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A Outline of Appendix

The proofs of our three main theorems are in appendices Edksamspectively. We collate the machinery needed
to prove these in earlier appendices. In the first appendixeBrestate our method for convenience and set up some
notation. In the second appendix C, we state the optimatityditions characterizing the solution of the proposed
optimization problem. The next appendix D is an importactise of the appendix: it sets out our resume for proving
our theorems via a primal-dual certificate constructionctScertificate proof techniques have been used in many
such high-dimensional analyses [3, 5]. We have to providéhtly more delicate construction because of the two
interplaying parameter components in our optimizatiorbfgm. Finally, in appendices E-G, we prove theorems 1-
3 respectively by showing that the primal-dual witness toiasion succeeds under the conditions of the respective
theorems. Appendix H describe our experimental setup andtsdan detail. Finally, Appendix | details the coordinate
descent algorithm used for solving the dirty model optiricza

B Definitions and Setup

We now introduce the terms and notation we use throughougrtbes.

Notation. For a vectorv, the normsty, £, and (, are denoted agv(|; = >, [v®], |lv]lz = />, ]v(k>|2
and |v|l = max;|v™|, respectively. Also, for a matrix) € RP*", the norm{./(, is denoted as
1Qlpc = 1UIQ1ll¢c, -+ 1@pll¢c) I, The maximum singular value @ is denoted as\,..(Q). For a matrix

X € R"*? and a set of indecidg C {1,- - -,p}, the matrixXy, € R™*IU| represents the sub-matrix &f consisting
of X;’s wherej € U.

Setup.The multiple regression problem is given as:
y®) = xRgek) L) =1, 1 Q)

The optimization problem solved by our estimator:

K
A A 1 2
i = o &) — x ) (gk) (k)
(5.B) € rgmin - k§1:Hy X® (5® 1 BO) "+ A 1Sl + Aol Blloo- 7

B.1 Splits and Transforms

We first define al-split of a matrix for anyd € N:



Definition 1. A pair of matriceg B*, S*) is said to be al-split of any matrix9* if ©* = B* + S*, and

e [0 1051l > d.
J 0 otherwise

Thus,B contains those rows with greater thdelements, whil& contains those with less than or equaltelements;
and are thus row-disjoint: for each royywe have| S lo[| B} [lo = 0.

Remarks.One would expect that the soluticﬁ@, B) to the optimization problem (2) would bedasplit, for some
d € N of the true parameté®*. It turns out however, that the solution is actualliransformationof such ad-split.

We define thilipping transformas follows.

Definition 2. Given two matricesB*,S* < RP*" with disjoint row support and a scalatl € N with
min;erowsupps) || B llo > d + 1 andd > max; ||S7[|o, we define the clipping transforii3, S) = Ha(B*, S*)
as:

e For j ¢ RowSuppB*), SetB; = 0.

*(k1)

e For eachj € RowSuppB*), sort the largest magnitudé + 1 non-zero entries a*sBj > ‘B;(k"‘) >
> ’B;(kd“) > 0 and let
#(kay1)| g #(k) *(k) #(kay1)
B® _ { ;40 sign (1) 50 2 |Bye
J (k)
B; OoWw.

e SetS = B*+ S* — B.
Remarks.

1. The sum is maintained through the transformation, soifttf@, S) = H,(B*, S*) thenB + S = B* + S*.

2.1f (B, S) = Hq(B, S), then we can recover the argumefiis S) from (B, 5) using:

b

- Bj+S; j € RowSuppB)
By={"
B; ow
and then using = B + S — B.
We denote this mapping bj;! and say(B,S) = #;'(B,S). Note that this map ' is independent of the

parameteri.

B.2 Sparse Matrix Setup

Define SuppsS) = {(J, k) : SJ(.k) # 0}, and letUy(S) = {S € RP*" : SupdS) C SupgS)} be the subspace of
matrices whose their support is the subset of the matri¥Xo shorten the notation, we ugg instead ofU,(S). The
orthogonal projection to the subspdégcan be defined as follows:

Q"™ (j,k) € Supr(S)
0 OW.

(Pu. (Q))Jk = {
We can define the orthogonal complement spadé.ab beU¢(S) = {S € RP*" : SupgS) N SupgS) = ¢}. The
orthogonal projection to this space can be definethagQ) = Q — Py, (Q). We defineD(S) = max;<;<, [|5lo
denoting the maximum number of non-zero elements in any fdiveosparse matri.



B.3 Row-Sparse Matrix Setup

Define RowSuppB) = {j : 3k s.t. *) 0}, and letU;,(B) = {B € RP*" : RowSupgB) C RowSupgh5)} be

the subspace of matrices whose row support is the subset abwhsupport of the matri®. To shorten the notation,
we usel,, instead ofU,(B). The orthogonal projection to the subspégecan be defined as follows:

Q; j € RowSuppB)
0 ow.

