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A Outline of Appendix

The proofs of our three main theorems are in appendices E, F and G respectively. We collate the machinery needed
to prove these in earlier appendices. In the first appendix B,we restate our method for convenience and set up some
notation. In the second appendix C, we state the optimality conditions characterizing the solution of the proposed
optimization problem. The next appendix D is an important section of the appendix: it sets out our resume for proving
our theorems via a primal-dual certificate construction. Such certificate proof techniques have been used in many
such high-dimensional analyses [3, 5]. We have to provide a slightly more delicate construction because of the two
interplaying parameter components in our optimization problem. Finally, in appendices E-G, we prove theorems 1-
3 respectively by showing that the primal-dual witness construction succeeds under the conditions of the respective
theorems. Appendix H describe our experimental setup and results in detail. Finally, Appendix I details the coordinate
descent algorithm used for solving the dirty model optimization.

B Definitions and Setup

We now introduce the terms and notation we use throughout theproofs.

Notation. For a vectorv, the normsℓ1, ℓ2 and ℓ∞ are denoted as‖v‖1 =
∑

k

∣∣v(k)
∣∣, ‖v‖2 =

√∑
k

∣∣v(k)
∣∣2

and ‖v‖∞ = maxk
∣∣v(k)

∣∣, respectively. Also, for a matrixQ ∈ R
p×r, the norm ℓζ/ℓρ is denoted as

‖Q‖ρ,ζ = ‖ (‖Q1‖ζ , · · ·, ‖Qp‖ζ) ‖ρ. The maximum singular value ofQ is denoted asλmax(Q). For a matrix
X ∈ R

n×p and a set of indeciesU ⊆ {1, · · ·, p}, the matrixXU ∈ R
n×|U| represents the sub-matrix ofX consisting

of Xj ’s wherej ∈ U .

Setup.The multiple regression problem is given as:

y(k) = X(k)θ∗(k) + w(k), k = 1, . . . , r. (1)

The optimization problem solved by our estimator:

(Ŝ, B̂) ∈ argmin
S,B

1

2n

K∑

k=1

∥∥∥y(k) −X(k)
(
S(k) +B(k)

)∥∥∥
2

2
+ λs‖S‖1,1 + λb‖B‖1,∞. (2)

B.1 Splits and Transforms

We first define ad-split of a matrix for anyd ∈ N:
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Definition 1. A pair of matrices(B∗, S∗) is said to be ad-split of any matrixΘ∗ if Θ∗ = B∗ + S∗, and

B∗
j =

{
θ∗j if ‖θ∗j ‖0 > d,
0 otherwise.

Thus,B contains those rows with greater thand elements, whileS contains those with less than or equal tod elements;
and are thus row-disjoint: for each rowj we have‖S∗

j ‖0‖B∗
j ‖0 = 0.

Remarks.One would expect that the solution(Ŝ, B̂) to the optimization problem (2) would be ad-split, for some
d ∈ N of the true parameterΘ∗. It turns out however, that the solution is actually atransformationof such ad-split.

We define thisclipping transformas follows.

Definition 2. Given two matricesB∗, S∗ ∈ R
p×r with disjoint row support and a scalard ∈ N with

minj∈RowSupp(B) ‖B∗
j ‖0 ≥ d + 1 and d ≥ maxj ‖S∗

j ‖0, we define the clipping transform(B̄, S̄) = Hd(B
∗, S∗)

as:

• For j /∈ RowSupp(B∗), SetB̄j = 0.

• For eachj ∈ RowSupp(B∗), sort the largest magnituded + 1 non-zero entries as
∣∣∣B∗(k1)

j

∣∣∣ ≥
∣∣∣B∗(k2)

j

∣∣∣ ≥
· · · ≥

∣∣∣B∗(kd+1)
j

∣∣∣ > 0 and let

B̄
(k)
j =





∣∣∣B∗(kd+1)
j

∣∣∣ sign
(
B

∗(k)
j

) ∣∣∣B∗(k)
j

∣∣∣ ≥
∣∣∣B∗(kd+1)

j

∣∣∣

B
∗(k)
j ow.

• SetS̄ = B∗ + S∗ − B̄.

Remarks.

1. The sum is maintained through the transformation, so thatif (B̄, S̄) = Hd(B
∗, S∗) thenB̄ + S̄ = B∗ + S∗.

2. If (B̂, Ŝ) = Hd(B̃, S̃), then we can recover the arguments(B̃, S̃) from (B̂, Ŝ) using:

B̃j =

{
B̂j + Ŝj j ∈ RowSupp(B̂)

B̂j ow
,

and then using̃S = B̂ + Ŝ − B̃.

We denote this mapping byH−1
d and say(B̃, S̃) = H−1

d (B̂, Ŝ). Note that this mapH−1
d is independent of the

parameterd.

B.2 Sparse Matrix Setup

Define Supp(S) = {(j, k) : S
(k)
j 6= 0}, and letUs(S̄) = {S ∈ R

p×r : Supp(S) ⊆ Supp(S̄)} be the subspace of
matrices whose their support is the subset of the matrixS̄. To shorten the notation, we useUs instead ofUs(S̄). The
orthogonal projection to the subspaceUs can be defined as follows:

(PUs
(Q))j,k =

{
Q

(k)
j (j, k) ∈ Supp(S̄)

0 ow.

We can define the orthogonal complement space ofUs to beU c
s (S̄) = {S ∈ R

p×r : Supp(S) ∩ Supp(S̄) = φ}. The
orthogonal projection to this space can be defined asPUc

s
(Q) = Q − PUs

(Q). We defineD(S) = max1≤j≤p ‖Sj‖0
denoting the maximum number of non-zero elements in any row of the sparse matrixS.
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B.3 Row-Sparse Matrix Setup

Define RowSupp(B) = {j : ∃k s.t. B
(k)
j 6= 0}, and letUb(B̄) = {B ∈ R

p×r : RowSupp(B) ⊆ RowSupp(B̄)} be
the subspace of matrices whose row support is the subset of the row support of the matrix̄B. To shorten the notation,
we useUb instead ofUb(B̄). The orthogonal projection to the subspaceUb can be defined as follows:

(PUb
(Q))j =

{
Qj j ∈ RowSupp(B̄)

0 ow.

We can define the orthogonal complement space ofUb to beU c
b (B̄) = {B ∈ R

p×r : RowSupp(B)∩RowSupp(B̄) =
φ}. The orthogonal projection to this space can be defined asPUc

b
(Q) = Q− PUb

(Q).

For a given matrixB ∈ R
p×r, letM+

j (B) =
{
k : B

(k)
j = ‖Bj‖∞ > 0

}
andM−

j (B) =
{
k : −B(k)

j = ‖Bj‖∞ > 0
}

be the set of indecies that the corresponding elements achieve the maximum magnitude on thejth row with positive
and negative signs, respectively. To shorten the notation,let M±

j (B) = M+
j (B) ∪ M−

j (B). Also, letM(B) =

min1≤j≤p |M±
j (B)| be the minimum number of elements who achieve the maximum in each row of the matrixB.

With this notation, we can now state some simple properties of the clipping transform:

Lemma 1. If (B̄, S̄) = Hd(B
∗, S∗) then the following properties hold

(P1) M(B̄) ≥ d+ 1 andD(S̄) ≤ d.

(P2) sign
(
S̄
(k)
j

)
= sign

(
B̄

(k)
j

)
= sign

(
B

∗(k)
j

)
for all j ∈ RowSupp(B∗) andk ∈M±

j (B∗).

(P3) S̄
(k)
j = 0 for all j ∈ RowSupp(B∗) andk /∈M±

j (B∗).

Proof. The proof directly follows from the construction of̄B andS̄.

B.4 Sub-differential of ℓ1/ℓ∞ and ℓ1/ℓ1 Norms

In this section we detail the form of the sub-differentials of the regularization norms used in the convex program (2).

Lemma 2 (Sub-differential ofℓ1/ℓ∞-Norm). The matrixZ̃ ∈ R
p×r belongs to the sub-differential ofℓ1/ℓ∞-norm of

matrix B̃, denoted as̃Z ∈ ∂
∥∥∥B̃
∥∥∥
1,∞

iff

(i) for all j ∈ RowSupp(B̃), we haveZ̃(k)
j =

{
t
(k)
j sign

(
B̃

(k)
j

)
k ∈M±

j (B̃)

0 ow.
, where, t(k)j ≥ 0 and

∑r
k=1 t

(k)
j = 1.

(ii) for all j /∈ RowSupp(B̃), we have
∑r

k=1

∣∣∣Z̃(k)
j

∣∣∣ ≤ 1.

Lemma 3 (Sub-differential ofℓ1/ℓ1-Norm). The matrixZ̃ ∈ R
p×r belongs to the sub-differential ofℓ1/ℓ1-norm of

matrix S̃, denoted as̃Z ∈ ∂
∥∥∥S̃
∥∥∥
1,1

iff

(i) for all (j, k) ∈ Supp(S̃), we haveZ̃(k)
j = sign

(
S̃
(k)
j

)
.

(ii) for all (j, k) /∈ Supp(S̃), we have
∣∣∣Z̃(k)

j

∣∣∣ ≤ 1.

Throughout the proof we use four pairs of matrices:

(B∗, S∗) : Thed-split of the true parameter matrixΘ for a fixed integerd.
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(B̄, S̄) : The clipped-transform of thed-split; (B̄, S̄) = Hd(B
∗, S∗).

(B̂, Ŝ) : The solution to the original convex optimization problem 2.

(B̃, S̃) : The solution to an oracle convex optimization problem 4.

Our proof outline in a nutshell: We first show that the solution of the oracle problem and the original problem are the
same, that is(B̂, Ŝ) = (B̃, S̃). Then, we conclude that Supp(Ŝ) = Supp(S̄) and Supp(B̂) = Supp(B̄). Finally, since
B̄ + S̄ = B∗ + S∗, we have Supp(B̂ + Ŝ) = Supp(Θ∗).

C Optimality Conditions

In this appendix, we study optimality conditions of the solutions(B̂, Ŝ) of the problem (2).

