations across time
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(b) PCA on our Elem-Moment covariance estimate with `1 norm.

Figure 1. Contour plots of the first two principal components us-
ing PCA on (top) the sample covariance matrix, and (bottom) our
Elem-Moment covariance estimate with `1 norm.

as samples, so that n = 4 × 365 = 1460, and computed
the p× p spatial sample covariance matrix. To evaluate the
covariance matrix estimates, we used empirical orthogonal
functions (EOFs), which actually correspond to the princi-
pal components of the covariance matrix, which are com-
monly employed in spatio-temporal statistics to investigate
spatial patterns in data. By visualizing the spacial contour
plots of a given EOF, one can get an idea of which geo-
graphical regions contribute greatly to that principle com-
ponent. We depict these contour plots for the first two prin-
cipal components using (a) PCA on the sample covariance
matrix and (b) PCA on our Elem-Moment estimate with
the regularization set to the `1 norm. As can be seen from
the figures, our method clearly separates the Northern and
Southern hemispheres, which is as expected by climate sci-
entists. In contrast, PCA on the sample covariance itself is
unable to make that distinction.

Hi-C dataset We also illustrate the usefulness of our
class of estimators on data from Hi-C, a very recent
methodology to study the 3-D architecture of genomes.
Briefly, the data consists of the observed frequencies of
chromatin interaction between any two genomic loci (out
of a total of as many as 40, 000 loci). A comprehensive
review of Hi-C is provided in Dekker et al. (2013). Note
that these empirical interaction frequencies can be collated
as a sample covariance matrix. The goal then is to esti-
mate the true contact map comprising the expected inter-
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Figure 2. Our Elem-Super-Moment covariance estimates (with `1
and nuclear norms) for Hi-C data analysis on chromosome 14;
(Left) HindIII dataset, and (Right) Ncol dataset

action frequencies, which would correspond to the popu-
lation covariance matrix. We consider two Hi-C datasets
taken from Lieberman-Aiden et al. (2009) which are bio-
logical replicates assembled using different restriction en-
zymes (HindIII and NcoI). One approach to validate the
contact map (or population covariance) estimators would
be to estimate the contact map based on each dataset sepa-
rately, and measure the “reproducibility” between both es-
timates, measured using Spearman correlation. We applied
our “Elem-Super-Moment” estimator with two regulariza-
tion functions set to `1 norm and the nuclear norm, to the
normalized data provided by Hu et al. (2008). The raw data
exhibits an average correlation across the 23 chromosomes
of 0.7241, that of the normalized data 0.8041 (see Hu et al.
(2008)). Our estimator improves the correlation further to
0.8355.

Visualizing the fine details of the contact map is challeng-
ing due to the high resolution of the map (2761 × 2761
matrix in this experiment). In Figure 2, we thus depict a
portion of our estimated contact map for chromosomes 14
only, so the reader can get an idea of the data structure. As
can be seen from Figure 2, the contact maps look quite sim-
ilar for both biological replicates, which corroborates our
high correlation value of 0.8355 noted earlier. (For com-
parison with the original data, a picture of the raw data
is provided in Figure 1 B&D of Lieberman-Aiden et al.
(2009).) The bright diagonals correspond to nearby inter-
actions within the same chromosome. We can also distin-
guish some interaction blocks around the diagonals as well
as more distal interactions. Given this encouraging prelim-
inary analysis, we plan to perform an in-depth biological
analysis using our Elem-Moment estimators in future work.
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Appendix

A. Proof of Proposition 3
Consider an arbitrary parameter µ̃ =

∑
i c̃iãi in the feasi-

ble set of parameters that satisfy the constraint of (6).

Let PM denote the matrix corresponding to the projection
operator for the subspaceM.

Since µ̃ should satisfy the constraint ofR∗(µ̂n − µ̃) ≤ λn,
for any fixed index i in the atoms of µ̂n,

R
(
Pa∗i

(
µ̂n − µ̃

))
=R

(∑
j

c̃jPa∗i
(ãj)− c∗i a∗i

)
≤ λn,

which implies max{c∗i − λn, 0} ≤ R
(∑

j c̃jPa∗i
(ãj)

)
.

By summing over all i, we obtain

R(µ̂) =
∑
i

max{c∗i − λn, 0} ≤
∑
i

R
(∑

j

c̃jPa∗i
(ãj)

)
(i)
= R

(∑
j

c̃j
∑
i

Pa∗i
(ãj)

)
= R

(∑
j

c̃j ãj

)
= R(µ̃).

Finally, since we can simply verify that µ̂ is also feasible,
we can conclude that µ̂ is the optimal of (6).