(@), = {

We can define the orthogonal complement spadé,db beU¢ (B) = {B € RP*" : RowSupgB) N RowSupgB) =
¢}. The orthogonal projection to this space can be definddaéQ) = Q — Py, (Q).

For a given matrix3 € RP*", let M7 (B) = {k : B(k) = || Bjloc > O} andM; (B) = {k B(k) [ Bjlloc > 0}

be the set of indecies that the corresponding elementsvactiie maximum magnitude on tbé‘ row with positive
and negative signs, respectively. To shorten the notatmlrMi( ) = M+(B) U M, (B). Also, letM(B) =

ming<;<p |M]i( )| be the minimum number of elements who achieve the maximuradh sow of the matrixs.

With this notation, we can now state some simple properfigiseoclipping transform:
Lemma 1. If (B, S) = Ha(B*, S*) then the following properties hold

(P1) M(B) > d+ 1andD(S) < d.

(P2) sign( 7](.'“)) = S|gn( (k)) S|gn( (k)) for all j € RowSuppB*) andk € Mji(B*).

(P3) 5 =0 forall j € RowSuppB*) andk ¢ M (B*).

Proof. The proof directly follows from the construction &f and.S. O

B.4 Sub-differential of ¢, /¢, and ¢, /¢; Norms

In this section we detail the form of the sub-differentialstee regularization norms used in the convex program (2).

Lemma 2 (Sub-differential oty /¢,-Norm). The matrixZ € RPx" belongs to the sub-differential 6f/¢.,-norm of
matrix B, denoted asZ € 9 HEH iff
1,00

t(k)3|gn( )) k € M (B)

, where,tgk) > 0 and
0 oWw.

(i) for all j € RowSuppB), we haveZ](.’“) — {
r k
2 k=1 t; =1,
i ; D r 5 (k)
(i) forall j ¢ RowSuppB), we have) ", ‘Zj ‘ <1.
Lemma 3 (Sub-differential of¢; /¢;-Norm). The matrixZ € RPx" belongs to the sub-differential éf /¢,-norm of
matrix S, denoted asZ € 9 H§H1 ) iff

(i) forall (j,k) € Supmg), we haver(. ) = S|gn( (k))
(ii) forall (j, k) ¢ SupgS), we haquj(’“)] <1.

Throughout the proof we use four pairs of matrices:

(B*,S*) : Thed-split of the true parameter matré for a fixed integer!.



(B, S) : The clipped-transform of thé-split; (B, S) = H4(B*, S*).
(B, S) : The solution to the original convex optimization problem 2.

(B, S) : The solution to an oracle convex optimization problem 4.

Our proof outljnq in a nutshell: We first show that the solqtdlj the oracle problem apd the original problem are the
same, thati$B, S) = (B, S). Then, we conclude that Su@) = SupgS) and SuppB) = Supg B). Finally, since
B+ S = B* + S*, we have Sup@3 + S) = Supg©*).

C Optimality Conditions

In this appendix, we study optimality conditions of the $'mius(B, S) of the problem (2).
The first lemma states necessary conditions for any solofitime problem (2).

Lemma 4. If (S, B) is a solution (uniqueness is NO&quired) of (2) then the following properties hold
el A (k) . AN e A
(P1) sign(S;™) = sign(B;™’) for all (4, k) € SupgS) with j € RowSupph).
o . As 1
(P2) if £t is not anintegeli—-— > — > ———.
: D(S) N M(B)
(P3) ‘Bj(k)‘ = HB]»HOO for all (j, k) € Supgs).
(P4) if % is not an integety; 3k such that(j, k) ¢ SupgS) and ‘BJ(.’“)‘ = HBJH

(P5) ifd =[] < 3t then(B, S) = Ha(B, S).

RemarksThis lemma motivated the definition of the clipping transfick ;. Note that (P5) states that the solution of
the optimization problem (2) has the form of the output ofdheping transform.

Proof. We provide the proof of each property separately.

(P1) Suppose there exigt), ko) € SupS), such that sig(’SJ(,k)) = —sigrl(Bj(k)). Let B, S € RP*" be matrices
equal toB, S in all entries except atjo, ko). Consider the following two cases

‘S(ko) + B ko)

HB H LetB(k") ](f‘))+$'§f°) andSJ(fU) = 0. Notice that(jo, ko) ¢ SupdsS).

> HBjO OOZ LetBJ(,é‘O) — 7Sign(B§fo)) "BjOHOO andgj(fo) _ Svj((l)co) +B§CI::O) 73](.50).
Notice that sigr(B](.f“)) = sign (SJ((l:o))

SinceB + S = B+ S and||Bj, ||l < ||Bj, lloo @nd|[S;, |l1 < [1S;, |l1, it is a contradiction to the optimality
of (B, 9).