The first lemma states necessary conditions for any solutionof the problem (2).

Lemma 4. If (Ŝ, B̂) is a solution (uniqueness is NOTrequired) of (2) then the following properties hold

(P1) sign(Ŝ(k)
j ) = sign(B̂(k)

j ) for all (j, k) ∈ Supp(Ŝ) with j ∈ RowSupp(B̂).

(P2) if λb

λs
is not an integer,

1

D(Ŝ)
>

λs

λb
>

1

M(B̂)
.

(P3)
∣∣∣B̂(k)

j

∣∣∣ =
∥∥∥B̂j

∥∥∥
∞

for all (j, k) ∈ Supp(Ŝ).

(P4) if λb

λs
is not an integer,∀j ∃k such that(j, k) /∈ Supp(Ŝ) and

∣∣∣B̂(k)
j

∣∣∣ =
∥∥∥B̂j

∥∥∥
∞

.

(P5) if d = ⌊λb

λs
⌋ < λb

λs
then(B̂, Ŝ) = Hd(B̂, Ŝ).

Remarks.This lemma motivated the definition of the clipping transformHd. Note that (P5) states that the solution of
the optimization problem (2) has the form of the output of theclipping transform.

Proof. We provide the proof of each property separately.

(P1) Suppose there exists(j0, k0) ∈ Supp(Ŝ), such that sign(Ŝ(k)
j ) = −sign(B̂(k)

j ). Let B̌, Š ∈ R
p×r be matrices

equal toB̂, Ŝ in all entries except at(j0, k0). Consider the following two cases

1.
∣∣∣Ŝ(k0)

j0
+ B̂

(k0)
j0

∣∣∣ ≤
∥∥∥B̂j0

∥∥∥
∞

: Let B̌(k0)
j0

= B̂
(k0)
j0

+Ŝ
(k0)
j0

andŠ(k0)
j0

= 0. Notice that(j0, k0) /∈ Supp(Š).

2.
∣∣∣Ŝ(k0)

j0
+ B̂

(k0)
j0

∣∣∣ >
∥∥∥B̂j0

∥∥∥
∞

: Let B̌(k0)
j0

= −sign
(
B̂

(k0)
j0

)∥∥∥B̂j0

∥∥∥
∞

andŠ(k0)
j0

= Ŝ
(k0)
j0

+ B̂
(k0)
j0
− B̌

(k0)
j0

.

Notice that sign
(
B̌

(k0)
j0

)
= sign

(
Š
(k0)
j0

)
.

SinceB̌ + Š = B̂ + Ŝ and‖B̌j0‖∞ ≤ ‖B̂j0‖∞ and‖Šj0‖1 < ‖Ŝj0‖1, it is a contradiction to the optimality
of (B̂, Ŝ).

(P2) We prove the result in two steps by establishing 1.M(B̂) >
⌊
λb

λs

⌋
and 2.D(Ŝ) <

⌈
λb

λs

⌉
.

1. In contrary, suppose there exists a rowj0 ∈ RowSupp(B̂) such that
∣∣∣M±

j0
(B̂)

∣∣∣ ≤
⌊
λb

λs

⌋
. Let k∗ be the

index of the element whose magnitude is ranked
(⌊

λb

λs

⌋
+ 1
)

among the element of the vectorB̂j0+Ŝj0 .
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Let B̌, Š ∈ R
p×r be matrices equal tôB, Ŝ in all entries except on the rowj0 and

B̂
(k)
j0

=





∣∣∣B̂(k∗)
j0

+ Ŝ
(k∗)
j0

∣∣∣ sign
(
B̂

(k)
j0

) ∣∣∣B̂(k)
j0

+ Ŝ
(k)
j0

∣∣∣ ≥
∣∣∣B̂(k∗)

j0
+ Ŝ

(k∗)
j0

∣∣∣

B̂
(k)
j0

+ Ŝ
(k)
j0

ow,

and Šj0 = Ŝj0 + B̂j0 − B̌j0 . Notice thatM(B̌) >
⌊
λb

λs

⌋
and sign

(
Š
(k)
j0

)
= sign

(
B̌

(k)
j0

)

for all (j0, k) ∈ Supp
(
Šj0

)
since sign

(
Ŝ
(k)
j0

)
= sign

(
B̂

(k)
j0

)
for all (j0, k) ∈ Supp

(
Ŝj0

)

by (P1). Further, sinceŠ + B̌ = Ŝ + B̂ and ‖B̌j0‖∞ =
∣∣∣B̂(k∗)

j0

∣∣∣ +
∣∣∣Ŝ(k∗)

j0

∣∣∣ and

‖Šj0‖1 ≤ ‖Ŝj0‖1 +
⌊
λb

λs

⌋(∥∥∥B̂j0

∥∥∥
∞
−
∣∣∣B̌(k∗)

j0

∣∣∣−
∣∣∣Š(k∗)

j0

∣∣∣
)

, this is a contradiction to the optimal-

ity of (B̂, Ŝ) due to the fact thatλs

⌊
λb

λs

⌋
< λb.

2. In contrary, suppose there exists a rowj0 ∈ RowSupp(Ŝ) such that
∥∥∥Ŝj0

∥∥∥
0
≥
⌈
λb

λs

⌉
. Let k∗ be the

index of the element whose magnitude is ranked
⌈
λb

λs

⌉
among the elements of the vectorB̂j0 + Ŝj0 . Let

B̌, Š ∈ R
p×r be matrices respectively equal tôB andŜ in all entries except on the rowj0 and

B̂
(k)
j0

=





∣∣∣B̂(k∗)
j0

+ Ŝ
(k∗)
j0

∣∣∣ sign
(
B̂

(k)
j0

) ∣∣∣B̂(k)
j0

+ Ŝ
(k)
j0

∣∣∣ ≥
∣∣∣B̂(k∗)

j0
+ Ŝ

(k∗)
j0

∣∣∣

B̂
(k)
j0

+ Ŝ
(k)
j0

ow,

andŠj0 = Ŝj0 + B̂j0 − B̌j0 . Notice thatD(Š) <
⌈
λb

λs

⌉
and sign

(
Š
(k)
j0

)
= sign

(
B̌

(k)
j0

)
for all (j0, k) ∈

Supp
(
Šj0

)
since sign

(
Ŝ
(k)
j0

)
= sign

(
B̂

(k)
j0

)
for all (j0, k) ∈ Supp

(
Ŝj0

)
. SinceŠ + B̌ = Ŝ + B̂ and

‖B̌j0‖∞ =
∣∣∣B̂(k∗)

j0

∣∣∣ +
∣∣∣Ŝ(k∗)

j0

∣∣∣ and‖Šj0‖1 ≤ ‖Ŝj0‖1 +
(⌈

λb

λs

⌉
− 1
)(∥∥∥B̂j0

∥∥∥
∞
−
∣∣∣B̌(k∗)

j0

∣∣∣−
∣∣∣Š(k∗)

j0

∣∣∣
)

,

this is a contradiction to the optimality of(B̂, Ŝ), due to the fact thatλs

(⌈
λb

λs

⌉
− 1
)
< λs

⌊
λb

λs

⌋
< λb.

(P3) If j /∈ RowSupp(B̂) then the result is trivial. Suppose there exists(j0, k0) ∈ Supp(Ŝ)with j0 ∈ RowSupp(Ŝ)

such that
∣∣∣b(k0)

j0

∣∣∣ < ‖B̂j0‖∞. Let B̌, Š ∈ R
p×r be matrices equal tôB, Ŝ in all entries except for the entry

corresponding to the index(j0, k0). Let B̌(k0)
j0

=
∥∥∥B̂j0

∥∥∥
∞

sign
(
B̂

(k0)
j0

)
if
∣∣∣B̂(k0)

j0
+ Ŝ

(k0)
j0

∣∣∣ ≥ ‖bj0‖∞ and

B̌
(k0)
j0

= B̂
(k0)
j0

+ Ŝ
(k0)
j0

otherwise. LetŠ(k0)
j0

= Ŝ
(k0)
j0

+ B̂
(k0)
j0
− B̌

(k0)
j0

. SinceB̌ + Š = B̂ + Ŝ and
∥∥B̌j0

∥∥
∞ =

∥∥∥B̂j0

∥∥∥
∞

and
∥∥Šj0

∥∥
1
<
∥∥∥Ŝj0

∥∥∥
1
, it is a contradiction to the optimality of(B̂, Ŝ).

(P4) If j /∈ RowSupp(B̂) or j /∈ RowSupp(Ŝ) the result is trivial. Suppose there exists a rowj0 ∈ RowSupp(B̂)∩
RowSupp(Ŝ) such that the result does not hold for that. Letk∗ = argmax{k:(j,k)/∈Supp(Ŝ)}

∣∣∣B̂(k)
j

∣∣∣. Let

B̌, Š ∈ R
p×r be matrices equal tôB, Ŝ in all entries except for the rowj0 and

B̂
(k)
j0

=





∣∣∣B̂(k∗)
j0

∣∣∣ sign
(
B̂

(k)
j0

)
(j0, k) ∈ Supp(Ŝ)

B̂
(k)
j0

ow,

and Šj0 = Ŝj0 + B̂j0 − B̌j0 . SinceB̌ + Š = Ŝ + B̂ and
∥∥B̌j0

∥∥
∞ =

∣∣∣B̂(k∗)
j0

∣∣∣ and by (P2) and (P3),
∥∥Šj0

∥∥
1
≤
∥∥∥Ŝj0

∥∥∥
1
+
(⌈

λb

λs

⌉
− 1
)(∥∥∥B̂j0

∥∥∥
∞
−
∣∣∣B̂(k∗)

j0

∣∣∣
)

, this is a contradiction to the optimality of(B̂, Ŝ),

due to the fact thatλs

(⌈
λb

λs

⌉
− 1
)
< λs

⌊
λb

λs

⌋
< λb.
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(P5) This result follows from the definition ofHd and (P1)-(P4).

This concludes the proof of the lemma.

