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Abstract

We provide a unified framework for the high-dimensional analysis of
“superposition-structured” or “dirty” statistical models: where the model param-
eters are a superposition of structurally constrained parameters. We allow for any
number and types of structures, and any statistical model. We consider the gen-
eral class of M -estimators that minimize the sum of any loss function, and an
instance of what we call a “hybrid” regularization, that is the infimal convolution
of weighted regularization functions, one for each structural component. We pro-
vide corollaries showcasing our unified framework for varied statistical models
such as linear regression, multiple regression and principal component analysis,
over varied superposition structures.

1 Introduction

High-dimensional statistical models have been the subject of considerable focus over the past
decade, both theoretically as well as in practice. In these high-dimensional models, the ambient
dimension of the problem pmay be of the same order as, or even substantially larger than the sample
size n. It has now become well understood that even in this type of high-dimensional p � n scal-
ing, it is possible to obtain statistically consistent estimators provided one imposes structural con-
straints on the statistical models. Examples of such structural constraints include sparsity constraints
(e.g. compressed sensing), graph-structure (for graphical model estimation), low-rank structure (for
matrix-structured problems), and sparse additive structure (for non-parametric models), among oth-
ers. For each of these structural constraints, a large body of work have proposed and analyzed
statistically consistent estimators. For instance, a key subclass leverage such structural constraints
via specific regularization functions. Examples include `1-regularization for sparse models, nuclear
norm regularization for low-rank matrix-structured models, and so on.

A caveat to this strong line of work is that imposing such “clean” structural constraints such as
sparsity or low-rank structure, is typically too stringent for real-world messy data. What if the
parameters are not exactly sparse, or not exactly low rank? Indeed, over the last couple of years,
there has been an emerging line of work that address this caveat by “mixing and matching” different
structures. Chandrasekaran et al. [5] consider the problem of recovering an unknown low-rank and
an unknown sparse matrix, given the sum of the two matrices; for which they point to applications
in system identification in linear time-invariant systems, and optical imaging systems among others.
Chandrasekaran et al. [6] also apply this matrix decomposition estimation to the learning of latent-
variable Gaussian graphical models, where they estimate an inverse covariance matrix that is the sum
of sparse and low-rank matrices. A number of papers have applied such decomposition estimation
to robust principal component analysis: Candès et al. [3] learn a covariance matrix that is the sum
of a low-rank factored matrix and a sparse “error/outlier” matrix, while [9, 15] learn a covariance
matrix that is the sum of a low-rank matrix and a column-sparse error matrix. Hsu et al. [7] analyze
this estimation of a sum of a low-rank and elementwise sparse matrix in the noisy setting; while
Agarwal et al. [1] extend this to the sum of a low-rank matrix and a matrix with general structure.
Another application is multi-task learning, where [8] learn a multiple-linear-regression coefficient
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matrix that is the sum of a sparse and a block-sparse matrix. This strong line of work can be seen to
follow the resume of estimating a superposition of two structures; and indeed their results show this
simple extension provides a vast increase in the practical applicability of structurally constrained
models. The statistical guarantees in these papers for the corresponding M -estimators typically
require fairly extensive technical arguments that extend the analyses of specific single-structured
regularized estimators in highly non-trivial ways.

This long-line of work above on M -estimators and analyses for specific pairs of super-position
structures for specific statistical models, lead to the question: is there a unified framework for study-
ing any general tuple (i.e. not just a pair) of structures, for any general statistical model? This is
precisely the focus of this paper: we provide a unified framework of “superposition-structured” or
“dirty” statistical models, with any number and any types of structures, for any statistical model.
By such “superposition-structure,” we mean the constraint that the parameter be a superposition of
“clean” structurally constrained parameters. In addition to the motivation above, of unifying the
burgeoning list of works above, as well as to provide guarantees for many novel superpositions (of
for instance more than two structures) not yet considered in the literature; another key motivation is
to provide insights on the key ingredients characterizing the statistical guarantees for such dirty sta-
tistical models. Our unified analysis allows the following very general class of M -estimators, which
are the sum of any loss function, and an instance of what we call a “hybrid” regularization func-
tion, that is the infimal convolution of any weighted regularization functions, one for each structural
component. As we show, this is equivalent to an M -estimator that is the sum of (a) a loss function
applied to the sum of the multiple parameter vectors, one corresponding to each structural compo-
nent; and (b) a weighted sum of regularization functions, one for each of the parameter vectors. We
stress that our analysis allows for general loss functions, and general component regularization func-
tions. We provide corollaries showcasing our unified framework for varied statistical models such as
linear regression, multiple regression and principal component analysis, over varied superposition
structures.

2 Problem Setup

We consider the following general statistical modeling setting. Consider a random variable Z with
distribution P, and suppose we are given n observations Zn1 := {Z1, . . . , Zn} drawn i.i.d. from P.
We are interested in estimating some parameter θ∗ ∈ Rp of the distribution P. We assume that
the statistical model parameter θ∗ is “superposition-structured,” so that it is the sum of parameter
components, each of which is constrained by a specific structure. For a formalization of the notion
of structure, we first review some terminology from [11]. There, they use subspace pairs (M,M⊥),
where M ⊆ M, to capture any structured parameter. M is the model subspace that captures
the constraints imposed on the model parameter, and is typically low-dimensional. M⊥ is the
perturbation subspace of parameters that represents perturbations away from the model subspace.
They also define the property of decomposability of a regularization function, which captures the
suitablity of a regularization functionR to particular structure. Specifically, a regularization function
R is said to be decomposable with respect to a subspace pair (M,M⊥), if

R(u+ v) = R(u) +R(v), for all u ∈M, v ∈M⊥.
For any structure such as sparsity, low-rank, etc., we can define the corresponding low-dimensional
model subspaces, as well as regularization functions that are decomposable with respect to the cor-
responding subspace pairs.

I. Sparse vectors. Given any subset S ⊆ {1, . . . , p} of the coordinates, letM(S) be the subspace
of vectors in Rp that have support contained in S. It can be seen that any parameter θ ∈ M(S)

would be atmost |S|-sparse. For this case, we useM(S) =M(S), so thatM⊥(S) =M⊥(S). As
shown in [11], the `1 normR(θ) = ‖θ‖1, commonly used as a sparsity-encouraging regularization
function, is decomposable with respect to subspace pairs (M(S),M⊥(S)).
II. Low-rank matrices. Consider the class of matrices Θ ∈ Rk×m that have rank r ≤ min{k,m}.
For any given matrix Θ, we let row(Θ) ⊆ Rm and col(Θ) ⊆ Rk denote its row space and column
space respectively. For a given pair of r-dimensional subspaces U ⊆ Rk and V ⊆ Rm, we define
the subspace pairs as follows: M(U, V ) :=

{
Θ ∈ Rk×m | row(Θ) ⊆ V, col(Θ) ⊆ U

}
and
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M⊥(U, V ) :=
{

Θ ∈ Rk×m | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥
}

. As [11] show, the nuclear norm

R(θ) = |||θ|||1 is decomposable with respect to the subspace pairs (M(U, V ),M⊥(U, V )).

In our dirty statistical model setting, we do not just have one, but a set of structures; suppose we
index them by the set I . Our key structural constraint can then be stated as: θ∗ =

∑
α∈I θ

∗
α, where

θ∗α is a “clean” structured parameter with respect to a subspace pair (Mα,M
⊥
α ), forMα ⊆ Mα.

We also assume we are given a set of regularization functions Rα(·), for α ∈ I that are suited to
the respective structures, in the sense that they are decomposable with respect to the subspace pairs
(Mα,M

⊥
α ).

Let L : Ω×Zn 7→ R be some loss function that assigns a cost to any parameter θ ∈ Ω ⊆ Rp, for a
given set of observations Zn1 . For ease of notation, in the sequel, we adopt the shorthand L(θ) for
L(θ;Zn1 ). We are interested in the following “super-position” estimator:

min
(θα)α∈I

L
(∑
α∈I

θα

)
+
∑
α∈I

λαRα(θα), (1)

where (λα)α∈I are the regularization penalties. This optimization problem involves not just one
parameter vector, but multiple parameter vectors, one for each structural component: while the
loss function applies only to the sum of these, separate regularization functions are applied to the
corresponding parameter vectors. We will now see that this can be re-written to a standard M -
estimation problem which minimizes, over a single parameter vector, the sum of a loss function and
a special “dirty” regularization function.