(P2) We prove the result in two steps by establishing/(.B) > {%J and 2.D(5) < [%W

1. In contrary, suppose there exists a rise RowSupgB) such that‘Mﬁ(B)’ < {%J Let £* be the
index of the element whose magnitude is rang%éﬂ + 1) among the element of the vectBr, + 5, .

4



Let B, S € RP*" be matrices equal t8, S in all entries except on the royy and

H(E™) | &™) o A (k) (k) | &(k) (k™) | (k"
Jo + Sjo Slgn(Bjo ) ‘Bjn + Sjo ’ z ’Bjo + Sjo

Bj(f) { H(k) | alk)

Bj,” +5j, ow,
and S;, = Sj, + B;, — Bj,. Notice thatM(B) > {%J and sign(S‘J(.f)> = Sign(Bj(-f))
for all (jo,k) € Supp(S;,) since sigr(S’ﬁ?) = sign(BJ(f)) for all (jo,k) € Supp(SjU>
by (P1). Further, sinceS + B = S + B and |Bj |l = ‘Bj(f)‘ I ’S%“)‘ and
1Sl < ISl + |3=] (| Ba] _ - [BS7] - |85

ity of (B, S) due to the fact thak, { J < Ap.

), this is a contradiction to the optimal-

2. In contrary, suppose there exists a rgyve RowSupij‘)

Sio = [%W Let k* be the
index of the element whose magnitude is ran@{ﬂ among the elements of the vectBy, + S;,. Let

B, S € RP*" be matrices respectively equalfbands in all entries except on the royy and

*) ek o A (k) (k) | &(k) H(k™) | &(k")

B _ jo T Sia 5|gn<BjO ) ‘Bjn + 55, ’ =z ’Bjo + 5o ‘
J A N
’ B 4 5 ow,

andS;, = S;, + Bj, — Bj,. Notice thatD(S) < [%W and sign(S(.k))

sign(B{\") for all (jo, k) €
. SinceS + B = S + B and
(k™)
o Sjo D’
A

(A—ﬂ—l)<>\s b—bJ < Ap.

vll

Supp(S;,) since sigr(S(k)) = sign(B(k)) for all (jo, k) € Supp( o
1Bislloe = |BU7] + 857 and Sl < 185l + ([32] = 1) (
this is a contradiction to the optimality 68, S), due to the fact thak,

OO

B,
|

(P3) Ifj ¢ RowSupp ) then the resultis trivial. Suppose there exigts ko) € SupfS) with j, € RowSupps)

such tha#bg.f[’) < ||Bj,|lo- Let B, S € RP*" be matrices equal &, S in all entries except for the entry
corresponding to the indeo, ko). Let B{*) = HBjou sign(Bﬁf‘J)) if ’B§f°) + 8% > b, ||, and

(ko) (ko) &(ko) ; G(ko) _ a(ko) (ko) (ko) ; 5 S P &
BjoO = BjoD +Sj0° otherwise. LetSjO0 = Sjoo +Bj00 — B, SinceB 4+ S = B+ S and

Jo
|1Bjol... = HBJ-O and||S;, ||, < ”Sj“ » itis a contradiction to the optimality 4B, S).

(P4) Ifj ¢ RowSuppéB) orj ¢ RowSupmS) the resultis trivial. Suppose there exists a rgwe RowSume)ﬁ
RowSupigS) such that the result does not hold for that. ket = argmax,, BJ(’“)‘. Let

#SupH(S)}
B, S € RP*" be matrices equal tB, S in all entries except for the royis and

B :{ BYlsign(BY) (o, k) € SupdS)
Jo & (k)

o ow,

and Sj0 = SJO Bj, — Bj,. SinceB + § = S+ B and| By, || = ’Bgf)‘ and by (P2) and (P3),

(3] =) (18]

duetothefactthax ([*W—1)<)\ { J<>\b

- ’B(k*) D this is a contradiction to the optimality ¢83, ),



(P5) This result follows from the definition 1, and (P1)-(P4).

This concludes the proof of the lemma.