Lemma 5 (Convex Optimality). ((B̂, Ŝ), Ẑ) is an optimal primal-dual solution pair of(2) if it satisfies:

1. (Stationary Condition).

1

n

〈
X(k), X(k)

〉(
Ŝ(k) + B̂(k)

)
− 1

n
(X(k))T y(k) + Ẑ(k) = 0. (3)

2. (Dual Feasibility). Ẑ ∈ R
p×r satisfies:Ẑ ∈ λs∂‖Ŝ‖1,1 andẐ ∈ λb∂‖B̂‖1,∞ and for allk = 1, . . . , r.

Proof. The result follows from the standard optimality condition of convex programs.

D Primal-Dual Construction

In the light of Lemma 4, our goal is then to recover the clippedtransform(B̄, S̄) = Hd(B
∗, S∗) in our regression

model, for somed ∈ N. Accordingly, we construct the primal-dual pair((S̃, B̃), Z̃) as follows:

1. Set(S̃, B̃) as the solution to the oracle problem:

(S̃, B̃) ∈ arg min
S∈Us(S̄),B∈Ub(B̄)

1

2n

r∑

k=1

∥∥∥y(k) −X(k)
(
s(k) + b(k)

)∥∥∥
2

2
+ λs‖S‖1,1 + λb‖B‖1,∞. (4)

2. Let Z̃⋃r
k=1 Uk

=
(
Z̃s

)
⋃r

k=1 Uk

+
(
Z̃b

)
⋃r

k=1 Uk

, where,Z̃s = λssign(S̃), and for allj ∈ ⋃r
k=1 Uk,

(Z̃b)
(k)
j =





λb − λs‖S̃j‖0∣∣∣M±
j (B̃)

∣∣∣− ‖S̃j‖0
sign

(
B̃

(k)
j

)
k ∈M±

j (B̃) & (j, k) /∈ Supp(S̃)

0 ow

.

3. SetZ̃(k)
⋂r

k=1 Uc
k

from the stationary condition (3).

Remarks.Note that by construction((S̃, B̃), Z̃) satisfy:

(C1) PUs(S̄)(Z̃) = λssign
(
S̃
)

.

(C2) PUb(B̄)(Z̃) =

{
t
(k)
j sign

(
B̃

(k)
j

)
k ∈M±

j (B̄)

0 ow.
, where,t(k)j ≥ 0 such that

∑
k∈M±

j (B̄) t
(k)
j = λb.

(C3) 1
n

〈
X(k), X(k)

〉 (
Ŝ(k) + B̂(k)

)
− 1

n (X
(k))T y(k) + Z̃(k) = 0 ∀1 ≤ k ≤ r.

The next lemma states that(B̃, S̃) is equal to the optimal solution(B̂, Ŝ) to (2) provided that the dual candidatẽZ is
feasible.

Lemma 6. Under our assumptions on the design matricesX(k), the candidate pair(S̃, B̃) is unique solution to the
problem(2) if the dual candidatẽZ satisfies

(C4)
∥∥∥PUc

s (S̄)(Z̃)
∥∥∥
∞,∞

< λs.

6



(C5)
∥∥∥PUc

b (B̄)(Z̃)
∥∥∥
∞,1

< λb.

Proof. By construction, and assumption (C4) ,̃Z ∈ ∂‖S̃‖1,1. Similarly, by construction and assumptions (C5),
Z̃ ∈ ∂‖B̃‖1,∞. Thus, from Lemma 5((S̃, B̃), Z̃) is an optimal primal-dual pair of (2).

Uniqueness.By our assumptions on design matricesX(k), the matrix1
n

〈
X

(k)
Uk

, X
(k)
Uk

〉
is invertible for all1 ≤ k ≤ r.

Thus, as a function of the sum of the two components, the problem (2) isstrictly convex, so that the sum of the two
components is unique. Now, by Lemma 4, we know thatB̃ andS̃ satisfy(B̃, S̃) = Hd(B̃, S̃) whered = ⌊λb

λs
⌋. It

can also be verified that(Hd)
−1(B̃, S̃) is thed-split of the sum ofB̃ + S̃, which is unique. Thus, the component pair

(B̃, S̃) = (Hd)
−1(B̃, S̃) is unique.

Let∆ = B̃ + S̃ − B̄ − S̄. From the optimality conditions for the oracle problem (4),we have

1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉
∆

(k)
Uk
− 1

n

(
X

(k)
Uk

)T
w(k) + Z̃

(k)
Uk

= 0.

and consequently,

∆
(k)
Uk

=

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1(
1

n

(
X

(k)
Uk

)T
w(k) − Z̃

(k)
Uk

)
. (5)

Solving forZ̃(k)
⋂r

k=1 Uc
k

from (3), for allj ∈ ⋂r
k=1 Uc

k, we get

Z̃
(k)
j = − 1

n

〈
X

(k)
j , X

(k)
Uk

〉
∆

(k)
Uk

+
1

n

(
X

(k)
j

)T
w(k).

Substituting for the value of∆(k)
Uk

, we get

Z̃
(k)
j = − 1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1(
1

n

(
X

(k)
Uk

)T
w(k) − Z̃

(k)
Uk

)
+

1

n

(
X

(k)
j

)T
w(k). (6)

E Proof of Theorem 1

Proof of Theorem 1: Let d = ⌊λs

λb
⌋ and(B̄, S̄) = H(B∗, S∗), where,(B∗, S∗) is thed-split (see Appendix B) ofΘ∗.

Then, the result follows from Proposition 1.

Proposition 1 (Sufficient Conditions for Structure Recovery). Under assumptions of Theorem 1, with probability
1− c1 exp(−c2n) for some positive constantsc1 andc2, we are guaranteed that the following properties hold:

(P1) Problem(2) has unique solution(Ŝ, B̂) such that Supp(Ŝ) ⊆ Supp(S̄) and RowSupp(B̂) ⊆ RowSupp(B̄).

(P2)
∥∥∥B̂ + Ŝ − B̄ − S̄

∥∥∥
∞
≤
√

4σ2 log(pr)
Cminn

+ λsDmax =: T.

(P3) sign
(

Supp(Ŝj)
)
= sign

(
Supp(S̄∗

j )
)

for all j /∈ RowSupp(B̄) provided that min
j /∈RowSupp(B̄)

(j,k)∈Supp(S̄)

∣∣∣S̄(k)
j

∣∣∣ > T.

(P4) sign
(

Supp(Ŝj + B̂j)
)

= sign
(
Supp(S̄∗

j + B̄j)
)

for all j ∈ RowSupp(B̄) provided that

min
(j,k)∈Supp(B̄)

∣∣∣B̄(k)
j + S̄

(k)
j

∣∣∣ > T.

Proof. We prove the result separately for each part.
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(P1) Consider the primal-dual constructed in Appendix D, itsuffices to show that (C3) and (C4) in Lemma 6 are
satisfied with high probability. By Lemma 7, with probability at least1− c1 exp(−c2n) those two conditions
are hold and hence,(Ŝ, B̂) = (S̃, B̃) is the unique solution of (2) and the property (P1) follows.

(P2) Using (5), we have

max
j∈Uk

∣∣∣∆(k)
j

∣∣∣ ≤
∥∥∥∥∥

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
1

n

(
X

(k)
Uk

)T
w(k)

∥∥∥∥∥
∞

+

∥∥∥∥∥

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

Z̃
(k)
Uk

∥∥∥∥∥
∞

≤
√

4σ2 log (pr)

Cminn
+ λsDmax,

where, the second inequality holds with high probability asa result of Lemma 8 forα = ǫ
√

4σ2 log(pr)
Cminn

for

someǫ > 1, considering the fact that Var
(
∆

(k)
j

)
≤ σ2

Cminn
.

(P3) Using (P1) in Lemma 4, this event is equivalent to the event that for allj /∈ RowSupp(B̄) with (j, k) ∈
Supp(S̄), we have

(
∆

(k)
j + S̄

(k)
j

)
sign

(
S̄
(k)
j

)
> 0. By Hoeffding inequality, we have

P

[(
∆

(k)
j + S̄

(k)
j

)
sign

(
S̄
(k)
j

)
> 0
]
= P

[
−∆

(k)
j sign

(
S̄
(k)
j

)
<
∣∣∣S̄(k)

j

∣∣∣
]

≥ P

[ ∣∣∣∆(k)
j

∣∣∣ <
∣∣∣S̄(k)

j

∣∣∣
]
.

By part (P2), this event happens with high probability ifmin
j /∈RowSupp(B̄)

(j,k)∈Supp(S̄)

∣∣∣S̄(k)
j

∣∣∣ >

√
4σ2 log (pr)

Cminn
+ λsDmax.

(P4) Using (P1) in Lemma 4, this event is equivalent to the event that for all j ∈ RowSupp(B̄), we have(
∆

(k)
j + B̄

(k)
j + S̄

(k)
j

)
sign

(
B̄

(k)
j + S̄

(k)
j

)
> 0. By Hoeffding inequality, we have

P

[(
∆

(k)
j + B̄

(k)
j + S̄

(k)
j

)
sign

(
B̄

(k)
j + S̄

(k)
j

)
> 0
]
= P

[
−∆

(k)
j sign

(
B̄

(k)
j + S̄

(k)
j

)
<
∣∣∣B̄(k)

j + S̄
(k)
j

∣∣∣
]

≥ P

[ ∣∣∣∆(k)
j

∣∣∣ <
∣∣∣B̄(k)

j + S̄
(k)
j

∣∣∣
]
.

By part (P2), this event happens with high probability if min
(j,k)∈Supp(B̄)

∣∣∣B̄(k)
j + S̄

(k)
j

∣∣∣ >

√
4σ2 log (pr)

Cminn
+

λsDmax.