B. Proof of Theorem 1
Let ∆ := µ̂− µ∗ be the error vector that we are interested
in.

R∗(µ̂− µ∗) = R∗(µ̂− µ̂n + µ̂n − µ∗)
≤ R∗(µ̂n − µ̂) +R∗(µ̂n − µ∗) ≤ 2λn

By the fact that µ∗M⊥ = 0, and the decomposability of R
with respect to (M,M⊥),

R(µ∗)

=R(µ∗) +R
[
ΠM̄⊥(∆)

]
−R

[
ΠM̄⊥(∆)

]
=R

[
µ∗ + ΠM̄⊥(∆)

]
−R

[
ΠM̄⊥(∆)

]
(i)

≤ R
[
µ∗ + ΠM̄⊥(∆) + ΠM̄(∆)

]
+R

[
ΠM̄(∆)

]
−R

[
ΠM̄⊥(∆)

]
=R

[
µ∗ + ∆

]
+R

[
ΠM̄(∆)

]
−R

[
ΠM̄⊥(∆)

]
(18)

where the equality (i) holds by the triangle inequality of
norm. Since (6) minimizes R(µ̂), we have R(µ∗ + ∆) =
R(µ̂) ≤ R(µ∗). Combining this inequality with (18),

R
[
ΠM̄⊥(∆)

]
≤ R

[
ΠM̄(∆)

]
. (19)

Moreover, by Hölder’s inequality and the decomposability
ofR(·),

‖∆‖22 = 〈〈∆,∆〉〉 ≤ R∗(∆)R(∆) ≤ 2λnR(∆)

= 2λn
[
R(ΠM̄(∆)) +R(ΠM̄⊥(∆))

]
≤ 4λnR(ΠM̄(∆))

≤ 4λnΨ(M)‖ΠM̄(∆)‖2 (20)

where Ψ(M) is a simple notation for Ψ(M, ‖ · ‖2).

Since the projection operator is defined in terms of ‖ · ‖2
norm, it is non-expansive: ‖ΠM̄(∆)‖2 ≤ ‖∆‖2. There-
fore, by (20), we have

‖ΠM̄(∆)‖2 ≤ 4λnΨ(M), (21)

and plugging it back into (20) yields the error bound (10).

Finally, (11) is straightforward from (19) and (21)

R(∆) ≤ 2R(ΠM̄(∆))

≤ 2Ψ(M)‖ΠM̄(∆)‖2 ≤ 8λnΨ(M)2.

C. Proof of corollaries: Covariance
Estimation in Section 4.1

In order to leverage Theorem 1, two ingredients need to be
specified: (i) the convergence rate of R∗(µ̂n − µ∗) for λn
to satisfy λn ≥ R∗(µ̂n − µ∗), and (ii) the compatibility
constant Ψ(M). In each corollary, we are going to show
how these two components can be computed.

C.1. Proof of Corollary 1

For this case, we can directly appeal to the well known
bound (e.g., the Lemma 1 of (Ravikumar et al., 2011)):
Consider the following event:

P (‖Σ̂n − Σ‖∞,off > δ)

≤ 4 exp
(
− nδ2

3200(maxi Σii)2
+ log p2

)
.

By setting δ = 40(maxi Σii)
√

2τ log p
n , we see that

the choice of λn is valid with probability at least 1 −
C1 exp(−C2nλ

2
n).

For the second ingredient, letM = M correspond to the
support of Σ∗. We have ψ(M, ‖ · ‖2) =

√
s, where s is the

cardinality of the support of Σ∗.

C.2. Proof of Corollary 2

R∗(Σ̂n − Σ∗) = maxl=1,...,L

∥∥∥[Σ̂n]Gl − [Σ∗]Gl

∥∥∥
ν?
. For a

given entry (i, j) we have

P (|[Σ̂n]ij − Σ∗ij | > t) ≤ C1 exp(−C2nt
2).
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For a given group Gl, by union bound over the group ele-
ments, we have

P (|[Σ̂n]ij − Σ∗ij | > t for all (i, j) ∈ Gl)
≤ C1 exp(−C2nt

2 + log d).

This implies that

P (‖[Σ̂n]Gl−Σ∗Gl‖ν? > td1/ν?) ≤ C1 exp(−C2nt
2+log d).

By a union bound over all groups we obtain

P

(
max

l=1,...,L
‖[Σ̂n]Gl − Σ∗Gl‖2 > td1/ν?

)
≤ C1 exp(−C2nt

2 + log d+ logL).

This yields

P

(
max

l=1,...,L
‖[Σ̂n]Gl − Σ∗Gl‖2 > δ

)
≤ C1 exp(−C2nd

−2/ν?δ2 + log d+ logL).