O
Lemma 5 (Convex Optimality) ((B,S), Z) is an optimal primal-dual solution pair of2) if it satisfies:
1. (Stationary Condition).
1 <X<’€>,X<k>> (g(k) + B(k)) ~ Lxmnyrym 4 g . 3)
n n
2. (Dual Feasibility). Z € RP*" satisfies:Z € A\,0|S|1,1 andZ € 0| Bl|1,.c and forallk = 1,...,r
Proof. The result follows from the standard optimality conditidrconvex programs. -

D Primal-Dual Construction

In the light of Lemma 4, our goal is then to recover the cIipp@d\sform(B 5) Hq(B*,S*) in our regression
model, for somel € N. Accordingly, we construct the primal-dual p&itS, 3), Z) as follows:

1. Set(S, B) as the solution to the oracle problem:

~ ~ 2
(5.B)carg _  min ZHW XO (5094 50 | A1+ Mo Bl (@)
SeU,(S),BEU,(B) 2n 2 ’
2. LetZ - = (Z) + (2) where,Z, = \,sign(S), and for allj € | J;_, U,
: Ukzluk S U;;:luk b UZ:1Z/{k! s s 1 k=1 Yk
e (BY)  keariB) & (i) ¢ SupkS)
(20 = |MEB)| = 150 .
0 ow

3. SetZﬁi) from the stationary condition (3).
RemarksNote that by constructiof( S, B), Z) satisfy:

(CL) Py (5)(2) = )\ssign<§).

~ (k) (k) +( 5
(C2) Py, (2) = { S|gr(1)(B ) ke ﬁf/[\i (B) ,where,tg.k) > 0such thatZkeMji(B) t;k) = Ap.

(C3) L (x® x(®) (SUC) + B<k>) LX)yl 4 20 =0 YI<Kk<r

The next lemma states th@®, S) is equal to the optimal solutio(né, S) to (2) provided that the dual candidateis
feasible.

Lemma 6. Under our assumptions on the design matridé$), the candidate pai(.S, B) is unique solution to the
problem(2) if the dual candidate? satisfies

€4 |[Poes @) <

00,00



(C5) HPch(B)(Z)H <M.

00,1

Proof. By construction, and assumption (C4ﬁ, € 3||5‘\|171. Similarly, by construction and assumptions (C5),
Z € 9||B||1.0- Thus, from Lemma (S, B), Z) is an optimal primal-dual pair of (2).

UniquenessBy our assumptions on design matrices®, the matrix% Xz(jz), XZ(A'Z) is invertible for alll < k& <.
Thus, as a function of the sum of the two components, the enol§R) isstrictly convex, so that the sum of the two
components is unique. Now, by Lemma 4, we know thaand S satisfy (B, S) = Ha(B,S) whered = [3:]. It
can also be verified tha# ) ~* (B, S) is thed-split of the sum of5 + S, which is unique. Thus, the component pair
(B, S) = (Hq) (B, S) is unique. O

LetA = B+ S — B — S. From the optimality conditions for the oracle problem (& have

L/ @\ A0 L (0T ) 50

~ (X2, xy Al -~ (xP) w® + 2 =0,
and consequently,

—1
® _ (/5w g Loy onNT o _ 50
Al — (n (xi), Xty >> (n (x8) w® - 2 ) )

Solving forZﬁzzlul5 from (3), for allj € (), _, U, we get

Sk) L /o) o\ Ak L (T
20 === (xP X Al + — (x7) 0.

n n

Substituting for the value aﬁgj\) we get

= () (3 (o)) (G () e - a) S () e o

E Proof of Theorem 1

Proof of Theorem 1 Letd = | 3=] and(B, §) = H(B*, 5*), where,(B*, 5%) is thed-split (see Appendix B) 06*.
Then, the result follows from Proposition 1.

Proposition 1 (Sufficient Conditions for Structure Recoveryynder assumptions of Theorem 1, with probability
1 — ¢ exp(—con) for some positive constants andc,, we are guaranteed that the following properties hold:

(P1) Problem(2) has unique solutiofiS, B) such that Sup®) C Supg5) and RowSup(@3) C RowSuppB).

(P2) ‘B+S—B—5H < \JAZeer) 4 A Dy = T

(P3) sign(Suppﬁ@-)) = sign(SupiS;)) for all j ¢ RowSuppB) provided that min__ SJ(.’“)‘ > T.
oeoms)

(P4) sign(SupQS’j + Bj)) = sign(SupgS; + B;)) for all j € RowSuppB) provided that

min ‘Bj(k) + Sj(k)’ > T.
(4,k)€Sup B)

Proof. We prove the result separately for each part.



(P1) Consider the primal-dual constructed in Appendix Buiffices to show that (C3) and (C4) in Lemma 6 are
satisfied with high probability. By Lemma 7, with probabjldt leastl — ¢; exp(—con) those two conditions

are hold and hencé$, B) = (S, B) is the unique solution of (2) and the property (P1) follows.

(P2) Using (5), we have

—1 -1
(k) L/ k) (k) A L/ ok) (k) > (k)
my || < (5 (o x)) 5 () ) (G (X)) A
4021
< Jrleslrr)
Cminn

where, the second inequality holds with high probabilityaagsult of Lemma 8 fotv = €4/ % for

2

somee > 1, considering the fact that V: ﬂ§k)) < =7 —

Cminn’

(P3) Using (P1) in Lemma 4, this event is equivalent to thenetleat for allj ¢ RowSupgB) with (j,k) €
SupfS), we have(A§k) + SJ(.'“)) sign (S”j(.k)) > 0. By Hoeffding inequality, we have

P[(a% + 5 sign(5) > o] = [ ~ aWsign(s®) <[5 ]

J

Z]P’“A?”‘ < ‘5;“’].