Lemma 7. Under conditions of Proposition 1, the conditions (C3) and (C4) in Lemma 6 hold for the primal-dual pair
constructed in Appendix D with probability at least1− c1 exp(−c2n) for some positive constantsc1 andc2.
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Proof. First, we need to bound the projection ofZ̃ into the spaceU c
s . Notice that

∣∣∣∣
(
PUc

s
(Z̃)
)(k)
j

∣∣∣∣ =





λb − λs‖S̃j‖0∣∣∣M±
j (B̃)

∣∣∣− ‖S̃j‖0
j ∈ RowSupp(B̃) & (j, k) /∈ Supp(S̃)

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow.

.

By our assumption on the ratio of the penalty regularizer coefficients, we have λb−λs‖S̃j‖0

|M±

j (B̃)|−‖S̃j‖0
< λs. Moreover, we

have
∣∣∣Z̃(k)

j

∣∣∣ ≤ max
j∈

⋂r
k=1 Uc

k

∥∥∥∥∥
1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
∥∥∥∥∥
1

(∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞
+
∥∥∥Z̃(k)

Uk

∥∥∥
∞

)
+

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

≤ (2− γs)

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

+ (1− γs)
∥∥∥Z̃(k)

Uk

∥∥∥
∞

≤ (2− γs)

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

+ (1− γs)λs.

Thus, the event‖PUc
s
(Z̃)‖∞,∞ < λs is equivalent to the eventmax

1≤k≤r

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

<
γs

2− γs
λs. By

lemma 8, this event happens with probability at least1− 2 exp
(
− γ2

snλ
2
s

4(2−γs)2σ2 + log(pr)
)

. This probability goes to1

if λs >
2(2−γs)σ

√
log(pr)

γs
√
n

as stated in the assumptions.

Next, we need to bound the projection ofZ̃ into the spaceU c
b . Notice that

r∑

k=1

∣∣∣∣
(
PUc

b
(Z̃)
)(k)
j

∣∣∣∣ =





λs‖S̃j‖0 j ∈
r⋃

k=1

Uk − RowSupp(B̄)

r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow

.

We haveλs‖S̃j‖0 ≤ λsD(S̄) < λb by our assumption on the ratio of the penalty regularizer coefficients. We can
establish the following bound:
r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ ≤
(

max
j∈⋂r

k=1 Uc
k

r∑

k=1

∥∥∥∥∥
1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
∥∥∥∥∥
1

)
max

j∈⋃r
k=1 Uk

∥∥∥Z̃(k)
j

∥∥∥
1

+

(
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∥∥∥∥∥
1

n

〈
X

(k)
j , X

(k)
Uk

〉( 1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
∥∥∥∥∥
1

+ 1

)
max
1≤k≤r

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

≤ (1− γb)λb + (2− γb) max
1≤k≤K

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

.

Thus, the event‖PUc
b
(Z̃)‖∞,1 < λb is equivalent to the eventmax1≤k≤r

∥∥∥ 1
n

(
X(k)

)T
w(k)

∥∥∥
∞

< γb

2−γb
λb. By

lemma 8, this event happens with probability at least1− 2 exp
(
− γ2

bnλ
2
b

4(2−γb)2σ2 + log(pr)
)

. This probability goes to1

if λb >
2(2−γb)σ

√
log(pr)

γb
√
n

as stated in the assumptions.

Hence, with probability at least1− c1 exp(−c2n) conditions (C3) and (C4) in Lemma 6 are satisfied.
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Lemma 8. P
[
max
1≤k≤r

∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞

< α

]
≥ 1− 2 exp

(
−α2n

4σ2
+ log(pr)

)

Proof. Sincew(k)
j ’s are distributed asN (0, σ2), we have1

n

(
X(k)

)T
w(k) distributed asN

(
0, σ2

n

(
X(k)

)T
X

(k)
Uk

)
.

Using Hoeffding inequality, we have

P

[∥∥∥∥
1

n

(
X(k)

)T
w(k)

∥∥∥∥
∞
≥ α

]
≤

p∑

j=1

P

[∣∣∣∣
1

n

(
X

(k)
j

)T
w(k)

∣∣∣∣ ≥ α

]

≤
p∑

j=1

2 exp


− α2n

2σ2
(
X

(k)
j

)T
X

(k)
j




≤ 2p exp

(
−α2n

4σ2

)
.

(7)

By union bound, the result follows.

F Proof of Theorem 2

Proof of Theorem 2: Let d = ⌊λs

λb
⌋ and(B̄, S̄) = H(B∗, S∗), where,(B∗, S∗) is thed-split (see Appendix B) ofΘ∗.

Then, the result follows from Proposition 1.

Proposition 2 (Sufficient Conditions for Gaussian Design Matrices). Under assumptions of Theorem 2, if

n > max

(
Bs log(pr)
Cminγ2

s
,
Bsr
(
r log(2)+log(p)

)

Cminγ2
b

)
then with probability at least1 − c1 exp (−c2 (r log(2) + log(p))) −

c3 exp(−c4 log(rs)) for some positive constantsc1 − c4, we are guaranteed that the following properties hold:

(P1) The solution(B̂, Ŝ) to (2) is unique and RowSupp(B̂) ⊆ RowSupp(B̄) and Supp(Ŝ) ⊆ Supp(S̄).

(P2)
∥∥∥B̂ + Ŝ − B̄ − S̄

∥∥∥
∞
≤
√

50σ2 log(rs)
nCmin

+ λs

(
Ds

Cmin
√
n
+Dmax

)
:= T.

(P3) sign
(

Supp(Ŝj)
)
= sign

(
Supp(S̄∗

j )
)

for all j /∈ RowSupp(B̄) provided that min
j /∈RowSupp(B̄)

(j,k)∈Supp(S̄)

∣∣∣S̄(k)
j

∣∣∣ > T.

(P4) sign
(

Supp(Ŝj + B̂j)
)

= sign
(
Supp(S̄∗

j + B̄j)
)

for all j ∈ RowSupp(B̄) provided that

min
(j,k)∈Supp(B̄)

∣∣∣B̄(k)
j + S̄

(k)
j

∣∣∣ > T.

Proof. We provide the proof of each part separately.

(P1) Consider the primal-dual pair(S̃, B̃, Z̃) constructed in Appendix D. It suffices to show that the conditions
(C3) and (C4) in Lemma 6 are satisfied under these assumptions. Lemma 9 guarantees that with probability
at least1 − c1 exp (−c2 (r log(2) + log(p))) those conditions are satisfied. Hence,(B̂, Ŝ) = (B̃, S̃) are the
unique solution to (2) and (P1) follows.
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(P2) From (5), we have

max
j∈Uk

∣∣∣∆(k)
j

∣∣∣ ≤
∥∥∥∥∥

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
1

n

(
X

(k)
Uk

)T
w(k)

∥∥∥∥∥
∞

+

∥∥∥∥∥

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

Z̃
(k)
Uk

∥∥∥∥∥
∞

≤
∥∥∥W(k)

∥∥∥
∞

+

∥∥∥∥∥

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

−
(
Σ

(k)
Uk,Uk

)−1
)
Z̃

(k)
Uk

∥∥∥∥∥
∞

+

∥∥∥∥
(
Σ

(k)
Uk,Uk

)−1

Z̃
(k)
Uk

∥∥∥∥
∞

.

We need to bound these three quantities. Notice that
∥∥∥∥
(
Σ

(k)
Uk,Uk

)−1

Z̃
(k)
Uk

∥∥∥∥
∞
≤
∥∥∥∥
(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥
∞,1

∥∥∥Z̃(k)
Uk

∥∥∥
∞

≤ Dmaxλs.

Also, we have
∥∥∥∥∥

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

−
(
Σ

(k)
Uk,Uk

)−1
)
Z̃

(k)
Uk

∥∥∥∥∥
∞
≤ λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

−
(
Σ

(k)
Uk,Uk

)−1
)∥∥∥Z̃(k)

Uk

∥∥∥
2

≤ λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

−
(
Σ

(k)
Uk,Uk

)−1
)
√
sλs

≤ 4

Cmin

√
s

n

√
sλs,

where, the last inequality holds with probability at least1−c1 exp
(
−c2 (

√
n−√s)2

)
for some positive con-

stantsc1 andc2 as a result of [4] on eigenvalues of Gaussian random matrices. Conditioned onX(k)
Uk

, the vec-

torW(k) ∈ R
|Uk| is a zero-mean Gaussian random vector with covariance matrix σ2

n

(
1
n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

.

1

n
λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
)
≤ 1

n
λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

−
(
Σ

(k)
Uk,Uk

)−1
)

+
1

n
λmax

((
Σ

(k)
Uk,Uk

)−1
)

≤ 1

n

(
4

Cmin

√
s

n
+

1

Cmin

)

≤ 5

nCmin
.

From the concentration of Gaussian random variables (Lemma8) and using the union bound, we get

P

[
max
1≤k≤r

∥∥∥W(k)
∥∥∥
∞
≥ t

]
≤ 2 exp

(
− t2nCmin

50σ2
+ log(rs)

)
.

For t = (1 + ǫ)
√

50σ2 log(rs)
nCmin

for someǫ > 0, the result follows.

(P3),(P4) The results are immediate consequence of (P2).

Lemma 9. Under the assumptions of Proposition 2, the conditions (P3)and (P4) in Lemma 6 hold for the primal-
dual pair constructed in Appendix D with probability at least 1 − c1 exp (−c2 (r log(2) + log(p))) for some positive
constantsc1 andc2.
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Proof. First, we need to bound the projection ofZ̃ into the spaceU c
s . Notice that

∣∣∣∣
(
PUc

s
(Z̃)
)(k)
j

∣∣∣∣ =





λb − λs‖S̃j‖0∣∣∣M±
j (B̃)

∣∣∣− ‖S̃j‖0
j ∈ RowSupp(B̃) & (j, k) /∈ Supp(S̃)

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow.

.