We conclude by setting δ = d1/ν?
√

(log d+ logL)/n. Let
M = M correspond to the support of Σ∗, which can be
written as a union of groups in G. Since ν ≥ 2, we have
ψ(M, ‖ · ‖F ) =

√
k.

D. Proof of Theorem 2
In this proof, we consider the matrix parameter such as
the covariance. Basically, the Frobenius norm can be sim-
ply replaced by `2 norm for the vector parameters. Let
∆α := µ̂α−µ∗α, and ∆ := µ̂−µ∗ =

∑
α∈I ∆α. The error

bound (14) can be easily shown from the assumption in the
statement with the constraint of (13). For every α ∈ I ,

R∗α(∆) = R∗α(µ̂− µ∗) = R∗α(µ̂− µ̂n + µ̂n − µ∗)
≤ R∗α(µ̂n − µ̂) +R∗α(µ̂n − µ∗) ≤ 2λα. (22)

By the similar reasoning as in (18) with the fact that
ΠM⊥α (µ∗α) = 0 in (C3), and the decomposability of Rα
with respect to (Mα,M⊥α ), we have

Rα(µ∗α) ≤ Rα
[
µ∗α + ∆α

]
+Rα

[
ΠM̄α

(∆α)
]

−Rα
[
ΠM̄⊥α (∆α)

]
. (23)

Since {µ̂α}α∈I minimizes the objective function of (13),∑
α∈I

λαRα(µ̂α) ≤
∑
α∈I

λαRα(µ∗α).

Combining this inequality with (23), we have∑
α∈I

λαRα(µ̂α) ≤
∑
α∈I

λα

{
Rα(µ∗α + ∆α)

+Rα
[
ΠM̄α

(∆α)
]
−Rα

[
ΠM̄⊥α (∆α)

]}
,

which implies∑
α∈I

λαRα
[
ΠM̄⊥α (∆α)

]
≤
∑
α∈I

λαRα
[
ΠM̄α

(∆α)
]
, (24)

Now, for each structure α ∈ I , we have an application
of Hölder’s inequality; |〈〈∆,∆α〉〉| ≤ R∗α(∆)Rα(∆α) ≤
2λαRα(∆α) where the notation 〈〈A,B〉〉 denotes the trace
inner product, trace(A>B) =

∑
i

∑
j AijBij , and we use

the pre-computed bound in (22). Then, the Frobenius error
‖∆‖F can be upper-bounded as follows:

‖∆‖2F = 〈〈∆,∆〉〉 =
∑
α∈I
〈〈∆,∆α〉〉 ≤

∑
α∈I
|〈〈∆,∆α〉〉|

≤ 2
∑
α∈I

λαRα(∆α) ≤ 2
∑
α∈I

{
λαRα

[
ΠM̄α

(∆α)
]
+

λαRα
[
ΠM̄⊥α (∆α)

]}
≤ 4

∑
α∈I

λαRα
[
ΠM̄α

(∆α)
]

≤ 4
∑
α∈I

λαΨ(Mα) ‖ΠM̄α
(∆α)‖F (25)

where Ψ(Mα) denotes the compatibility constant of space
Mα with respect to the Frobenius norm: Ψ(Mα, ‖ · ‖F ).

Here, we define a key notation in the error bound:

Φ := max
α∈I

λαΨ(Mα).

Armed with this notation, (25) can be rewritten as

‖∆‖2F ≤ 4Φ
∑
α∈I
‖ΠM̄α

(∆α)‖F (26)

At this point, we directly appeal to the result in Proposition
2 of (Yang & Ravikumar, 2013) with a small modification:

Proposition 4. Suppose that the structural incoherence
condition (C4) as well as the condition (C3) hold. Then,
we have

2|
∑
α<β

〈〈∆α,∆β〉〉| ≤
1

2

∑
α∈I
‖∆α‖2F .

By this proposition, we have∑
α∈I
‖∆α‖2F ≤ ‖∆‖2F + 2|

∑
α<β

〈〈∆α,∆β〉〉|

≤ ‖∆‖2F +
1

2

∑
α∈I
‖∆α‖2F ,

which implies
∑
α∈I ‖∆α‖2F ≤ 2‖∆‖2F .

Moreover, since the projection operator is defined in terms
of the Frobenius norm, it is non-expansive for all α:
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‖ΠM̄α
(∆α)‖F ≤ ‖∆α‖F . Hence, we finally obtain

(∑
α∈I
‖ΠM̄α

(∆α)‖F
)2

≤
(∑
α∈I
‖∆α‖F

)2

≤ |I|
∑
α∈I
‖∆α‖2F ≤ 8|I|Φ

∑
α∈I
‖ΠM̄α

(∆α)‖F ,

and therefore, ∑
α∈I
‖ΠM̄α

(∆α)‖F ≤ 8|I|Φ (27)

The Frobenius norm error bound (16) can be derived by
plugging (27) back into (26):

‖∆‖F ≤ 32|I|Φ2.