. I S 4021
By part (P2), this event happens with high probability ifmin M + AsDiaz-

j ¢RowSupg B)
(4,k) ESUpR(S)

0
%) >

Cminn

(P4) Using (P1) in Lemma 4, this event is equivalent to thenetkat for allj € RowSupgh), we have
(Ag-k) + B](k) + SJ(-k)) sign (B](.k) + gj(k)) > 0. By Hoeffding inequality, we have

P [(A(.k) + BJ(-’“) + 5”](-}“)) sign (B](-k) + Sj(-k)) > 0} =P [ - A§-k)sign (BJ(k) + 5”5“) < ‘Bj(-k) + §J(-k)‘]

>P

(k) (k) | o(k)
9] <+ 57|

4021
o*log (pr)
Crninn

By part (P2), this event happens with high probability if min ’BJ(-'“) + Sj(k)‘ >
(4,k)€Sup( B)

)\stam-

O

Lemma 7. Under conditions of Proposition 1, the conditions (C3) a@d) in Lemma 6 hold for the primal-dual pair
constructed in Appendix D with probability at ledst- ¢; exp(—con) for some positive constants and cs.



Proof. First, we need to bound the projectionfﬁﬁnto the spacé/¢. Notice that

Ao — As||S; _ N
i I5ilo j € RowSupgB) & (j, k) ¢ SupHS)
M;
]
(Poa(@)) | = o
J jeus
k=1
0 OW.
By our assumption on the ratio of the penalty regularizeffmaents, we hav e ($)|I‘§|\!O < As. Moreover, we
have
-1
70| < Lix®w xwN (L7 xm LT ,m H ~WH l( “)
‘ZJ = jefi U n<Xﬂ Xy > (n <X”k ’Xuk> Alin (X ) v oj Zu|| o, )| (2 ) e
1 T
<(2— ) ’ (X(’“)) w®| (1= 7,) ‘Z
n 00 o]
1 T
<(2-7) ’ (X®) w®| 4 (1= ),
n o0
~ . ) 1 T s
Thus, the evenf| Py (Z)|loc.00 < As is equivalent to the eveninax ||— (X(k)) w®| < T, By
s ' Sksr || ) — Vs
lemma 8, this event happens with probability at ldast2 exp (—% + log(pr)). This probability goes ta
if \, > 22772)7VI8(r) oq tated in the assumptions.
YV
Next, we need to bound the projectionﬁﬁnto the spacé/;. Notice that
As 155110 j € | U — RowSuppB)
” k=1
~\ (k)
PUC(Z) N "5 k . A ¢
kz::l( b )] Z‘j()’ ]Enuk
k=1 k=1
0 ow
We have),||S;]lo < A\:D(S) < A, by our assumption on the ratio of the penalty regularizeffiients. We can
establish the following bound:
- 29 < S| (e, x @y (L xo X vl
I;\ ) _<j€g}ff“£; = (xPx 0 (= (x) X e 27,
~ 1/ vm xm ® v\ L\ )
- ( Z - : = k k
* <jerl]r,l:;i}fug; n <XJ ’Xuk > (n <X“k ’Xuk >> ‘ . * 1) 1211?%(7« n (X ) v oo

1 T
< =)A +(2—7) max |- (X(k)> w®

1<k<K

oo

Thus, the event|PU§(Z)|\oo’1 < Xp is equivalent to the evenhaxj<j<,

T
1 (xM) w(k)HOO < 2\ By

lemma 8, this event happens with probability at lgast 2 exp (—% + log(pr)). This probability goes ta
. 2(2—~yp)o4/log(pr . .
if Ay > %ﬁg(“ as stated in the assumptions.

Hence, with probability at leadt— ¢; exp(—con) conditions (C3) and (C4) in Lemma 6 are satisfied.



Oé2TL

1 (Xw))Tw(k) 22

Lemma8. P { max
n

Jax + 1og(p7’))

<a} 212exp<

Proof. Sincew§.k)’s are distributed asv(0,0?), we havel (X““))T w®) distributed as\’ (0, z (X("’))TXL(,’Z)).
Using Hoeffding inequality, we have
> a]

[p|: 1 (X<k>)Tw<k>
P a"n
<Y 2o [0 2
j=1

n
<9 a’n

exp [ —— | .
= PP\ T2

By union bound, the result follows. O

SCORE

IN

>r|

j=1

-

F Proof of Theorem 2

Proof of Theorem 2 Letd = | 3=] and(B, S) = H(B*, 5*), where,(B*, 5*) is thed-split (see Appendix B) 06*.
Then, the result follows from Proposition 1.