By our assumptions on the ratio of the penalty regularizer coefficients, we have λb−λs‖S̃j‖0

|M±

j (B̃)|−‖S̃j‖0
< λs. For all j ∈

⋂r
k=1 Uk andR ∈ R

p×r with i.i.d. standard Gaussian entries (see Lemma 4 in [3]), we have

∣∣∣Z̃(k)
j

∣∣∣ ≤ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

≤ max
j∈⋂r

k=1 Uc
k

∥∥∥∥Σ
(k)
j,Uk

(
Σ

(k)
Uk,Uk

)−1
∥∥∥∥
1

∥∥∥Z̃(k)
Uk

∥∥∥
∞

+ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
R

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

≤ (1− γs)λs + max
j∈⋂r

k=1 Uc
k

∣∣∣R(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

∣∣∣W(k)
j

∣∣∣ ,

The second inequality follows from the triangle inequlaityon the distributions. By Lemma 10, ifn ≥ 2
2−

√
3
log(pr)

then with high probability
∥∥∥X(k)

j

∥∥∥
2

2
≤ 2n and hence Var

(
W(k)

j

)
≤ 2σ2

n . Using the concentration results for the

zero-mean Gaussian random variableW(k)
j and using the union bound, we get

P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣W(k)
j

∣∣∣ ≥ t

]
≤ 2 exp

(
− t2n

4σ2
+ log(p)

)
∀t ≥ 0.

Conditioning on
(
X

(k)
Uk

, w(k), Z̃(k)
)

’s, we have thatR(k)
j is a zero-mean Gaussian random variable with

Var
(
R(k)

j

)
≤

∥∥∥Z̃(k)
Uk

∥∥∥
2

2

nCmin
≤ sλ2

s

nCmin
.

By concentration of Gaussian random variables, we have

P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣R(k)
j

∣∣∣ ≥ t

]
≤ 2 exp

(
− t2nCmin

Bsλ2
s

+ log(p)

)
∀t ≥ 0.

Using these bounds, we get

P

[∥∥∥PUc
s
(Z̃)
∥∥∥
∞,∞

<λs

]
≥ P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣R(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

∣∣∣W(k)
j

∣∣∣ < γsλs ∀ 1 ≤ k ≤ r

]

≥ P

[
max

j∈
⋂r

k=1 Uc
k

∣∣∣R(k)
j

∣∣∣ < t0 ∀ 1 ≤ k ≤ r

]
P

[
max

j∈
⋂r

k=1 Uc
k

∣∣∣W(k)
j

∣∣∣ < γsλs − t0 ∀ 1 ≤ k ≤ r

]

≥
(
1− 2 exp

(
− t20nCmin

Bsλ2
s

+ log(pr)

))(
1− 2 exp

(
− (γsλs − t0)

2n

4σ2
+ log(pr)

))
.

12



This probability goes to1 for t0 =
√
Bsλs√

Bsλs+2σ
√
Cmin

γsλs (the solution to t20Cmin

Bsλ2
s

= (γsλs−t0)
2

4σ2 ), if λs >√
4σ2Cmin log(pr)

γs

√
nCmin−

√
Bs log(pr)

provided thatn > Bs log(pr)
Cminγ2

s
as stated in the assumptions.

Next, we need to bound the projection ofZ̃ into the spaceU c
b . Notice that

r∑

k=1

∣∣∣∣
(
PUc

b
(Z̃)
)(k)
j

∣∣∣∣ =





λs‖S̃j‖0 j ∈
r⋃

k=1

Uk − RowSupp(B̄)

r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow

.

We haveλs‖S̃j‖0 ≤ λsD(S̄) < λb by our assumption on the ratio of the penalty regularizer coefficients. For all
j ∈ ⋂r

k=1 Uc
k, we have

r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ ≤ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣∣∣
1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

≤ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∥∥∥∥∥
1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉∥∥∥∥∥

1

max
j∈⋃r

k=1 Uk

∥∥∥Z̃(k)
j

∥∥∥
1

+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣∣∣
1

n

〈
R

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈

⋂r
k=1 Uc

k

r∑

k=1

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

≤ (1− γb)λb + max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣R(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ .

Let v ∈ {−1,+1}r be a vector of signs such that
∑r

k=1

∣∣∣W(k)
j

∣∣∣ =
∑r

k=1 vkW
(k)
j . Then,

Var

(
r∑

k=1

∣∣∣W(k)
j

∣∣∣
)

= Var

(
r∑

k=1

vkW(k)
j

)
≤ 2σ2r

n
.

Using the union bound and previous discussion, we get

P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ ≥ t

]
= P

[
max

j∈⋂r
k=1 Uc

k

max
v∈{−1,+1}r

r∑

k=1

vkW(k)
j ≥ t

]

≤ 2 exp

(
− t2n

4σ2r
+ r log(2) + log(p)

)
∀t ≥ 0.

We have

Var

(
r∑

k=1

∣∣∣R(k)
j

∣∣∣
)

= Var

(
r∑

k=1

vkR(k)
j

)

≤
∑r

k=1

∥∥∥Z̃(k)
j

∥∥∥
2

2

nCmin
≤ rsλ2

s

nCmin
<

rsλ2
b

nCmin

13



and consequently by concentration of Gaussian variables,

P

[
max

j∈⋂r
k=1 Uc

k

K∑

k=1

∣∣∣R(k)
j

∣∣∣ ≥ t

]
= P

[
max

j∈⋂r
k=1 Uc

k

max
v∈{−1,+1}r

r∑

k=1

vkR(k)
j ≥ t

]

≤ 2 exp

(
− t2nCmin

2rsλ2
b

+ r log(2) + log(p)

)
∀t ≥ 0.

Finally, we have

P

[∥∥∥PUc
b
(Z̃)
∥∥∥
∞,1

<λb

]
≥ P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣R(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ < γbλb

]

≥ P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣R(k)
j

∣∣∣ < t0

]
P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ < γbλb − t0

]

≥
(
1− 2 exp

(
− t20nCmin

2rsλ2
b

+ r log(2) + log(p)

))

(
1− 2 exp

(
− (γbλb − t0)

2n

4σ2r
+ r log(2) + log(p)

))
.

This probability goes to1 for t0 =
√
Bsλb√

Bsλb+2σ
√
Cmin

γbλb (the solution to(γbλb−t0)
2n

4σ2r =
t20nCmin

2rsλ2
b

), if

λb >

√
4σ2Cminr

(
r log(2) + log(p)

)

γb
√
nCmin −

√
Bsr

(
r log(2) + log(p)

) ,

provided thatn > Bsr(r log(2)+log(p))
γ2
bCmin

as stated in the assumptions. Hence, with probability at least 1 −
c1 exp (−c2 (r log(2) + log(p))) the conditions of the Lemma 6 are satisfied.

Lemma 10. P
[
max
1≤k≤r

max
1≤j≤p

∥∥∥X(k)
j

∥∥∥
2

2
≤ 2n

]
≥ 1− exp

(
−
(
1−
√
3

2

)
n+ log(pr)

)
.

Proof. Notice that
∥∥∥X(k)

j

∥∥∥
2

2
is aχ2 random variable withn degrees of freedom. According to [1], we have

P

[∥∥∥X(k)
j

∥∥∥
2

2
≥ t+ (

√
t+
√
n)2
]
≤ exp(−t) ∀t ≥ 0.

Letting t =
(√

3−1
2

)2
n and using the union bound, the result follows.

G Proof of Theorem 3

We will actually prove a more general theorem, from which Theorem 3 would follow as a corollary. Let

f(κ, τ, α) = 2− 2(1− τ)α− 2τακ+

(
1 + τ

2

)
ακ2,

and

g(κ, τ, α) = max

(
2 f(κ)

κ2
, f(κ)

)
.

14



Theorem 4. Under the assumptions of the Theorem 3, if

∣

∣

∣

∣

∣

{

j ∈ RowSupp(B̄) :

∣

∣

∣

∣

∣

∣

∣

∣
Θ

∗(1)
j

∣

∣

∣
−

∣

∣

∣
Θ

∗(2)
j

∣

∣

∣

∣

∣

∣

∣

∣

= o(λs)

}
∣

∣

∣

∣

∣

= (1 −

τ)αs , then the result of Theorem 3 holds forθ(n, s, p, α) = n
g(κ,τ,α) s log(p−(2−α)s) .

Corollary 4. Under the assumptions of the Theorem 4, if the regularization penalties are set asκ = λb/λs =
√
2,

then the result of Theorem 3 holds forθ(n, s, p, α) = n

(2−α+(3−2
√
2)τα)s log(p−(2−α)s)

.

Proof. Follows trivially by substitutingκ =
√
2 in Theorem 4. Indeed, this setting ofκ can also be shown to minimize

g(κ, τ, α):

min
1<κ<2

max

(
2 f(κ)

κ2
, f(κ)

)

= min

(
min

1<κ≤
√
2

2

κ2
(f(κ)) , min√

2<κ<2
f(κ)

)

= 2− α+ (3− 2
√
2) τ α.

Proof of Theorem 3: The proof follows from Corollary 4 by settingτ = 0.

We will now set out to prove Theorem 4. We will first need the following lemma.

Lemma 11. For anyj ∈ RowSupp(B̄), if
∣∣∣S̄(k)

j

∣∣∣ < o (λs) thenS̃(k)
j = 0 with probability1− c1 exp(−c2n).

Proof. Let Š be a matrix equal tõS except thaťS(k)
j = 0. Using the concentration of Gaussian random variables and

optimality of S̃, we get

P

[∣∣∣S̃(k)
j

∣∣∣ > 0
]
≤ P

[
2nλs

∣∣∣S̃(k)
j

∣∣∣ <
∥∥∥y(k) −X(k)(B̃(k) + Š(k))

∥∥∥
2

2
−
∥∥∥y(k) −X(k)(B̃(k) + S̃(k))

∥∥∥
2

2

]

= P


2nλs <

∥∥∥y(k) −X(k)(B̃(k) + Š(k))
∥∥∥
2

2
−
∥∥∥y(k) −X(k)(B̃(k) + Š(k))− S̃

(k)
j X

(k)
j

∥∥∥
2

2∥∥∥S̃(k)
j X

(k)
j

∥∥∥
2

∥∥∥X(k)
j

∥∥∥
2




≤ P

[
2nλs < 2

∥∥∥X(k)
j

∥∥∥
2

2

∥∥∥y(k) −X(k)(B̃(k) + Š(k))
∥∥∥
2

]

= P

[
nλs <

∥∥∥X(k)
j

∥∥∥
2

2

∥∥∥X(k)(B̄(k) + S̄(k) − B̃(k) − Š(k)) + w(k)
∥∥∥
2

]

Using theℓ∞ bound on the error, for some constantc, we have

P

[∣∣∣S̃(k)
j

∣∣∣ > 0
]
≤ P

[
nλs <

1

c

∣∣∣S̄(k)
j

∣∣∣
∥∥∥X(k)

j

∥∥∥
2

2

]

= P


 cλs∣∣∣S̄(k)

j

∣∣∣
n <

∥∥∥X(k)
j

∥∥∥
2

2


 .