The proof of the final error bound (15) is straightforward
from (24) and (27) as follows: for each fixed α ∈ I ,

Rα(∆α)

≤ 1

λα

{
λαRα

[
ΠM̄α

(∆α)
]

+ λαRα
[
ΠM̄⊥α (∆α)

]}
≤ 1

λα

{
λαRα

[
ΠM̄α

(∆α)
]

+
∑
β∈I

λβRβ
[
ΠM̄β

(∆β)
]}

≤ 2

λα

∑
β∈I

λβRβ
[
ΠM̄β

(∆β)
]

≤ 2

λα

∑
β∈I

λβΨ(Mβ)‖ΠM̄β
(∆β)‖F

≤ 2Φ

λα

∑
β∈I

‖ΠM̄β
(∆β)‖F ≤

16|I|Φ2

λα
,

which completes the proof.

D.1. Proof of Corollary 3

The proof for an element-wise sparse component is already
proven in Section C.1. At the same time, for a low-rank
component, we can directly appeal to the results for clean
models (Agarwal et al., 2012):

λ1 = 4
√
|||Σ∗|||2

√
p

n
≥ |||Σ∗ − Σ̂n|||2

with probability at least 1 − 2 exp(−C1p). The subspace
compatibility of any matrix A with rank k can be easily
derived as

sup
A6=0

|||A|||∗
‖A‖F

≤
√
k1.

E. A Parallel Proximal algorithm for
“Elem-Super-Moment” Estimation

The class of “Elem-Super-Moment” estimators solves

minimize
µ1,µ2,...,µ|I|

∑
α∈I

λαRα(µα)

s. t.R∗α(µ̂n − µ) ≤ λα for ∀α ∈ I

µ =
∑
α∈I

µα. (28)

Let µ = (µ1, µ2, . . . , µ|I|). Consider the operators
Lα(µ) = µα, for α ∈ I and Ltot(µ) =

∑
α∈I µα. Then

the problem can be rewritten as

minimize
µ

∑
α∈I

λαRα(Lα(µ))

s. t.R∗α(µ̂n − Ltot(µ)) ≤ λα for ∀α ∈ I. (29)

For all α ∈ I let

fα(·) = λαRα(Lα(·)).

Define the indicator function of a set C as

ıC : x 7→

{
0, if x ∈ C
+∞, if x /∈ C.

and let
gα(·) = ı(R∗α(µ̂n−Ltot(·))≤λα).

Then observe that (29) can be rewritten as

minimize
µ̄1,...µ̄|I|,µ̃1,...µ̃|I|

∑
α∈I

fα(µ̄α) +
∑
α∈I

gα(µ̃α)

s. t. µ̄1 = . . . = µ̄|I| = µ̃1 = . . . = µ̃|I|.

(30)

We can then apply the parallel proximal method (Algo-
rithm 3.1 of Combettes & Pesquet (2008)), which is derived
from the classical Douglas-Rachford algorithm (Combettes
& Pesquet, 2008), and obtain Algorithm 1. In this splitting
algorithm, each function fα is used separately via its own
proximal operator. The same holds for each function gα.
Note that

prox2|I|γfα = prox2|I|γλαRα◦Lα

and
prox2|I|γgα = prox2|I|γı(R∗α(µ̂n−Ltot())≤λα)

For various popular choices of regularization Rα these
proximal operators have simple closed-form formulas.
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This can be seen by applying Lemma 2.4 of Combettes
& Pesquet (2008) which states that if L is a bounded linear
operator such that L ◦L∗ = κId for some finite κ > 0 then

proxh◦L = Id +
1

κ
L∗ ◦ (proxκh − Id) ◦ L.

and by noting that Lα and Ltot are such bounded linear op-
erators.

Algorithm 1 Parallel proximal algorithm

Initialization: γ > 0, (µ̄0
α)α∈I and (µ̃0

α)α∈I
Set µ0 = 1

2|I|
∑
α∈I(µ̄

0
α + µ̃0

α).

for i = 0, 1, . . . do
for α ∈ I do
p̄iα = prox2|I|γfαµ̄

i
α and p̃iα = prox2|I|γgαµ̃

i
α.

end for
pi = 1

2|I|
∑
α∈I(p̄

i
α + p̃iα).

0 < ρi < 2
for α ∈ I do
µ̄i+1
α = µ̄iα + ρi(2p

i − µi − p̄iα).
µ̃i+1
α = µ̃iα + ρi(2p

i − µi − p̃iα).
end for
µi+1 = µi + ρi(p

i − µi).
end for