Given a vector c := (cα)α∈I of convex-combination weights, suppose we define the following
“dirty” regularization function, that is the infimal convolution of a set of regularization functions:

R(θ; c) = inf
{∑
α∈I

cαRα(θα) :
∑
α∈I

θα = θ
}
. (2)

It can be shown that provided the individual regularization functions Rα(·), for α ∈ I , are norms,
R(·; c) is a norm as well. We discuss this and other properties of this hybrid regularization function
R(·; c) in Appendix A.

Proposition 1. Suppose (θ̂α)α∈I is the solution to the M -estimation problem in (1). Then θ̂ :=∑
α∈I θ̂α is the solution to the following problem:

min
θ∈Ω
L(θ) + λR(θ; c), (3)

where cα = λα/λ. Similarly, if θ̂ is the solution to (3), then there is a solution (θ̂α)α∈I to the
M -estimation problem (1), such that θ̂ :=

∑
α∈I θ̂α.

Proposition 1 shows that the optimization problems (1) and (3) are equivalent. While the tuning
parameters in (1) correspond to the regularization penalties (λα)α∈I , the tuning parameters in (3)
correspond to the weights (cα)α∈I specifying the “dirty” regularization function. In our unified
analysis theorem, we will provide guidance on setting these tuning parameters as a function of
various model-parameters.

3 Error Bounds for Convex M -estimators

Our goal is to provide error bounds ‖θ̂− θ∗‖, between the target parameter θ∗, the minimizer of the
population risk, and our M -estimate θ̂ from (1), for any error norm ‖ · ‖. A common example of an
error norm for instance is the `2 norm ‖ · ‖2. We now turn to the properties of the loss function and
regularization function that underlie our analysis. We first restate some natural assumptions on the
loss and regularization functions.

(C1) The loss function L is convex and differentiable.
(C2) The regularizers Rα are norms, and are decomposable with respect to the subspace pairs

(Mα,M
⊥
α ), whereMα ⊆Mα.
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Our next assumption is a restricted strong convexity assumption [11]. Specifically, we will require
the loss function L to satisfy:

(C3) (Restricted Strong Convexity) For all ∆α ∈ Ωα, where Ωα is the parameter space for the
parameter component α,

δL(∆α; θ∗) := L(θ∗ + ∆α)− L(θ∗)−
〈
∇θL(θ∗),∆α

〉
≥ κL‖∆α‖2 − gαR2

α(∆α),

where κL is a “curvature” parameter, and gαR2
α(∆α) is a “tolerance” parameter.

Note that these conditions (C1)-(C3) are imposed even when the model has a single clean structural
constraint; see [11]. Note that gα is usually a function on the problem size decreasing in the sample
size; in the standard Lasso with |I| = 1 for instance, gα = log p

n .

Our next assumption is on the interaction between the different structured components.

(C4) (Structural Incoherence) For all ∆α ∈ Ωα,∣∣∣L(θ∗ +
∑
α∈I

∆α

)
+ (|I| − 1)L(θ∗)−

∑
α∈I
L
(
θ∗ + ∆α

)∣∣∣ ≤ κL
2

∑
α∈I
‖∆α‖2 +

∑
α∈I

hαR2
α(∆α).

Note that for a model with a single clean structural constraint, with |I| = 1, the condition (C4) is
trivially satisfied since the LHS becomes 0. We will see in the sequel that for a large collection
of loss functions including all linear loss functions, the condition (C4) simplifies considerably, and
moreover holds with high probability, typically with hα = 0. We note that this condition is much
weaker than “incoherence” conditions typically imposed when analyzing specific instances of such
superposition-structured models (see e.g. references in the introduction), where the assumptions
typically include (a) assuming that the structured subspaces (Mα)α∈I intersect only at {0}, and (b)
that the sizes of these subspaces are extremely small.

Finally, we will use the notion of subspace compatibility constant defined in [11], that captures the
relationship between the regularization function R(·) and the error norm ‖ · ‖, over vectors in the
subspaceM: Ψ(M, ‖ · ‖) := supu∈M\{0}

R
‖u‖ .

Theorem 1. Suppose we solve the M -estimation problem in (3), with hybrid regularization
R(·; c), where the convex-combination weights c are set as cα = λα/

∑
α∈I λα, with λα ≥

2R∗α
(
∇θαL(θ∗;Zn1 )

)
. Further, suppose conditions (C1) - (C4) are satisfied. Then, the parame-

ter error bounds are given as:

‖θ̂ − θ∗‖ ≤
(

3|I|
2κ̄

)
max
α∈I

λαΨα(Mα) + (|I|
√
τL/
√
κ̄),

where

κ̄ :=
κL
2
− 32ḡ2|I|

(
max
α∈I

λαΨα(Mα)
)2

, ḡ := max
α

1

λα

√
gα + hα ,

τL :=
∑
α∈I

[
32ḡ2λ2

αR2
α

(
ΠM⊥α (θ∗α)

)
+

2λα
|I|
Rα
(
ΠM⊥α (θ∗α)

)]
.

Remarks: (R1) It is instructive to compare Theorem 1 to the main Theorem in [11], where they
derive parameter error bounds for any M -estimator with a decomposable regularizer, for any
“clean” structure. Our theorem can be viewed as a generalization: we recover their theorem
when we have a single structure with |I| = 1. We cannot derive our result in turn from their
theorem applied to the M -estimator (3) with the hybrid regularization function R(·; c): the
“superposition” structure is not captured by a pair of subspaces, nor is the hybrid regularization
function decomposable, as is required by their theorem. Our setting as well as analysis is strictly
more general, because of which we needed the additional structural incoherence assumption (C4)
(which is trivially satisfied when |I| = 1).

(R2) Agarwal et al. [1] provide Frobenius norm error bounds for the matrix-decomposition problem
of recovering the sum of low-rank and a general structured matrix. In addition to the greater
generality of our theorem and framework, Theorem 1 addresses two key drawbacks of their
theorem even in their specific setting. First, the proof for their theorem requires the regularization
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penalty λ for the second structure to be strongly bounded away from zero: their convergence rate
does not approach zero even with infinite number of samples n. Theorem 1, in contrast, imposes
the weaker condition λα ≥ 2R∗α

(
∇θαL(θ∗;Zn1 )

)
, which as we show in the corollaries, allows

for the convergence rates to go to zero as a function of the samples. Second, they assumed much
stronger conditions for their theorem to hold; in Theorem 1 in contrast, we pose much milder
“local” RSC conditions (C3), and a structural incoherence condition (C4).

(R3) The statement in the theorem is deterministic for fixed choices of (λα). We also note that
the theorem holds for any set of subspace pairs (Mα,M

⊥
α )α∈I with respect to which the cor-

responding regularizers are decomposable. As noted earlier, the Mα should ideally be set to
the structured subspace in which the true parameter at least approximately lies, and which we
want to be as small as possible (note that the bound includes a term that depends on the size
of this subspace via the subspace compatibility constant). In particular, if we assume that the
subspaces are chosen so that ΠM⊥α (θ∗α) = 0 i.e. θ∗α ∈Mα, then we obtain the simpler bound in
the following corollary.

Corollary 1. Suppose we solve the M -estimation problem in (1), with hybrid regularization
R(·; c), where the convex-combination weights c are set as cα = λα/

∑
α∈I λα, with λα ≥

2R∗α
(
∇θαL(θ∗;Zn1 )

)
, and suppose conditions (C1) - (C4) are satisfied. Further, suppose that the

subspace-pairs are chosen so that θ∗α ∈Mα. Then, the parameter error bounds are given as:

‖θ̂ − θ∗‖ ≤
(

3|I|
2κ̄

)
max
α∈I

λαΨα(Mα).

It is now instructive to compare the bounds of Theorem 1, and Corollary 1. Theorem 1 has two terms:
the first of which is the sole term in the bound in Corollary 1. This first term can be thought of as
the “estimation error” component of the error bound, when the parameter has exactly the structure
being modeled by the regularizers. The second term can be thought of as the “approximation error”
component of the error bound, which is the penalty for the parameter not exactly lying in the struc-
tured subspaces modeled by the regularizers. The key term in the “estimation error” component, in
Theorem 1, and Corollary 1, is:

Φ = max
α∈I

λαΨα(Mα).