Proposition 2 (Sufficient Conditions for Gaussian Design Matrice$)nder assumptions of Theorem 2, if

Bslog(pr) BST(T]og(2)+log(p))
Cminv2 Comin

cs exp(—cy log(rs)) for some positive constants — ¢4, we are guaranteed that the following properties hold:

then with probability at leasi — c; exp (—cs (rlog(2) + log(p))) —

n > max

(P1) The solutior{B, S) to (2) is unique and RowSufiB) € RowSuppB) and SuppS) C Supgs).

(P2) [|B+5—B-8| < /0Bl 3 (Lt Dy ) =T,

(P3) sign(SupQ@-)) = sign(SupiS;)) for all j ¢ RowSuppB) provided thatm?v}siﬁpg)
(4,k) ESUpKS)

(k)
s ’ > T.

(P4) sign(SuppgSj +B))

min ‘B(k) + S(»k)’ > T.
(j.k)eSupB) |7 ’

| N—

= sign(SupgS; + B;)) for all j € RowSuppB) provided that

Proof. We provide the proof of each part separately.

(P1) Consider the primal-dual pif, B, Z) constructed in Appendix D. It suffices to show that the coodg
(C3) and (C4) in Lemma 6 are satisfied under these assumptiensma 9 guarantees that with probability

at leastl — ¢1 exp (—c; (rlog(2) + log(p))) those conditions are satisfied. HentB, S) = (B, S) are the
unique solution to (2) and (P1) follows.

10



(P2) From (5), we have

L/ v®\) L (x0T L /) 5 (k) 5 (k)

(3 x5 () ) o) (3 xie)) 2
L/ x®\Y L (g® 7Y 50
E Uy, U - Uy Uy, U

We need to bound these three quantities. Notice that

&\ sk
H (Euk ,Uk) Zuk

+

max
JEU

(®)
N ‘ <

<[]

oo

Also, we have

2

< Mnaz <<7lz <XZE{I;€9)’XZE{’Z)>>1 (ggﬂzuk)—l) sz(jz)
<o (20030 - () ) v

4 /s
< - )\sa

where, the last inequality holds with probability at lebstc; exp (—02 (vn — \/5)2> for some positive con-

stantsc; andcs as a result of [4] on eigenvalues of Gaussian random matr@asditioned onX(’z), the vec-
1

oo

tor Wk e RIU| s a zero-mean Gaussian random vector with covariancexﬁgztr(% <Xz(4],i)’ XL(,’Z)>) .

%)\mm <<i <X£{’Z>7XZ(1’Z)>)1> - %)\mw ((; <X£1]Z)»Xl(4i)>>1— (Eg?’uk>_1>

- 1 4 S n 1
n Omin n szn

5
< .
ncnw'n

From the concentration of Gaussian random variables (LeB)raad using the union bound, we get

N

t2 Cn LT
W(k)HOO > t} < 2exp (—2002”" + log(rs)) .

P | max
1<k<r

Fort = (1+¢€)y/ w for somee > 0, the result follows.

(P3),(P4) The results are immediate consequence of (P2).

O

Lemma 9. Under the assumptions of Proposition 2, the conditions @8®&) (P4) in Lemma 6 hold for the primal-
dual pair constructed in Appendix D with probability at Iéds— ¢, exp (—c2 (rlog(2) 4 log(p))) for some positive

constants:; andcs.

11



Proof. First, we need to bound the projectionfﬁﬁnto the spacé/¢. Notice that

20— 2ulSslo j € RowSupgB) & (7.) ¢ SupiS)
o | @)1
Pye(Z)) '|=1 . o
(@)= e P
k=1
0 ow.

By our assumptions on the ratio of the penalty regularizeffaments, we hav A;h(’g;l”sﬁgo“ < X Forallj e
J —l=stlo

M-y Ui andR € RP*" with i.i.d. standard Gaussian entries (see Lemma 4 in [3)hewe
‘Z;k)’ < max

L/ o) v (1 /v w0\ N\ 50
1/ Low (170t v\ (v®\T\ .
+j€r111£%)1(u1t ﬁ <X] ,I — EXuk E <Xl/{k ,Xuk > (Xuk ) w( )
< max

—1
}:(k) (E:(k) )
= e, ug J,Uk Uy Uy,

L/ o) v (L /vt ¢m\) N\ s
+ _max <R.7 )’Xb(lk E<Xuk)’X£1k> Zuk)

o0

JENe= U [T

1/ Low (170t v\ (v®\T\. k)
+ max = (X 1-—x 5<XukvXuk> (x3) )w

FENMk=1 Ui

()
Wj

R§-k)‘ + max
JENg=1 Uj;
2

The second inequality follows from the triangle inequlaity the distributions. By Lemma 10, +if > e log(pr)