Notice thatE

[∥∥∥X(k)
j

∥∥∥
2

2

]
= n. According to the concentration ofχ2 random variables concentration theorems (see

[1]), this probability vanishes exponentially fast inn for
∣∣∣S̄(k)

j

∣∣∣ < cλs.
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G.1 Proof of Theorem 4

We will now provide the proofs of different parts separately.

[4(a)] To prove the first part, recall the primal-dual pair(B̃, S̃, Z̃) constructed in Appendix D. It suffices to
show that the dual variablẽZ satisfies the conditions (C3) and (C4) of Lemma 6. By Lemma 12,these conditions are
satisfied with probability at least1− c1 exp(−c2n) for some positive constantsc1 andc2. Hence,(B̂, Ŝ) = (B̃, S̃) is
the unique optimal solution. The rest are direct consequences of Proposition 2 forCmin = 1 andDmax = 1.

G.1.1 Proof of Theorem 4(b)

The proof of Theorem 4(b) follows from the next lemma.

Lemma 12. Under assumptions of Theorem 3, the conditions (C3) and (C4)in Lemma 6 hold with probability at least
1− c1 exp(−c2n) for some positive constantsc1 andc2.

Proof. First, we need to bound the projection ofZ̃ into the spaceU c
s . Notice that

∣∣∣∣
(
PUc

s
(Z̃)
)(k)
j

∣∣∣∣ =





λb − λs‖S̃j‖0∣∣∣M±
j (B̃)

∣∣∣− ‖S̃j‖0
j ∈ RowSupp(B̃) & (j, k) /∈ Supp(S̃)

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow.

.

By our assumption on the penalty regularizer coefficients, we have λb−λs‖S̃j‖0

|M±

j (B̃)|−‖S̃j‖0
< λs. Moreover, we have

∣∣∣Z̃(k)
j

∣∣∣ ≤ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈⋂r

k=1 Uc
k

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

, max
j∈

⋂r
k=1 Uc

k

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1 Uc

k

∣∣∣W(k)
j

∣∣∣ .

By Lemma 10, ifn ≥ 2
2−

√
3
log(pK) then with high probability

∥∥∥X(k)
j

∥∥∥
2

2
≤ 2n and hence Var

(
W(k)

j

)
≤ 2σ2

n .

Notice thatE

[∥∥∥X(k)
j

∥∥∥
2

2

]
= n and we added the factor of2 arbitrarily to use the concentration theorems. Using the

concentration results for the zero-mean Gaussian random variableW(k)
j and using the union bound, we get

P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣W(k)
j

∣∣∣ ≥ t

]
≤ 2 exp

(
− t2n

4σ2
+ log

(
p− (2− α)s

))
∀t ≥ 0.

Conditioning on
(
X

(k)
Uk

, w(k), Z̃(k)
)

’s, we have thatZ(k)
j is a zero-mean Gaussian random variable with

Var
(
Z(k)

j

)
≤ 1

n
λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
)∥∥∥Z̃(k)

Uk

∥∥∥
2

2
.

According to the result of [4] on singular values of Gaussianmatrices, for the matrixX(k)
Uk

, we have

P

[
σmin

(
X

(k)
Uk

)
≤ (1− δ)

(√
n−√s

)]
≤ exp

(
−δ2 (

√
n−√s)2
2

)
∀δ > 0,
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and sinceλmax

((〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
)

= σmin

(
X

(k)
Uk

)−2

, we get

P

[
λmax

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
)
≥ (1 + δ)
(
1−

√
s
n

)2

]
≤ exp

(
−
(√

δ + 1− 1
)2

(
√
n−√s)2

2(1 + δ)

)
.

According to Lemma 11, if
∣∣∣
∣∣∣Θ∗(1)

j

∣∣∣−
∣∣∣Θ∗(2)

j

∣∣∣
∣∣∣ = o(λs), then with high probabilitỹSj = 0, so that|Θ̃(1)

j | = |Θ̃
(2)
j |.

Thus, among shared features (with sizeαs), a fractionτ have differing magnitudes oñΘ. Let τ1 be the fraction with
larger magnitude on the first task andτ2 the fraction with larger magnitude on the second task (so that τ = τ1 + τ2).
Then, with high probability, recalling thatλb = κλs for some1 < κ < 2, we get

Var
(
Z(1)

j

)
≤

∥∥∥Z̃(1)
U1

∥∥∥
2

2

(
√
n−√s)2

=
(1− α)sλ2

s + τ1αsλ
2
s + τ2αs(λb − λs)

2 + (1− τ1 − τ2)αs
λ2
b

4

(
√
n−√s)2

=

(
1− (1− τ1 − τ2)α− 2τ2ακ+

(
τ2 +

1−τ1−τ2
4

)
ακ2

)
sλ2

s

(
√
n−√s)2

,
f1(κ)sλ

2
s

(
√
n−√s)2

.

Similarly,

Var
(
Z(2)

j

)
≤

∥∥∥Z̃(2)
U2

∥∥∥
2

2

(
√
n−√s)2

=

(
1− (1− τ1 − τ2)α− 2τ1ακ+

(
τ1 +

1−τ1−τ2
4

)
ακ2

)
sλ2

s

(
√
n−√s)2

,
f2(κ)sλ

2
s

(
√
n−√s)2

.

By concentration of Gaussian random variables, we have

P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣Z(k)
j

∣∣∣ ≥ t

]
≤ 2 exp

(
− t2 (

√
n−√s)2

2fk(κ)sλ2
s

+ log
(
p− (1− α)s

)
)

∀t ≥ 0.

Using these bounds, we get

P

[∥∥∥PUc
s
(Z̃)
∥∥∥
∞,∞

<λs

]
≥ P

[
max

j∈
⋂r

k=1 Uc
k

∣∣∣Z(k)
j

∣∣∣+ max
j∈

⋂r
k=1 Uc

k

∣∣∣W(k)
j

∣∣∣ < λs ∀ 1 ≤ k ≤ K

]

≥ P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣Z(k)
j

∣∣∣ < t0 ∀ 1 ≤ k ≤ r

]
P

[
max

j∈⋂r
k=1 Uc

k

∣∣∣W(k)
j

∣∣∣ < λs − t0 ∀ 1 ≤ k ≤ r

]

≥
(
1− 2 exp

(
− t20 (

√
n−√s)2

(f1(κ) + f2(κ)) sλ2
s

+ log
(
p− (2− α)s

)
+ log(r)

))

(
1− 2 exp

(
− (λs − t0)

2n

4σ2
+ log

(
p− (2− α)s

)
+ log(r)

))
.
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This probability goes to1 for t0 =

√
(f1(κ)+f2(κ))nsλs√

(f1(κ)+f2(κ))nsλs+2σ(
√
n−√

s)
λs (the solution to

t20(
√
n−√

s)
2

(f1(κ)+f2(κ))sλ2
s
= (λs−t0)

2n
4σ2 ),

if

λs >

√
4σ2

(
1−

√
s
n

)2 (
log(r) + log

(
p− (2− α)s

))

√
n−

(√
s+

√
(f1(κ) + f2(κ)) s

(
log(r) + log

(
p− (2− α)s

)))

provided that (substitutingr = 2),

n > (f1(κ) + f2(κ)) s log
(
p− (2− α)s

)

+

(
1 + (f1(κ) + f2(κ)) log(2) + 2

√
(f1(κ) + f2(κ))

(
log(2) + log

(
p− (2− α)s

)))
s.

For large enoughp with s
p = o(1), we require

n > (f1(κ) + f2(κ)) s log
(
p− (2− α)s

)
. (8)

Next, we need to bound the projection ofZ̃ into the spaceU c
b . Notice that

r∑

k=1

∣∣∣∣
(
PUc

b
(Z̃)
)(k)
j

∣∣∣∣ =





λs‖S̃j‖0 j ∈
r⋃

k=1

Uk − RowSupp(B̄)

r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ j ∈
r⋂

k=1

Uc
k

0 ow

.

We haveλs‖S̃j‖0 ≤ λsD(S̄) < λb by our assumption on the ratio of penalty regularizer coefficients. For allj ∈⋂r
k=1 Uc

k, we have

r∑

k=1

∣∣∣Z̃(k)
j

∣∣∣ ≤ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣∣∣
1

n

〈
X

(k)
j , X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
〉
Z̃

(k)
Uk

∣∣∣∣∣

+ max
j∈

⋂r
k=1 Uc

k

r∑

k=1

∣∣∣∣∣
1

n

〈
X

(k)
j , I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1 (
X

(k)
Uk

)T
〉
w(k)

∣∣∣∣∣

= max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣Z(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ .

Let v ∈ {−1,+1}r be a vector of signs such that
∑r

k=1

∣∣∣W(k)
j

∣∣∣ =
∑r

k=1 vkW
(k)
j . Thus,

Var

(
r∑

k=1

∣∣∣W(k)
j

∣∣∣
)

= Var

(
r∑

k=1

vkW(k)
j

)
≤ 2σ2r

n
.