Note that each λα is larger than a particular norm of the sample score function (gradient of the loss
at the true parameter): since the expected value of the score function is zero, the magnitude of the
sample score function captures the amount of “noise” in the data. This is in turn scaled by Ψα(Mα),
which captures the size of the structured subspace corresponding to the parameter component θ∗α. Φ
can thus be thought of as capturing the amount of noise in the data relative to the particular structure
at hand.

We now provide corollaries showcasing our unified framework for varied statistical models such as
linear regression, multiple regression and principal component analysis, over varied superposition
structures.

4 Convergence Rates for Linear Regression

In this section, we consider the linear regression model:

Y = Xθ∗ + w, (4)

where Y ∈ Rn is the observation vector, and θ∗ ∈ Rp is the true parameter. X ∈ Rn×p is the
“observation” matrix; while w ∈ Rn is the observation noise. For this class of statistical models, we
will consider the instantiation of (1) with the loss function L consisting of the squared loss:

min
(θα)α∈I

{
1

n

∥∥∥Y −X(∑
α∈I

θα
)∥∥∥2

2
+
∑
α∈I

λαRα(θα)

}
. (5)

For this regularized least squared estimator (5), conditions (C1-C2) in Theorem 1 trivially hold.
The restricted strong convexity condition (C3) reduces to the following. Noting that L(θ∗ + ∆α)−
L(θ∗)− 〈∇θL(θ∗),∆α〉 = 1

n‖X∆α‖22, we obtain the following restricted eigenvalue condition:
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(D3) 1
n‖X∆α‖22 ≥ κL‖∆α‖2 − gαR2

α(∆α) for all ∆α ∈ Ωα.

Finally, our structural incoherence condition reduces to the following: Noting that
∣∣L(θ∗ +∑

α∈I ∆α) + (|I| − 1)L(θ∗) −
∑
α∈I L(θ∗ + ∆α)

∣∣ = 2
n

∣∣∑
α<β〈X∆α, X∆β〉

∣∣ in this specific
case,

(D4) 2
n

∣∣∑
α<β〈X∆α, X∆β〉

∣∣ ≤ κL
2

∑
α∈I ‖∆α‖2 +

∑
α∈I hαR2

α(∆α).

4.1 Structural Incoherence with Gaussian Design

We now show that the condition (D4) required for Theorem 1, holds with high probability when the
observation matrix is drawn from a so-called Σ-Gaussian ensemble: where each row Xi is indepen-
dently sampled from N(0,Σ). Before doing so, we first state some assumption on the population
covariance matrix Σ. Let PM denote the matrix corresponding to the projection operator for the
subspace M . We will then require the following assumption:

(C-Linear) Let Λ := maxγ1,γ2

{
2 +

3λγ1Ψγ1 (M̄γ1 )

λγ2
Ψγ2

(M̄γ2
)

}
. For any α, β ∈ I ,

max
{
σmax

(
PM̄α

ΣPM̄β

)
, σmax

(
PM̄α

ΣPM̄⊥β
)
, σmax

(
PM̄⊥αΣPM̄⊥β

)}
≤ κL

8
(|I|

2

)
Λ2|I|

. (6)

Proposition 2. Suppose each row Xi of the observation matrix X is independently sampled from
N(0,Σ), and the condition (C-Linear) (6) holds. Further, suppose that ΠM⊥α (θ∗α) = 0, for all
α ∈ I . Then, it holds that with probability at least 1− 4

max{n,p} ,

2

n

∣∣∑
α<β

〈X∆α, X∆β〉
∣∣ ≤ κL

2

∑
α

‖∆α‖22,

when the number of samples scales as n ≥ c
(

(|I|2 )Λ2|I|
κL

)2(
maxα Ψα(Mα)2 + max{log p, log n}

)
,

for some constant c that depends only on the distribution of X .

Condition (D3) is the usual restricted eigenvalue condition which has been analyzed previously in
“clean-structured” model estimation, so that we can directly appeal to previous results [10, 12] to
show that it holds with high probability when the observation matrix is drawn from the Σ-Gaussian
ensemble.

We are now ready to derive the consequences of the deterministic bound in Theorem 1 for the case
of the linear regression model above.

4.2 Linear Regression with Sparse and Group-sparse structures

We now consider the following superposition structure, comprised of both sparse and group-sparse
structures. Suppose that a set of groups G = {G1, G2, . . . , Gq} are disjoint subsets of the index-
set {1, . . . , p}, each of size at most |Gi| ≤ m. Suppose that the linear regression parameter θ∗ is
a superposition of a group-sparse component θ∗g with respect to this set of groups G, as well as a
sparse component θ∗s with respect to the remaining indices {1, . . . , p}\∪qi=1Gi, so that θ∗ = θ∗g+θ∗s .
Then, we use the hybrid regularization function

∑
α∈I λαRα(θα) = λs‖θs‖1 + λg‖θg‖1,a where

‖θ‖1,a :=
∑q
t=1 ‖θGt‖a for a ≥ 2.

Corollary 2. Consider the linear model (4) where θ∗ is the sum of exact s-sparse θ∗s and exact sg
group-sparse θ∗g . Suppose that each row Xi of the observation matrix X is independently sampled
from N(0,Σ). Further, suppose that (6) holds and w is sub-Gaussian with parameter σ. Then, if we
solve (5) with

λs = 8σ

√
log p

n
and λg = 8σ

{
m1−1/a

√
n

+

√
log q

n

}
,

then, with probability at least 1− c1 exp(−c2nλ2
s)− c3/q2, we have the error bound:

‖θ̂ − θ∗‖2 ≤
24σ

κ̄
max

{√
s log p

n
,

√
sgm

1−1/a

√
n

+

√
sg log q

n

}
.
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Let us briefly compare the result from Corollary 2 with those from single-structured regularized
estimators. Since the total sparsity of θ∗ is bounded by ‖θ‖0 ≤ msg + s, “clean” `1 regularized

least squares, with high probability, gives the bound [11]: ‖θ̂`1 − θ∗‖2 = O

(√
(msg+s) log p

n

)
. On

the other hand, the support of θ∗ also can be interpreted as comprising sg + s disjoint groups in the
worst case, so that “clean” `1/`2 group regularization entails, with high probability, the bound [11]:

‖θ̂`1/`2 − θ∗‖2 = O

(√
(sg+s)m

n +
√

(sg+s) log q
n

)
. We can easily verify that Corollary 2 achieves

better bounds, considering the fact p ≤ mq.

5 Convergence Rates for Multiple Regression

In this section, we consider the multiple linear regression model, with m linear regressions written
jointly as

Y = XΘ∗ +W, (7)

where Y ∈ Rn×m is the observation matrix: with each column corresponding to a separate linear
regression task, and Θ∗ ∈ Rp×m is the collated set of parameters. X ∈ Rn×p is the “observation”
matrix; while W ∈ Rn×m is collated set of observation noise vectors. For this class of statistical
models, we will consider the instantiation of (1) with the loss function L consisting of the squared
loss:

min
(Θα)α∈I

{ 1

n
|||Y −X

(∑
α∈I

Θα

)
|||2F +

∑
α∈I

λαRα(Θα)
}
. (8)

In contrast to the linear regression model in the previous section, the model (7) has a matrix-
structured parameter; nonetheless conditions (C3-C4) in Theorem 1 reduce to the following con-
ditions that are very similar to those in the previous section, with the Frobenius norm replacing the
`2 norm:

(D3) 1
n |||X∆α|||2F ≥ κL‖∆α‖2 − gαR2

α(∆α) for all ∆α ∈ Ωα.

(D4) 2
n

∣∣∑
α<β〈〈X∆α, X∆β〉〉

∣∣ ≤ κL
2

∑
α∈I ‖∆α‖2 +

∑
α∈I hαR2

α(∆α).

where the notation 〈〈A,B〉〉 denotes the trace inner product, trace(A>B) =
∑
i

∑
j AijBij .