)

<(1—7)As+ max
FE€Nk=1 Ui,

2
then with high probabilit)/"XJ(k)" < 2n and hence Va(WJ(.k)) < % Using the concentration results for the
2

zero-mean Gaussian random varia]z»ék) and using the union bound, we get

t2
W](’“)( > t} < 2exp (—Té + log(p)) vt > 0.
4o

P [ max
FEMk=1 U,
Conditioning on(Xé,’Z), wk) Z(’“)) 's, we have tha‘Rg.k) is a zero-mean Gaussian random variable with

2
2
2 < S)\S

> (k)
Uy

Var (ng)) < H

ncmin
By concentration of Gaussian random variables, we have

nCnLin

thCmm

P [ max
JEMk=1 Ui

Using these bounds, we get

R§k)‘ > t} < 2exp (

R(k) + max

P W< vi<k< r}
k=1""k

00,00 jeﬂ;c'=1 uf

PU'PU_S(Z)H <>\3}>]P’{ max

ZP[ max R;k)‘<t0 Vlgkgr]P{ max W;k)‘<’ys)\s—to \ﬂgkgr}
j€ﬂ£:1 U;Z jen;:l Z/f;c‘
t2nCin (vsAs — t0)?n
>(1-— _ o Trmin _ _ .
> <1 2 exp < BoA2 + 10g(pr)>> <1 2 exp < 152 + log(pr)

12



2 ) -~ .
This probability goes tol for t, = #{j\/m% . (the solution tot(jgcs’g‘é" = Loty oy >

\/ 402 Cin log(pr) Bs log(pr)
/B los) provided that, > ==—=23* as stated in the assumptions.

Next, we need to bound the projectionﬁiinto the spacé/;. Notice that

AsSillo j € |J U — RowsuppB)
r k=1
~\ (B
PUC(Z) . = LA i . r -
k_1< 5 )j ZH)’ geﬂuk
k=1 k=1
0 ow

We have),||S;llo < A.D(S) < A, by our assumption on the ratio of the penalty regularizeffimients. For all
J €Ny Ui, we have
r —1
(k) ®) x® (1 /5® k) (k)
S < e B (0t (G ) 2
T —1
L/igm g Ly (1/ym A
L (1 (x, x) Y -
no\ 77T\ N el
S zr: L/ pt xm £<X<k> X(k>> N\ s
ey g et fn \ T e o N T Ui

r

-1
L/ k) Low (1 /vt 0 &N\
e S (0 (30 ) ()

k=1 k=1

T

< mex, >

FJENk=1 U, 1

< (=) + max ‘ R¥| +  max ‘ k)‘
A 2

Letv € {—1,+1}" be a vector of signs such that, _, ‘W](’“ => et kaj(-k). Then,

T T 2 2
ar (Z ‘WJ(.'“)D = Var (kaw;k)> <227
k=1 k=1 "
Using the union bound and previous discussion, we get

k)’ o (k)
max W >t P max max v W >t
[ l; ‘ ‘| [Jemk lu Ve{ ! +1}TZ ' ]

JENk=1 U
2

< 2exp (— 5 +rlog(2) + 10g(p)> Vi > 0.
r

Var < ’RE“D = Var (Z v;ﬂ%ﬁ“)
k=1

Zk 1HZ H rs\2 rSA?
< <

nCmin ~ nCpin nCmin

We have

13



and consequently by concentration of Gaussian variables,

K
P max ‘R(-k)‘ >t
L‘em;:luz kzzl !

=P max max v R(k) >t
Leﬂzzluﬁve{—l,ﬂ}r; P=

thOmin

< _
< Zexp ( 2rs\;

+ rlog(2) + log(p)) vt > 0.

Finally, we have

IP’[HPch(Z)HOO 1< )\b} >P l maxulf Z ”R;k)‘ + max Z ‘Wj(-k)) < ’Yb)\b]
’ k=1 k=1

JENf—y FE€Nk=1 Ui
2P| max S O[RP|<to| P| max S| < -t
- Lenz_m;; N I jenzzlu;s; p] ST
t%nC’mm
>11-2 —— log(2) +1
R R R
Ay — t0)?n
<1 —2exp <(%ZU2TO) + rlog(2) + log(p)>> .
This probability goes ta for ¢, = %’yb/\b (the solution to(”“i;tr")z” = tg;f;g" , if
\/4020mmr (r log(2) + log(p))
Ap >

Yo/ Criny — \/Bsr (r log(2) + log(p)) |

provided thatn > Bs"("'ffg)flog(p)) as stated in the assumptions. Hence, with probability astléa—
ZCrin

c1 exp (—es (rlog(2) 4+ log(p))) the conditions of the Lemma 6 are satisfied.