Using the union bound and previous discussion, we get

P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ ≥ t

]
= P

[
max

j∈⋂r
k=1 Uc

k

max
v∈{−1,+1}r

r∑

k=1

vkW(k)
j ≥ t

]

≤ 2 exp

(
− t2n

4σ2r
+ r log(2) + log

(
p− (2− α)s

))
∀t ≥ 0.
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Also from the previous analysis, assumingλb = κλs for some1 < κ < 2, we get

Var

(
r∑

k=1

∣∣∣Z(k)
j

∣∣∣
)

= Var

(
r∑

k=1

vkZ(k)
j

)
≤
∑r

k=1

∥∥∥Z̃(k)
j

∥∥∥
2

2

(
√
n−√s)2

=
2(1− α)sλ2

s + (τ1 + τ2)αsλ
2
s + (τ1 + τ2)αs(λb − λs)

2 + 2(1− τ1 − τ2)αs
λ2
b

4

(
√
n−√s)2

=
1
κ2 (f1(κ) + f2(κ)) sλ

2
b

(
√
n−√s)2

.

ans consequently,

P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣Z(k)
j

∣∣∣ ≥ t

]
= P

[
max

j∈⋂r
k=1 Uc

k

max
v∈{−1,+1}r

r∑

k=1

vkZ(k)
j ≥ t

]

≤ 2 exp

(
− t2 (

√
n−√s)2

1
κ2 (f1(κ) + f2(κ)) sλ2

b

+ r log(2) + log
(
p− (2− α)s

)
)

∀t ≥ 0.

Finally, we have

P

[∥∥∥PUc
b
(Z̃)
∥∥∥
∞,1

<λb

]
≥ P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣Z(k)
j

∣∣∣+ max
j∈⋂r

k=1 Uc
k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ < λb

]

≥ P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣Z(k)
j

∣∣∣ < t0

]
P

[
max

j∈⋂r
k=1 Uc

k

r∑

k=1

∣∣∣W(k)
j

∣∣∣ < λb − t0

]

≥
(
1− 2 exp

(
− t20 (

√
n−√s)2

1
κ2 (f1(κ) + f2(κ)) sλ2

b

+ r log(2) + log
(
p− (2− α)s

)
))

(
1− 2 exp

(
− (λb − t0)

2n

4σ2r
+ r log(2) + log

(
p− (2− α)s

)))
.

This probability goes to1 for t0 =

√

1
κ2 (f1(κ)+f2(κ))nsλb

√

1
κ2 (f1(κ)+f2(κ))nsλb+2σ(

√
n−√

s)
λb (the solution to (λb−t0)

2n
4σ2r =

t20(
√
n−√

s)2

1
κ2 (f1(κ)+f2(κ))sλ2

b

), if

λb >

√
4σ2

(
1−

√
s
n

)2
r
(
r log(2) + log

(
p− (2− α)s

))

√
n−

(√
s+

√
1
κ2 (f1(κ) + f2(κ)) sr

(
r log(2) + log

(
p− (2− α)s

)))

provided that (substitutingr = 2),

n >
2

κ2
(f1(κ) + f2(κ)) s log

(
p− (2− α)s

)

+

(
1 +

2

κ2
(f1(κ) + f2(κ)) 2 log(2) + 2

√
2

κ2
(f1(κ) + f2(κ))

(
2 log(2) + log

(
p− (2− α)s

)))
s.

For large enoughp with s
p = o(1), we require

n >
2

κ2
(f1(κ) + f2(κ)) s log

(
p− (2− α)s

)
.

Combining this result with (8), the lemma follows.
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G.1.2 Proof of Theorem 4(c)

We prove this result by contradiction. Suppose there exist asolution to (2), say (B̂, Ŝ) such that

sign
(

Supp(B̂ + Ŝ)
)

= sign(Supp(B∗ + S∗)). By Lemma 4, this is equivalent to having sign
(

Supp(B̂)
)

=

sign(Supp(B∗)) and sign
(

Supp(Ŝ)
)
= sign(Supp(S∗)) and λs

λb
= κ.

Now, supposen < (1− ν)max
(

2 f(κ)
κ2 , f(κ)

)
s log(p− (2− α)s), for someν > 0. This entails that either either (i)

n < (1− ν)f(κ)s log(p− (2− α)s), or (ii) n < (1− ν)
(

2 f(κ)
κ2

)
s log(p− (2− α)s).

Case (i).

We will show that with high probability,∃k∃j ∈ ⋂r
k=1 Uc

k such that
∣∣∣Z̃(k)

j

∣∣∣ > λs. This is a contradiction to Lemma 5.

Using (6) and conditioning on(X(k)
Uk

, w(k), Z̃
(k)
Uk

), for all j ∈ ⋂r
k=1 Uc

k we have that the random variablesZ̃(k)
j are

i.i.d. zero-mean Gaussian random variables with

Var
(
Z̃

(k)
j

)
=

∥∥∥∥∥
1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

Z̃
(k)
Uk

+
1

n

(
I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1(
X

(k)
Uk

)T
)
w(k)

∥∥∥∥∥

2

2

=

∥∥∥∥∥
1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1

Z̃
(k)
Uk

∥∥∥∥∥

2

2

+

∥∥∥∥∥
1

n

(
I− 1

n
X

(k)
Uk

(
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1(
X

(k)
Uk

)T
)
w(k)

∥∥∥∥∥

2

2

The second equality holds by orthogonality of projections.We thus have

Var
(
Z̃

(k)
j

)
≥ max


λmin

((
1

n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1
) ∥∥∥Z̃(k)

Uk

∥∥∥
2

2

n

,

∥∥∥∥
(
I− 1

nX
(k)
Uk

(
1
n

〈
X

(k)
Uk

, X
(k)
Uk

〉)−1(
X

(k)
Uk

)T)
w(k)

∥∥∥∥
2

2

n2




≥

∥∥∥Z̃(k)
Uk

∥∥∥
2

2

(
√
n+
√
s)

2

The second inequality holds with probability at least1−c1 exp
(
−c2 (

√
n+
√
s)

2
)

as a result of [4] on the eigenvalues

of Gaussian matrices. The third inequality holds with probability at least1 − c3 exp(−c4n) as a result of [1] on the
magnitude ofχ2 random variables. Considering̃B+ S̃, assume that among shared features (with sizeαs), a portion of
τ1 has larger magnitude on the fist task and a portion ofτ2 has larger magnitude on the second task (and consequently
a portion of1− τ1 − τ2 has equal magnitude on both tasks). Assumingλb = κλs for someκ ∈ (1, 2), we get

σ̃2
1 := Var

(
Z̃

(1)
j

)
=

(1− α)sλ2
s + τ1αsλ

2
s + τ2αs(λb − λs)

2 + (1− τ1 − τ2)αs
λ2
b

4

(
√
n+
√
s)

2

=:
f1(κ)sλ

2
s

n
(
1 +

√
s
n

)2 .
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The first equality follows from the construction of the dual matrix and the fact that we have recovered the sign support
correctly. The last strict inequality follows from the assumption thatθ(n, p, s, α) < 1. Similarly, we have

σ̃2
2 := Var

(
Z̃

(2)
j

)
>

(1− α)sλ2
s + τ2αsλ

2
s + τ1αs(λb − λs)

2 + (1− τ1 − τ2)αs
λ2
b

4

n
(
1 +

√
s
n

)2

=:
f2(κ)sλ

2
s

n
(
1 +

√
s
n

)2 .

Given these lower bounds on the variance, by results on Gaussian maxima (see [4]), for anyδ > 0, with high proba-
bility,

max
1≤k≤r

max
j∈⋃r

k=1 Uk

∣∣∣Z̃(k)
j

∣∣∣ ≥ (1− δ)

√
(σ̃2

1 + σ̃2
2) log

(
r
(
p− (2− α)s

))
.

This in turn can be bound as

(1− δ) (σ̃2
1 + σ̃2

2) log
(
r
(
p− (2− α)s

))

≥ (1− δ)
(f1(κ) + f2(κ)) s log

(
r
(
p− (2− α)s

))

n
(
1 +

√
s
n

)2 λ2
s.

≥ (1− δ)
(f(κ)) s log

(
r
(
p− (2− α)s

))

n
(
1 +

√
s
n

)2 λ2
s.

Consider two cases:

1. s
n = Ω(1): In this case, we haves > cn for some constantc > 0. Then,

(1− δ)
(f(κ)) s log

(
r
(
p− (2− α)s

))

n
(
1 +

√
s
n

)2 λ2
s

= (1− δ)
(f(κ)) (s/n) log

(
r
(
p− (2− α)s

))

(
1 +

√
s/n
)2 λ2

s

> c′f(κ) log
(
r
(
p− (2− α)s

))
λ2
s

> (1 + ǫ)λ2
s,

for any fixedǫ > 0, asp→∞.

2. s
n → 0: In this case, we haves/n = o(1). Here we will use that the sample size scales asn < (1 −
ν) (f(κ)) s log(p− (2− α)s).

(1− δ)
(f(κ)) s log

(
r
(
p− (2− α)s

))

n
(
1 +

√
s
n

)2 λ2
s

≥ (1− δ)(1− o(1))

1− ν
λ2
s

> (1 + ǫ)λ2
s,

for someǫ > 0 by takingδ small enough.

Thus with high probability,∃k∃j ∈ ⋂r
k=1 Uc

k such that
∣∣∣Z̃(k)

j

∣∣∣ > λs. This is a contradiction to Lemma 5.
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Case (ii). We need to show that with high probability, there exist a row that violates the sub-gradient condition of

ℓ∞-norm:∃j ∈ ⋂r
k=1 Uc

k such that
∥∥∥Z̃(k)

j

∥∥∥
1
> λb. This is a contradiction to Lemma 5.

Following the same proof technique, notice that
∑r

k=1 Z̃
(k)
j is a zero-mean Gaussian random variable with

Var
(∑r

k=1 Z̃
(k)
j

)
≥ r(σ̃2

1 + σ̃2
2). Thus, with high probability

max
j∈⋂r

k=1 Uc
k

∥∥∥Z̃(k)
j

∥∥∥
1
≥ (1− δ)

√
r(σ̃2

1 + σ̃2
2) log

(
p− (2− α)s

)
.

Following the same line of argument for this case, yields therequired bound
∥∥∥Z̃(k)

j

∥∥∥
1
> (1 + ǫ)λb.