As in the previous linear regression example, we again impose the assumption (C-Linear) on the
population covariance matrix of a Σ-Gaussian ensemble, but in this case with the notational change
of PM̄α

denoting the matrix corresponding to projection operator onto the row-spaces of matrices in
M̄α. Thus, with the low-rank matrix structure discussed in Section 2, we would havePM̄α

= UU>.
Under the (C-Linear) assumption, the following proposition then extends Proposition 2:
Proposition 3. Consider the problem (8) with the matrix parameter Θ. Under the same assumptions
as in Proposition 2, we have with probability at least 1− 4

max{n,p} ,

2

n

∣∣∑
α<β

〈〈X∆α, X∆β〉〉
∣∣ ≤ κL

2

∑
α

|||∆α|||2F .

Consider an instance of this multiple linear regression model with the superposition structure con-
sisting of row-sparse, column-sparse and elementwise sparse matrices: Θ∗ = Θ∗r+Θ∗c+Θ∗s . In order
to obtain estimators for this model, we use the hybrid regularization function

∑
α∈I λαRα(θα) =

λr‖Θr‖r,a + λc‖Θc‖c,a + λs‖Θs‖1 where ‖ · ‖r,a denotes the sum of `a norm of rows for a ≥ 2,
and similarly ‖ · ‖c,a is the sum of `a norm of columns, and ‖ · ‖1 is entrywise `1 norm for matrix.
Corollary 3. Consider the multiple linear regression model (7) where Θ∗ is the sum of Θ∗r with sr
nonzero rows, Θ∗c with sc nonzero columns, and Θ∗s with s nonzero elements. Suppose that the design
matrixX is Σ-Gaussian ensemble with the properties of column normalization and σmax(X) ≤

√
n.

Further, suppose that (6) holds and W is elementwise sub-Gaussian with parameter σ. Then, if we
solve (8) with

λs = 8σ

√
log p+ logm

n
, λr = 8σ

{m1−1/a

√
n

+

√
log p

n

}
, and λc = 8σ

{p1−1/a

√
n

+

√
logm

n

}
,
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with probability at least 1− c1 exp(−c2nλ2
s)− c3

p2 − c3
m2 , the error of the estimate Θ̂ is bounded as:

‖Θ̂−Θ∗‖2 ≤
36σ

κ̄
max

{√
s(log p+ logm)

n
,

√
srm

1−1/a

√
n

+

√
sr log p

n
,

√
scp

1−1/a

√
n

+

√
sc logm

n

}
.

6 Convergence Rates for Principal Component Analysis

In this section, we consider the robust/noisy principal component analysis problem, where we are
given n i.i.d. random vectors Zi ∈ Rp where Zi = Ui+ vi. Ui ∼ N(0,Θ∗) is the “uncorrupted” set
of observations, with a low-rank covariance matrix Θ∗ = LLT , for some loading matrix L ∈ Rp×r.
vi ∈ Rp is a noise/error vector; in standard factor analysis, vi is a spherical Gaussian noise vector:
vi ∼ N(0, σ2Ip×p) (or vi = 0); and the goal is to recover the loading matrix L from samples.

In PCA with sparse noise, vi ∼ N(0,Γ∗), where Γ∗ is elementwise sparse. In this case, the covari-
ance matrix of Zi has the form Σ = Θ∗ + Γ∗, where Θ∗ is low-rank, and Γ∗ is sparse. We can thus
write the sample covariance model as: Y := 1

n

∑n
i=1 ZiZ

T
i = Θ∗ + Γ∗ + W , where W ∈ Rp×p

is a Wishart distributed random matrix. For this class of statistical models, we will consider the
following instantiation of (1):

min
(Θ,Γ)

{
|||Y −Θ− Γ|||2F + λΘ|||Θ|||1 + λΓ‖Γ‖1

}
. (9)

where ||| · |||1 denotes the nuclear norm while ‖ · ‖1 does the element-wise `1 norm (we will use ||| · |||2
for the spectral norm.).
In contrast to the previous two examples, (9) includes a trivial design matrix, X = Ip×p, which al-

lows (D4) to hold under the simpler (C-linear) condition: where Λ is maxγ1,γ2

{
2+

3λγ1
Ψγ1

(M̄γ1
)

λγ2Ψγ2 (M̄γ2 )

}
,

max
{
σmax

(
PM̄Θ

PM̄Γ

)
, σmax

(
PM̄Θ

PM̄⊥Γ
)
, σmax

(
PM̄⊥Θ PM̄Γ

)
, σmax

(
PM̄⊥Θ PM̄⊥Γ

)}
≤ 1

16Λ2
. (10)

Corollary 4. Consider the principal component analysis model where Θ∗ has the rank r at most
and Γ∗ has s nonzero entries. Suppose that (10) holds. Then, given the choice of

λΘ = 16
√
|||Σ|||2

√
p

n
, λΓ = 32ρ(Σ)

√
log p

n
,

where ρ(Σ) = maxj Σjj , the optimal error of (9) is bounded by

‖Θ̂−Θ∗‖2 ≤
48

κ̄
max

{√
|||Σ|||2

√
rp

n
, 2ρ(Σ)

√
s log p

n

}
,

with probability at least 1− c1 exp(−c2 log p).

Remarks. Agarwal et al. [1] also analyze this model, and propose to use the M -estimator in (9),
with the additional constraint of ‖Θ‖∞ ≤ α

p . Under a stricter “global” RSC condition, they

compute the error bound ‖Θ̂ − Θ∗‖2 � max{
√
|||Σ|||2

√
rp
n , ρ(Σ)

√
s log p
n + α

p } where α is a
parameter between 1 and p. This bound is similar to that in Corollary 4, but with an additional
term α

p , so that it does not go to zero as a function of n. It also faces a trade-off: a smaller
value of α to reduce error bound would make the assumption on the maximum element of Θ∗

stronger as well. Our corollaries do not suffer these lacunae; see also our remarks in (R2) in
Theorem 1. [14] extended the result of [1] to the special case where Θ∗ = Θ∗r + Θ∗s using the
notation of the previous section; the remarks above also apply here. Note that our work and [1]
derive Frobenius error bounds under restricted strong convexity conditions; other recent works
such as [7] also derive such Frobenius error bounds but under stronger conditions (see [1] for
details).
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Appendix

A Properties of Hybrid Regularization FunctionR(·; c)

Let us briefly study some properties of this hybrid regularization function R(·; c). In the remainder
of this section, we suppress the dependence of the notation on the weights c. From (2), it can be
seen thatR(·) satisfies the triangle inequality:

R(θ + θ′) ≤ R(θ) +R(θ′). (11)

Under the additional assumption that each Rα(.) is 1-sub-homogeneous, so that Rα(βθ) ≤
βRα(θ), we get that:

R(βθ + (1− β)θ′) ≤ R(βθ) +R((1− β)θ′) ≤ βR(θ) + (1− β)R(θ′), (12)

so that R is convex. Moreover, provided the individual regularization functions Rα(·), for α ∈ I ,
are non-negative, it can be seen thatR(·) is non-negative as well.

From the above properties, it follows that provided the the individual regularization functionsRα(·),
for α ∈ I , are norms,R(·) is a norm as well.

We can also derive the dual of the hybrid regularization function, assuming it is a norm:

R∗(u) = sup
θ

〈θ, u〉
R(θ)

= sup
(θα)

∑
α〈u, θα〉∑

α cαRα(θα)
= sup

(θα)

∑
α〈u/cα, θα〉∑
αRα(θα)

≤ sup
(θα)

∑
αR∗α(u/cα)Rα(θα)∑

αRα(θα)
≤ max

α∈I
R∗α(u)/cα.

Noting that the inequalities become equalities by setting θ′α = 0, for all α′ not attaining the maxi-
mum in the last expression, we obtain the required expression for the dual norm:

R∗(u) = max
α∈I
R∗α(u)/cα. (13)

On the other hand, its Fenchel conjugate (again, assuming it is a norm) is given by:

Rf (u) = sup
θ

{
〈θ, u〉 − R(θ)

}
= sup

θ

{
〈θ, u〉 − inf

(θα)α∈I :
∑
α∈I θα=θ

∑
α∈I

cαRα(θα)
}

=
∑
α∈I

sup
θα

{
〈θ, u/cα〉 − Rα(θα)

}
=
∑
α∈I
Rα;f (u)/cα.

B Proof of Theorem 1

Throughout the proof, we make use of the fact that the optimal error vector θ̂ − θ∗ is guaranteed
to belong to a specific set, as a consequence of the decomposability of the respective regularization
functions:
Proposition 4. Suppose that conditions (C1) and (C2) are satisfied. Then for any optimal solution
θ̂ of (1), with the regularization penalties satisfying λα ≥ 2R∗α

(
∇θαL(θ∗;Zn1 )

)
, the error ∆̂ lies in

the set

C(M1,M
⊥
1 , . . . ,M|I|,M

⊥
|I|; θ

∗) :=

{
(∆1, . . . ,∆|I|) ∈ Ω1 × . . .× Ω|I|

∣∣
∑
α∈I

λαRα
(
ΠM̄⊥α (∆α)

)
≤
∑
α∈I

λα

[
3Rα

(
ΠM̄α

(∆α)
)

+ 4Rα
(
ΠM⊥α (θ∗α)

)]}
(14)

See Appendix B.1 for the proof of this claim.

To set up the first crucial ingredient of the proof, we define the function F : Ω1 × . . .× Ω|I| 7→ R:

F (∆1, . . . ,∆|I|) := L(θ∗ + ∆)− L(θ∗) +
∑
α∈I

[
λαRα(θ∗α + ∆α)−Rα(θ∗α)

]
. (15)
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By virtue of its optimality, it can be seen that the error (∆̂1, . . . , ∆̂|I|) of the optimal solution
(θ̂1, . . . , θ̂|I|) satisfies F

(
∆̂1, . . . , ∆̂|I|

)
≤ 0. Also note that F (~0, . . . ,~0) = 0.

As the following lemma shows, in order to compute an upper bound on the optimal error,∑
α∈I ‖∆̂α‖, it suffices to control the sign of function F over the following set:

K(δ) := C ∩
{∑
α∈I
‖∆α‖ = δ

}
Lemma 1. Suppose that conditions (C1) and (C2) are satisfied. If F (∆1, . . . ,∆|I|) > 0 for all pos-
sible vectors (∆1, . . . ,∆|I|) ∈ K(δ), then the optimal error (∆̂1, . . . , ∆̂|I|) satisfies

∑
α∈I ‖∆̂α‖ ≤

δ.

See Appendix B.2 for the proof of this claim.

The other crucial ingredient of the proof, is that we show the following “global” restricted strong
convexity condition given the “local” restricted strong convexity conditions in (C3) for just individ-
ual structures:

Lemma 2. Suppose that conditions (C3) and (C4) are satisfied for the M -estimation problem (1).
Then, for (θ1, . . . , θ|I|) ∈ (Ω1×. . .×Ω|I|) the following “global” restricted strong convexity (RSC)
condition holds:

δL(∆1, . . . ,∆|I|; θ
∗) := L

(∑
α∈I

(θ∗α + ∆α)
)
− L

(∑
α∈I

θ∗α
)
−
∑
α∈I

〈
∇θL

(∑
α∈I

θ∗α
)
,∆α

〉
≥
[κL

2
− 32ḡ2|I|Φ2

]∑
α∈I
‖∆α‖2 − 32ḡ2|I|

∑
α∈I

[
λ2
αR2

α

(
ΠM⊥α (θ∗α)

)]
,

(16)

where ḡ is defined as maxα
1
λα

√
gα + hα.

See Appendix B.3 for the proof of this claim.

We will next prove the following bound on
∑
α∈I ‖∆̂α‖:∑

α∈I
‖∆̂α‖ ≤

|I|
κ̄

(3

2
Φ +
√
κ̄τL

)
, (17)

where κ̄ := κL
2 − 32ḡ2|I|Φ2 and τL :=

∑
α∈I

[
32ḡ2λ2

αR2
α

(
ΠM⊥α (θ∗α)

)
+ 2λα
|I| Rα

(
ΠM⊥α (θ∗α)

)]
.

Given this bound, we can use the following inequality and complete the proof:

‖θ̂ − θ∗‖ =
∥∥∑

α

θ̂α −
∑
α

θ∗α
∥∥ =

∥∥∑
α

(θ̂α − θ∗α)
∥∥

≤
∑
α

‖θ̂α − θ∗α‖ ≤
∑
α∈I
‖∆̂α‖ ≤

|I|
κ̄

(3

2
Φ +
√
κ̄τL

)
.

It thus remains to show the bound (17).

As shown in Lemma 2, given conditions (C3) and (C4), the loss function satisfies the following
“global” RSC condition with curvature κ̄ and tolerance τ̄ :

δL(∆1, . . . ,∆|I|; θ
∗) ≥ κ̄

∑
α∈I
‖∆α‖2 − τ̄(θ∗).

Then, by the construction of F , for an arbitrary error vector (∆1, . . . ,∆|I|) ∈ C, we have

F (∆1, . . . ,∆|I|) ≥
∑
α∈I
〈∇θL(θ∗),∆α〉+ κ̄

∑
α∈I
‖∆α‖2 − τ̄(θ∗) +

∑
α∈I

[
λαRα(θ∗α + ∆α)−Rα(θ∗α)

]
.
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Using the bounds (18) and (19), we obtain

F (∆1, . . . ,∆|I|) ≥ −
∑
α∈I

λα
2

[
Rα
(
ΠM̄α

(∆α)
)

+Rα
(
ΠM̄⊥α (∆α)

)]
+ κ̄

∑
α∈I
‖∆α‖2 − τ̄(θ∗)

+
∑
α∈I

λα

[
Rα
(
ΠM̄⊥α (∆α)

)
−Rα

(
ΠM̄α

(∆α)
)
− 2Rα

(
ΠM⊥α (θ∗α)

)]
≥
∑
α∈I

[
κ̄‖∆α‖2 −

λα
2

[
3Rα

(
ΠM̄α

(∆α)
)

+ 4Rα
(
ΠM⊥α (θ∗α)

)]]
− τ̄(θ∗),

where in the last inequality we dropped the term λα
2 Rα

(
ΠM̄⊥α (∆α)

)
, since it is always positive.

The following proposition allows us to reduce the task of bounding a multivariate function to that of
bounding a univariate function.

Proposition 5. Consider theK-variate quadratic function: F (x1, . . . , xK) =
∑K
k=1(ax2

k+bxk)+c
for some constants a,b and c. Suppose further that: a > 0, xk ≥ 0 for all k and

∑
k xk = δ > 0.

Then F (x1, . . . , xK) attains its minimum value at x1 = . . . = xK = δ/K.

Denote Φ := maxα∈I λαΨα(Mα) and D := 1
|I| τ̄(θ∗) +

∑
α∈I

2λα
|I| Rα

(
ΠM⊥α (θ∗α)

)
. Armed with

these notations, and using the definition of subspace compatibility constant,

Rα
(
ΠM̄α

(∆α)
)
≤ Ψα(Mα)‖ΠM̄α

(∆α)‖ ≤ Ψα(Mα)‖∆α‖,
we obtain:

F (∆1, . . . ,∆|I|) ≥
∑
α∈I

(
κ̄‖∆α‖2 −

3

2
Φ‖∆α‖ −D

)
.

Now consider an error vector (∆1, . . . ,∆|I|) s.t.
∑
α∈I ‖∆α‖ = δ. From Proposition 5,

F (∆1, . . . ,∆|I|) ≥ κ̄δ2 − 3

2
Φδ −D|I|.

It follows that F (∆1, . . . ,∆|I|) > 0 so long as δ > |I|
κ̄

(
3
2Φ+

√
κ̄D
)
. Therefore, for all error vectors

(∆1, . . . ,∆|I|) such that
∑
α∈I ‖∆α‖ ≥ |I|

κ̄

(
3
2Φ +

√
κ̄D
)
, and in particular, if (∆1, . . . ,∆|I|) ∈

K
(
|I|
κ̄

(
3
2Φ +

√
κ̄D
))

, we can guarantee F (∆1, . . . ,∆|I|) > 0. This satisfies the conditions for
Lemma 1, whose statement then completes the proof.