This concludes the proof of Theorem 3(b).

H Synthetic and Real World Data used for Performance Analysis

In this section we present the structure of synthetic and real datasets we used and how we fit them into our model.

H.1 Synthetic Dataset

Data Generating: We explain how we generated the data for our simulation here. We pick three different values
of p = 128, 256, 512 and lets = ⌊0.1p⌋. For different values ofα, we letn swipe from0.Es log(p − (2 − α)s)

to Ds log(p − (2 − α)s). We generate a random signmatrix Θ̃∗ ∈ R
p×2 (each entry is either0, 1 or −1) with

column support sizes and row support size(2 − α)s as required by Theorem 3. Then, we multiply each row by
a real random number with magnitude greater than the minimumrequired for sign support recovery by Theorem 3.
We generate two sets of matricesX(1), X(2) andW and use one of them for training and the other one for cross
validation (test), subscripted Tr and Ts, respectively. Each entry of the noise matricesWTr,WTs ∈ R

n×2 is drawn
independently according toN (0, σ2) whereσ = 0.1. Each row of a design matrixX(k)

Tr , X
(k)
Ts ∈ R

n×p is sampled,
independent of any other rows, fromN (0, I2×2) for all k = 1, 2. HavingX(k), Theta∗ andW in hand, we can
calculateYTr, YTs ∈ R

n×2 using the modely(k) = X(k)θ(k) + w(k) for all k = 1, 2 for both train and test set of
variables.

Coordinate Descent Algorithm: Given the generated dataX(k)
Tr for k = 1, 2 andYTr in the previous section, we

want to recover matriceŝB andŜ that satisfy (2). We use the coordinate descent algorithm tonumerically solve the
problem (see Appendix I). The algorithm inputs the tuple(X

(1)
Tr , X

(2)
Tr , YTr, λs, λb, ǫ, B, S) and outputs a matrix pair

(B̂, Ŝ). The inputs(B,S) are initial guess and can be set to zero. However, when we search for optimal penalty
regularizer coefficients, we can use the result for previousset of coefficients(λb, λs) as a good initial guess for the
next coefficients(λb + ξ, λs + ζ). The parameterǫ captures the stopping criterion threshold of the algorithm. We
iterate inside the algorithm until the relative update change of the objective function is less thanǫ. Since we do not run
the algorithm completely (untilǫ = 0 works), we need to filter the small magnitude values in the solution (B̂, Ŝ) and
set them to be zero.

Choosing penalty regularizer coefficients: Dictated by optimality conditions, we have1 > λs

λb
> 1

2 . Thus, searching

range for one of the coefficients is bounded and known. We setλb = c
√

rlog(p)
n and search forc ∈ [0.01, 100], where

this interval is partitioned logarithmic. For any pair(λb, λs) we compute the objective function ofYTs andX(k)
Ts for

k = 1, 2 using the filtered(B̂, Ŝ) from the coordinate descent algorithm. Then across all choices of(λb, λs), we pick
the one with minimum objective function on the test data. Finally we letΘ̂ = Filter(B̂+ Ŝ) for (B̂, Ŝ) corresponding
to the optimal(λb, λs).

H.2 Handwritten Digits Dataset

Structure of the Dataset: In this dataset, there are 200 instances of handwritten digits 0-9 (totally 2000 digits). Each
instance of each digit is scanned to an image of the size30 × 48 pixels. This image is NOT provided by the dataset.
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Feature Size Type Dynamic Range
1 Pixel Shape (15× 16) 240 Integer 0-6
2 2D Fourier Transform Coefficients 74 Real 0-1
3 Karhunen-Loeve Transform Coeficients 64 Real -17:17
4 Profile Correlation 216 Integer 0-1400
5 Zernike Moments 46 Real 0-800

3 Integer 0-6
6 Morphological Features 1 Real 100-200

1 Real 1-3
1 Real 1500-18000

Table 1: Six different classes of features provided in the dataset. The dynamic ranges are approximate not exact. The
dynamic range of different morphological features are completely different. For those6 morphological features, we
provide their different dynamic ranges separately.

Using the full resolution image of each digit, the dataset provides six different classes of features. A total of649
features are provided for each instance of each digit. The information about each class of features is provided in
Table 1. The combined handwriting images of the record number 100 is shown in Fig 1 (ten images are concatenated
together with a spacer between each two).

Fitting the dataset to our model: Regardless of the nature of the features, we have649 features for each of200
instance of each digit. We need to learnK = 10 different tasks corresponding to ten different digits. To make the
associated numbers of features comparable, we shrink the dynamic range of each feature to the interval−1 and1.
We divide each feature by an appropriate number (perhaps larger than the maximum of that feature in the dataset)
to make sure that the dynamic range of all features is a (not too small) subset of[−1, 1]. Notice that in this division
process, we don’t care about the minimum and maximum of the training set. We just divide each feature by a fixed
and predetermined number we provided as maximum in Table 1. For example, we divide the Pixel Shape feature by
6, Karhunen-Loeve coefficients by17 or the last morphological feature by18000 and so on. We do not shift the data;
we only scale it.

Out of200 samples provided for each digit, we taken ≤ 200 samples for training. LetX(k) = X ∈ R
10n×649 for all

0 ≤ k ≤ 9 be the matrix whose firstn rows correspond to the features of the digit0, the secondn rows correspond
to the features of the digit1 and so on. Consequently, we set the vectory(k) ∈ {0, 1}10n to be the vector such that
y
(k)
j = 1 if and only if thejth row of the feature matrixX corresponds to the digitk. This setup is called binary

classification setup.

We want to find a block-sparse matrix̂B ∈ R
649×10 and a sparse matrix̂S ∈ R

649×10, so that for a given fea-
ture vectorx ∈ R

649 extracted from the image of a handwritten digit0 ≤ k∗ ≤ 9, we ideally havek∗ =

argmax0≤k≤9 x

(
B̂ + Ŝ

)
.

To find such matriceŝB andŜ, we solve (2). We tune the parametersλb andλs in order to get the best result by cross

validation. Since we have10 tasks, we search forλs

λb
∈
[

1
10 , 1

]
and letλb = c

√
2log(649)

n ≈ 5c√
n

, where, empirically
c ∈ [0.01, 10] is a constant to be searched.

I Coordinate Descent Algorithm

We use the coordinate descendent algorithm described as follows. The algorithm takes the tuple(X,Y, λs, λb, ǫ, B, S)

as input, and outputs(B̂, Ŝ). Note thatX andY are given to this algorithm, whileB andS are our initial guess or the
warm start of the regression matrices.ǫ is the precision parameter which determines the stopping criterion.

We update elements of the sparse matrixS using the subroutineUpdateS, and update elements in the block
sparse matrixB using the subroutineUpdateB, respectively, until the regression matrices converge. The pseudocode
is in Algorithm 1 to Algorithm 3.
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Algorithm 1 Dirty Model Solver
Input: X, Y , λb, λs, B, S andε
Output: Ŝ andB̂

Initialization:
for j = 1 : p do

for k = 1 : r do
c
(k)
j ←

〈
X

(k)
j , y(k)

〉

for i = 1 : p do

d
(k)
i,j ←

〈
X

(k)
i , X

(k)
j

〉

end for
end for

end for

Updating:
loop

S ← UpdateS(c; d;λs;B;S)
B ← UpdateB(c; d;λb;B;S)
if Relative Update< ǫ then

BREAK
end if

end loop
RETURNB̂ = B, Ŝ = S

Algorithm 2 UpdateB
Input: c, d,λb, B andS
Output: B

UpdateB using the cyclic coordinate descent algorithm forℓ1/ℓ∞ while keepingS unchanged.

for j = 1 : p do
for k = 1 : r do
α
(k)
j ← c

(k)
j −∑i6=j(b

(k)
i + s

(k)
i )d

(k)
i,j − s

(k)
i d

(k)
j,j

if
∑r

k=1 |α
(k)
j | ≤ λb then

bj ← 0
else

Sortα to be|α(k1)
j | ≥ |α(k2)

j | ≥ · · · ≥ |α(kr)
j |

m∗ = argmax1≤m≤r(
∑r

k=1 |α
(km)
j | − λb)/m

for i = 1 : r do
if i > m∗ then

b
(ki)
j ← α

(ki)
j

else

b
(ki)
j ← sign(α

(ki)

j )

m∗

(∑m∗

l=1 |α
(kl)
j | − λb

)

end if
end for

end if
end for

end for
RETURNB

24



Figure 1: An instance of images of the ten digits extracted from the dataset

I.1 Correctness of Algorithms

In this algorithm,B is the block sparse matrix andS is the sparse matrix. We alternatively updateB andS until they
converge. When updatingS, we cycle through each element ofS while holding all the other elements ofS andB
unchanged; When updatingB, we update each blockBj (the coefficient vector of thejth feature forr tasks) as a
whole, while keepingS and other coefficient vector ofB fixed.

For updatingB, the subproblem is updatingBj

B̂j = argmin
Bj

1

2

r∑

k=1

∥∥∥R(k)
j −B

(k)
j X

(k)
j

∥∥∥
2

2
+ λb‖Bj‖∞. (9)
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Algorithm 3 Update-S
Input: c, d,λs, B andS
Output: S

UpdateS using the cyclic coordinate descent algorithm for LASSO while keepingB unchanged.
for j = 1 : p do

for k = 1 : r do
α
(k)
j ← c

(k)
j −∑i6=j(b

(k)
i + s

(k)
i )d

(k)
i,j − s

(k)
i d

(k)
j,j

if |α(k)
j | ≤ λs then

skj ← 0
else
skj ← α

(k)
j − λssign(α(k)

j )
end if

end for
end for
RETURNS

If we take the partial residual vectorR(k)
j = y(k)−∑

l 6=j

(B
(k)
l X

(k)
l )−∑l(S

(k)
l X

(k)
l ), the correctness of this algorithm

will directly follow from the correctness of coordinate descent algorithm ofℓ1/ℓinf in [2]. With the same argument,
the correctness of the Algorithm 3 can be proven.
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