B.1 Proof of Proposition 4

In the proof, we use the fact that F
(
∆̂1, . . . , ∆̂|I|

)
≤ 0.

For any decomposable regularizer Rα on (Mα,M
⊥
α ), it is known that the following inequality

holds (See [11] for the proof):

Rα(θ∗α + ∆α)−Rα(θ∗α) ≥ Rα
(
ΠM̄⊥α (∆α)

)
−Rα

(
ΠM̄α

(∆α)
)
− 2Rα

(
ΠM⊥α (θ∗α)

)
. (18)

At the same time, by the convexity of L, we have

L(θ∗ + ∆)− L(θ∗) = L
(∑
α∈I

θ∗α +
∑
α∈I

∆α

)
− L

(∑
α∈I

θ∗α

)
≥
∑
α∈I
〈∇θαL(θ∗),∆α〉

(i)

≥ −
∑
α∈I
R∗α
(
∇θαL(θ∗)

)
Rα(∆α)

(ii)

≥ −
∑
α∈I

λα
2

[
Rα
(
ΠM̄α

(∆α)
)

+Rα
(
ΠM̄⊥α (∆α)

)]
(19)
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where the inequality (i) comes from the generalized Cauchy-Schwarz inequality, and the inequality
(ii) from the triangular inequality and the assumption in the statement.

Combining (18) and (19) yields

0 ≥ F
(
∆̂1, . . . , ∆̂|I|

)
≥
∑
α∈I

λα
2

[
Rα
(
ΠM̄⊥α (∆̂α)

)
− 3Rα

(
ΠM̄α

(∆̂α)
)
− 4Rα

(
ΠM⊥α (θ∗α)

)]
,

as claimed.

B.2 Proof of Lemma 1

We first show that the set C has some special structure, and then show that that structure guarantees
the error upper bounded as in the statement.

Let (∆1, . . . ,∆|I|) be an arbitrary error vectors in the set C. Then, for any t ∈ (0, 1), we have∑
α∈I

λαRα
(
ΠM̄⊥α (t∆α)

)
(i)
=

∑
α∈I

λαRα
(
tΠM̄⊥α (∆α)

)
(ii)
= t

∑
α∈I

λαRα
(
ΠM̄⊥α (∆α)

)
(iii)

≤ t
∑
α∈I

λα

[
3Rα

(
ΠM̄α

(∆α)
)

+ 4Rα
(
ΠM⊥α (θ∗α)

)]
(iv)
=

∑
α∈I

λα

[
3Rα

(
ΠM̄α

(t∆α)
)

+ 4tRα
(
ΠM⊥α (θ∗α)

)]
(v)

≤
∑
α∈I

λα

[
3Rα

(
ΠM̄α

(t∆α)
)

+ 4Rα
(
ΠM⊥α (θ∗α)

)]
(20)

where step (i) uses the fact that

ΠM̄⊥α (t∆α) = argmin
γ∈M̄⊥

‖t∆α − γ‖ = t argmin
γ∈M̄⊥

‖∆α −
γ

t
‖ = tΠM̄⊥α (∆α),

step (ii) uses the positive homogeneity of norms, and step (iii) holds since (∆1, . . . ,∆|I|) ∈ C.
Moreover, step (iv) holds similarly as in equalities (i) and (ii), and finally step (v) trivially holds for
any t ≤ 1. Therefore, if (∆1, . . . ,∆|I|) ∈ C, then the line segment {(t∆1, . . . , t∆|I|) | t ∈ (0, 1)}
between (∆1, . . . ,∆|I|) and the origin (~0, . . . ,~0) also lies in C.

Now, we show the statement in the lemma by its contrapositive; suppose
∑
α∈I ‖∆̂α‖ > δ. Since∑

α∈I ‖t∆̂α‖ = t
∑
α∈I ‖∆̂α‖, there exists some constant t∗ ∈ (0, 1) s.t. (t∗∆̂1, . . . , t

∗∆̂|I|) ∈
K(δ). At the same time, by the convexity of L and the regularizers,

F (t∗∆̂1, . . . , t
∗∆̂|I|) ≤ t∗F (∆̂1, . . . , ∆̂|I|) + (1− t∗)F (~0, . . . ,~0) ≤ 0.

Therefore, (t∗∆̂1, . . . , t
∗∆̂|I|) is in K(δ) such that F (t∗∆̂1, . . . , t

∗∆̂|I|) ≤ 0 by construction.
Hence, by its contrapositive, the claim follows.

B.3 Proof of Lemma 2

The definition of δL(∆1, . . . ,∆|I|; θ
∗) can be rewritten as

δL(∆1, . . . ,∆|I|; θ
∗) = L(θ∗ + ∆)− L(θ∗)−

∑
α∈I

〈
∇θL(θ∗),∆α

〉
=L(θ∗ + ∆) + (|I| − 1)L(θ∗)−

∑
α∈I
L
(
θ∗ + ∆α

)
+
∑
α∈I

[
L(θ∗ + ∆α)− L(θ∗)− 〈∇θL(θ∗),∆α〉

]
.
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Then, simply by the inequalities in (C3) and (C4), δL(∆1, . . . ,∆|I|; θ
∗) can be lower-bounded by∑

α∈I

[
κL‖∆α‖2 − gαR2

α(∆α)
]
− κL

2

∑
α∈I
‖∆α‖2 −

∑
α∈I

hαR2
α(∆α)

≥ κL
2

∑
α∈I
‖∆α‖2 −

∑
α∈I

(
gα + hα

)
R2
α(∆α). (21)

Now, let us focus on the term
∑
α∈I

(
gα + hα

)
R2
α(∆α) in the RHS of (21). By the basic property

of the square, we have the following inequalities:∑
α∈I

(
gα + hα

)
R2
α(∆α) ≤

(∑
α∈I

√
gα + hαRα(∆α)

)2

≤
(
ḡ
∑
α∈I

λαRα(∆α)
)2

(22)

where in the second inequality we use 〈x, y〉 ≤ ‖x‖∞‖y‖1 and ḡ := maxα
1
λα

√
gα + hα. Since by

Lemma 4, for any (∆1, . . . ,∆|I|) ∈ C,∑
α∈I

λαRα(∆α) ≤
∑
α∈I

λα

[
Rα
(
ΠM̄α

(∆α)
)

+Rα
(
ΠM̄⊥α (∆α)

)]
≤
∑
α∈I

λα

[
4Rα

(
ΠM̄α

(∆α)
)

+ 4Rα
(
ΠM⊥α (θ∗α)

)]
,

the LHS of (22),
∑
α∈I

(
gα + hα

)
R2
α(∆α), can be upper-bounded by

32ḡ2|I|
∑
α∈I

λ2
α

[
R2
α

(
ΠM̄α

(∆α)
)

+R2
α

(
ΠM⊥α (θ∗α)

)]
≤ 32ḡ2|I|

∑
α∈I

λ2
α

[
Ψ2
α‖∆α‖2 +R2

α

(
ΠM⊥α (θ∗α)

)]
. (23)

By plugging (23) back into (21), we can construct the RSC condition as stated in Lemma 2 and
complete the proof:

δL(∆1, . . . ,∆|I|; θ
∗) ≥

[κL
2
− 32ḡ2|I|Φ2

]∑
α∈I
‖∆α‖2 − 32ḡ2|I|

∑
α∈I

λ2
αR2

α

(
ΠM⊥α (θ∗α)

)
.

C Proof of Proposition 2

Given the pair of complementary subspaces (M,M⊥), the error vector ∆α can be written as ∆α =
ΠM̄(∆α) + ΠM̄⊥(∆α), we have

X∆α = X
(
ΠM̄(∆α) + ΠM̄⊥(∆α)

)
= (XPM̄)ΠM̄(∆α) + (XPM̄⊥)ΠM̄⊥(∆α). (24)

We will now assume that the regularization functions Rα are atomic norms [4] with respect to the
orthonormal basis vectors used to describe the subspaces (Mα,Mα); though the proof generalizes.
Specifically, suppose there is a set of orthonormal vectors or “atoms” Aα := {aj}, such that the
regularization functionRα can be written as

Rα(θα) = inf
c

{∑
j

cj : θα =
∑
j

cjaj

}
. (25)

We will also assume that the subspace pair (Mα,M
⊥
α ) contain disjoint orthonormal subsets of the

basis set; it can be seen thatRα is decomposable with respect to any such subspace pair.

Let t be the dimensionality ofMα. Suppose {a1, . . . , aJ} ⊆ Aα are a set of atoms, such that the
first t atoms characterizeMα, and the remaining J − t atoms characterizeM⊥α . Note that we can
then write ∆α as

∆α =

J∑
j=1

cjaj .

14



We now split the index set {1, . . . , J} into subsets S(1), . . . , S(K), such that S(1) = {1, . . . , t}
contains the atoms characterizingMα, the second set S(2) contains the largest t entries from the
remaining coefficients (ct+1, . . . , cJ), S(3) contains the largest set of t entries disjoint from S(1)
and S(2) and so on. LetMi denote the subspace characterized by the atoms indexed by set S(i)
suppressing the dependency on α. With these notations, we can rewrite (24) as

X∆α = X
∑
i

∑
j∈S(i)

cj aj =
∑
i

PM̄i
X ×

( ∑
j∈S(i)

cj aj
)
. (26)

Turning to the condition (C4), we have
2

n

∣∣∑
α<β

〈X∆α, X∆β〉
∣∣ ≤ 2

n

∑
α<β

∣∣〈X∆α, X∆β〉
∣∣. (27)

For any pair α < β in the index set I , we use the equality (26) as follows:
2

n

∣∣〈X∆α, X∆β〉
∣∣

=
2

n

∣∣∣〈∑
i

PM̄i
X
( ∑
j∈S(i)

cj aj
)
,
∑
k

PM̄k
X
( ∑
l∈S(k)

dl bl
)〉∣∣∣

=
2

n

∣∣∣∑
i,k

〈
PM̄i

X
( ∑
j∈S(i)

cj aj
)
, PM̄k

X
( ∑
l∈S(k)

dl bl
)〉∣∣∣

≤ 2

n

∑
i,k

∣∣∣〈PM̄i
X
( ∑
j∈S(i)

cj aj
)
, PM̄k

X
( ∑
l∈S(k)

dl bl
)〉∣∣∣

(i)

≤ 2
[

max
i,k

σmax

(
PM̄i

( 1

n
XTX

)
PM̄k

)]∑
i,k

∥∥( ∑
j∈S(i)

cj aj
)∥∥

2
·
∥∥( ∑

l∈S(k)

dl bl
)∥∥

2

where the inequality (i) holds by the multiple applications of Cauchy-Schwarz inequality inequali-
ties and Rayleigh quotient. For now, we define Cmax := 2

[
maxi,k σmax

(
PM̄i

(
1
nX

TX
)
PM̄k

)]
.

Note that PM̄i
denotes the projector matrix corresponding to the structure α while PM̄k

does to the
structure β.

Using the fact that the basis vectors are orthonormal, so that ‖aj‖2 = 1 and Πaj (aj′) = 0 for all
j 6= j′, we obtain

2

n

∣∣〈X∆α, X∆β〉
∣∣ ≤ Cmax

(∑
i

∥∥( ∑
j∈S(i)

cj
)∥∥

2

)(∑
k

∥∥( ∑
l∈S(k)

dl
)∥∥

2

)
. (28)

To upper-bound
∑
i

∥∥(∑
j∈S(i) cj

)∥∥
2
, we can directly appeal to the following standard bound in

[2]. ∑
i=3

∥∥ ∑
j∈S(i)

cj
∥∥

2
≤ t−1/2

∑
i=2

∑
j∈S(i)

cj .

Since
∑
i=2

∑
j∈S(i) cj is equal toRα

(
ΠM̄⊥α (∆α)

)
by construction, we have∑

i

∥∥ ∑
j∈S(i)

cj
∥∥

2
≤ 2‖∆α‖2 + t−1/2Rα

(
ΠM̄⊥α (∆α)

)
.

In addition, since ∆α should belong to C in (14),

λαRα
(
ΠM̄⊥α (∆α)

)
≤
∑
γ∈I

λγ

[
3Rγ

(
ΠM̄γ

(∆γ)
)

+ 4Rγ
(
ΠM⊥γ (θ∗γ)

)]
Under the assumption ΠM⊥α (θ∗α) = 0 for all α ∈ I for simplicity,

t−1/2Rα
(
ΠM̄⊥α (∆α)

)
≤
∑
γ∈I

3λγ

λα
√
t
Rγ
(
ΠM̄γ

(∆γ)
)
≤
∑
γ∈I

3λγΨγ(M̄γ)

λαΨα(M̄α)
‖∆γ‖2.
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Let Λ be maxγ1,γ2

{
2 +

3λγ1Ψγ1 (M̄γ1
)

λγ2
Ψγ2

(M̄γ2
)

}
. Then, we obtain∑

i

∥∥ ∑
j∈S(i)

cj
∥∥

2
≤ Λ

∑
γ

‖∆γ‖2.

Similarly, ∑
k

∥∥ ∑
l∈S(k)

dl
∥∥

2
≤ Λ

∑
γ

‖∆γ‖2.

Combining all the pieces together, we obtain

2

n

∣∣〈X∆α, X∆β〉
∣∣ ≤ Cmax

(
Λ
∑
γ

‖∆γ‖2
)2

,

and hence,

2

n

∣∣∑
α<β

〈X∆α, X∆β〉
∣∣ ≤ Cmax

(
|I|
2

)(
Λ
∑
α

‖∆α‖2
)2

≤ Cmax

(
|I|
2

)
Λ2|I|

∑
α

‖∆α‖22. (29)

In order to complete the proof, we use the following lemma to control the remaining parameterCmax

used in the above inequality.
Lemma 3. Suppose that X has independent sub-Gaussian rows. Then, for any fixed i, k and every
δ ≥ 0, with probability at least 1− 4 exp(−c2δ2),

σmax

(
PM̄i

( 1

n
XTX

)
PM̄k

)
≤σmax

(
PM̄i

ΣPM̄k

)
+ c1 max(η, η2) (30)

where η =
√

t
n + δ√

n
, and constants c1, c2 only depend on the distribution of the rows in X .

See Appendix C.1 for the proof of this claim.

In order to build a bound (30) for all i, k and additionally for all α < β, we use the standard
union bound with the appropriate choice of δ; let p′ be the max{n, p}. By choosing δ =

√
c3 log p′

and the union bound, (30) holds with η =
√

t
n +

√
c3 log p′

n for all i and k with probability at

least 1 − 4 exp(−c2c3 log p′ + 2 log p + log
(|I|

2

)
) for some large enough constant c3 so that 1 −

4 exp(−c2c3 log p′ + 2 log p) ≥ 1− 4 exp(− log p′) = 1− 4
p′ .

Now, for every i, k, α and β, since the set S(i) is the subspace ofMα orM⊥α and similarly S(k) is
that ofMβ orM⊥β , along with the assumption in the statement, we have

σmax

(
PM̄i

ΣPM̄k

)
≤ κL

8
(|I|

2

)
Λ2|I|

.

At the same time, provided that n is greater than 128
( c1(|I|2 )Λ2|I|

κL

)2(
t+ c3 log p′

)
, we have

c1 max(η, η2) ≤ κL

8
(|I|

2

)
Λ2|I|

.

Combining two inequalities yields
1

2
Cmax = max

i,k

(
PM̄i

( 1

n
XTX

)
PM̄k

)
≤ κL

4
(|I|

2

)
Λ2|I|

,

hence, from (29)
2

n

∣∣∑
α<β

〈X∆α, X∆β〉
∣∣ ≤ κL

2

∑
α

‖∆α‖22.

as claimed.
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C.1 Proof of Lemma 3

For any fixed i and k, in order to bound σmin

(
XPM̄i

)
and σmax

(
XPM̄i

)
, we will appeal to the

following result in non-asympototic random matrix theory (see, for example, Theorem 5.39 in [13]):
Theorem 2. Let M be a n × p matrix whose rows Mi are independent sub-Gaussian with its the
second moment Σ ∈ Rp×p. Then with probability at least 1− 2 exp(−c2δ2), we have,

σmin(M) ≥
√
σmin(Σ)

(√
n− c1

√
p− δ

)
,

σmax(M) ≤
√
σmax(Σ)

(√
n+ c1

√
p+ δ

)
,

where the constants c1 and c2 only depend on the distribution of the rows Mi.

Therefore, we have

σmin

(
XPM̄i

)
≥
√
σmin(ΣPM̄i

)
(√

n− c1
√
t− δ

)
, (31)

σmax

(
XPM̄i

)
≤
√
σmax(ΣPM̄i

)
(√

n+ c1
√
t+ δ

)
, (32)

where t is the number of non-zero columns ofXPM̄i
, which is usually same as the number of atoms

in the space M̄α. From (31) and (32), the difference between the mean and the sample mean can
be derived by a straight forward way (we can extend Lemma 5.36 in [13]): For every δ ≥ 0, with
probability at least 1− 4 exp(−c2δ2),

σmax

[
PM̄i

( 1

n
XTX

)
PM̄k

− PM̄i
ΣPM̄k

]
≤ max(η, η2)

√
σmax(ΣPM̄i

)
√
σmax(ΣPM̄k

)

where η = c1

√
t
n + δ√

n
. Since σmax(·) is a norm, by the triangle inequality of a norm: ‖a‖−‖b‖ ≤

‖a− b‖, we can finally have

σmax

(
PM̄i

( 1

n
XTX

)
PM̄k

)
≤ σmax

(
PM̄i

ΣPM̄k

)
+ max(η, η2)

√
σmax(ΣPM̄i

)
√
σmax(ΣPM̄k

).

D Proof of Proposition 3

The overall proof can be easily extended from the trivial connections between ‖ · ‖2 and ‖ · ‖F , and
between 〈·, ·〉 and 〈〈·, ·〉〉. For the matrix parameter, however, there is a caveat in proof of Lemma
3: even after the projection, the dimension of X will not change unless the left singular vectors are
the standard bases. However we can still show the inequalities (31) and (32) from the following
reasoning:

σmax

(
XPM̄i

)
= σmax(XUU>) = σmax(XU)

≤
√
σmax(ΣU)

(√
n+ c1

√
t+ δ

)
=
√
σmax(ΣPM̄i

)
(√

n+ c1
√
t+ δ

)
.

E Proof of Corollary 2

Fist we restate the condition (D3) for individual clean structures, which have been analyzed previ-
ously in [11].

1

n
‖X∆s‖22 ≥ κ1‖∆s‖22 − κ2

log p

n
‖∆s‖21 for all ∆s ∈ Rp

1

n
‖X∆g‖22 ≥ κ′1‖∆g‖22 − κ′2E

([
max

t=1,2,...,q

‖εGt‖a∗√
n

])2

‖∆g‖21,a for all ∆g ∈ Rp
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with probability at least 1−c1 exp(−c2n). Note that ‖·‖a∗ is dual norm of ‖·‖a and ε ∼ N(0, Ip×p)
is a standard normal vector. As noted in [11], for a = 2 as a special case,

1

n
‖X∆g‖22 ≥ κ′1‖∆g‖22 − κ′2

(√m

n
+

√
3 log q

n

)2

‖∆g‖21,2 .

The next step is to choose the appropriate λα in order utilize Theorem 1. Since the dual norm of
‖ · ‖1 is the infinity norm, we need to choose λs for the sparsity structure such that

λs ≥ 2R∗s
(
∇θsL(θ∗g + θ∗s ;Zn1 )

)
= 4‖ 1

n
X>w‖∞.

Under the conditions on the column normalization of X and sub-Gaussian of w, [11] showed that

‖ 1
nX
>w‖∞ ≤ 2σ

√
log p
n with probability at least 1− c1 exp(−c2nλ2

s).

Moreover, [11] proved that the choice of λg as in the statement satisfies:,

λg = 8σ
{m1−1/a

√
n

+

√
log q

n

}
≥ 4 max

t=1,2,...,q

∥∥ 1

n
X>Gtw

∥∥
a∗

= 2R∗g
(
∇θgL(θ∗g + θ∗s ;Zn1 )

)
.

with probability at least 1− 2 exp(−2 log q).

Finally, when θ∗s is exactly s-sparse, we use the fact

Ψs

(
Ms(S)

)
= sup

∆∈M\{0}

‖∆‖1
‖∆‖2

≤
√
s (33)

where S is equal to the support set of θ∗s . At the same time, for a exactly group-sparse with non-zero
groups SG with cardinality sg , for any ∆ ∈Mg(SG), we have∑

t∈{1,2,...,q}

‖∆Gt‖a =
∑
t∈SG

‖∆Gt‖a ≤
∑
t∈SG

‖∆Gt‖2 ≤
√
sg‖∆‖2 (34)

where the first inequality holds for a ≥ 2. Hence, the claim follows from Corollary 1.

F Proof of Corollary 3

For n ≥ max(p,m), the RSC conditions for each structure are satisfied with gα = 0:

1

n
|||X∆α|||F =

1

n

p∑
j=1

‖(X∆α)j‖22 ≥
σmin(X>X)

n
|||∆α|||2F .

Then, by Theorem 5.39 in [13], we can easily verify that

1√
n
σmin(X) ≥

√
σmin(Σ)

(
1− c

√
p

n
− c′

√
1

n
log

1

δ

)
(35)

with probability at least 1− 2δ.

At the same time, the subspace compatibility constants for each structure can be easily extended
from (33) and (34):

Ψs(Ms) = sup
∆∈M\{0}

‖∆‖1
|||∆|||F

≤
√
s ,

Ψr(Mr) =
∑

∆∈M\{0}

‖∆‖r,a
|||∆|||F

≤
√
sr ,

Ψc(Mc) =
∑

∆∈M\{0}

‖∆‖c,a
|||∆|||F

≤
√
sc .
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Hence, in order to leverage Corollary 1, it remains to show λα ≥ 2R∗α
(
∇θαL(θ∗;Zn1 )

)
for each

structure. Under the conditions of ‖Xj‖2√
n
≤ 1, σmax(X) ≤

√
n, and the sub-Gaussian observation

noise, we can simply extend the results in [11]:

λs = 8σ

√
log p+ logm

n
≥ 4‖ 1

n
X>W‖∞ = 2R∗s

(
∇ΘsL(Θ∗r + Θ∗c + Θ∗s;Z

n
1 )
)

with probability at least 1− c1 exp(−c2(log p+ logm)). Moreover,

λr = 8σ
{m1−1/a

√
n

+

√
log p

n

}
≥ 4 max

t=1,2,...,p

∥∥ 1

n
X>Wt,∗

∥∥
a∗

= 2R∗r
(
∇ΘrL(Θ∗r + Θ∗c + Θ∗s;Z

n
1 )
)
.

with probability at least 1− 2 exp(−2 log p). Similarly,

λc = 8σ
{p1−1/a

√
n

+

√
logm

n

}
≥ 4 max

t=1,2,...,m

∥∥ 1

n
X>W∗,t

∥∥
a∗

= 2R∗c
(
∇ΘcL(Θ∗r + Θ∗c + Θ∗s;Z

n
1 )
)
.

with probability at least 1− 2 exp(−2 logm).

G Proof of Corollary 4

Since the PCA model can be understood as the special case of (7) with X = Ip×p, the restricted
strong convexities for both structures are trivially satisfied with κL = 1 and gα = 0.

As in the previous case, the subspace compatibility can be easily derived as:

ΨΘ(MΘ) = sup
∆∈M\{0}

|||∆|||1
|||∆|||F

≤
√
r ,

ΨΓ(MΓ) = sup
∆∈M\{0}

‖∆‖1
|||∆|||F

≤
√
s.

Hence, it again remains to show λα ≥ 2R∗α
(
∇θαL(θ∗;Zn1 )

)
for each structure; we can directly

appeal to the results for clean models [1]:

λΘ = 16
√
|||Σ|||2

√
p

n
≥ 4|||W |||2 = 2R∗Θ

(
∇ΘL(Θ + Γ;Zn1 )

)
with probability at least 1− 2 exp(−c1p). Also,

λΓ = 32ρ(Σ)

√
log p

n
≥ 4‖W‖∞ = 2R∗Γ

(
∇ΓL(Θ + Γ;Zn1 )

)
with probability at least 1− 2 exp(−c2 log p), which completes the proof.
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