O
Lemma 10. P L?%A max HXﬂ(k)Hz < Qn} > 1 — exp (— (1 . ?) n+ 1og(pr)>.
Proof. Notice thatHX}’” HZ is ax? random variable witm degrees of freedom. According to [1], we have
P {HX;’“)Hz >t (Vi \/5)2} <exp(—t)  Vt>0.
Lettingt = (%)271 and using the union bound, the result follows. O

G Proof of Theorem 3

We will actually prove a more general theorem, from which dileen 3 would follow as a corollary. Let

1
flrym,0) =2 =2(1 —T)ax — 270k + < _;7-) ar?,

and

K2

g(k, 7, @) = max (Qf("””) : f(@) .

14



*(1)
g

*(2)
~le;

:ous)}‘ = (-

Theorem 4. Under the assumptions of the Theorem %,{ij € RowSuppBb) :

T)as , then the result of Theorem 3 holds fifi, s, p, «) = T Slog(pi(zia)s).

Corollary 4. Under the assumptions of the Theorem 4, if the regularingtienalties are set as = \,/\, = /2,
then the result of Theorem 3 holds i, s, p, o) =

(27a+(372ﬁ)7a)s log(p—(2—a)s)’

Proof. Follows trivially by substituting: = v/2 in Theorem 4. Indeed, this settingotan also be shown to minimize

g(k, T, Q):
min_max <2f (k). f(n))

1<r<2 K2

:min( min 2 (f(x)), min f(@)

1<k<V2 K2 V2<Kr<2

=2—a+(3-2V2)Ta

Proof of Theorem 3 The proof follows from Corollary 4 by setting = 0.

We will now set out to prove Theorem 4. We will first need thddaing lemma.

Lemma 11. For anyj € RowSuppB), if ‘SJ(.’“)‘ <o(Xs) thenS”J(.k) = 0 with probability 1 — ¢; exp(—can).
Proof. Let S be a matrix equal t& except tha€§k) = 0. Using the concentration of Gaussian random variables and
optimality of S, we get

~ [ ~ - . 2 - - 2
P[5 > ] 2 foun, [89] < [5) - x0950 1 50— 50 - x50 1 509

® _ x® (B L 3N _ @ _ x®(r L Gk _ &0 @ |
[ = X0 B0 4 50— [y — xW B +50) — 5 xV||

<P lon), < QHX]@H Hy(k) — x®(B® +g<k>)H2]

—P |20, < x|
2

S(k) y- (k)
S

2
2

=2 [, < [0 B+ 50— 500 - 50) 40

Using thel,, bound on the error, for some constanwe have

5] > o] < [ma. < 2307
P |3 ‘>O]P{ms<csj x®|

_ As HX('k)HQ ’
R
J
2
Notice thatE {HXJ(’“)H ] = n. According to the concentration gf random variables concentration theorems (see
2

[1]), this probability vanishes exponentially fastirfor ’ _](.k)’ < chs.
]



G.1 Proof of Theorem 4

We will now provide the proofs of different parts separately

[4(a)] To prove the first part, recall the primal-dual pdiB, S, Z) constructed in Appendix D. It suffices to
show that the dual variablg satisfies the conditions (C3) and (C4) of Lemma 6. By Lemmatigse conditions are
satisfied with probability at leagt— ¢, exp(—con) for some positive constants andc,. Hence,(B, S) = (B, S) is
the unique optimal solution. The rest are direct consecqgentProposition 2 fo€,,,;,, = 1 andD,,,,, = 1

G.1.1 Proof of Theorem 4(b)

The proof of Theorem 4(b) follows from the next lemma.

Lemma 12. Under assumptions of Theorem 3, the conditions (C3) andifC4gmma 6 hold with probability at least
1 — ¢1 exp(—con) for some positive constants and c,.

Proof. First, we need to bound the projectionfﬁﬁnto the spacé/¢. Notice that

% — 2155 j € RowSupgB) & (j,k) ¢ SupiiS)
o | @] =185
Pue(Z)) | =% .. o
(@)= e N
k=1
0 ow.

By our assumption on the penalty regularizer coefficient».shvswe|M“(_];)"l”sﬁ''SloH < As. Moreover, we have
J —l=sllo

-1
> (k) L/ v (1 /) (k) > (k)
‘ J ‘Sjerrjr,lgi}fu,g n<Xj  Xug, (n <X”’° Xug, >> >Z“’c
L/ k) Low (170t v\ (v®)\7
k
+jerr1%i)fu£ ”<Xj T (n <Xu’””Xu"“ >> (Xuk) >w()
2 max Z;k) +  max W](k)‘
JENR=1 UL JENL=1 UL

2 2
By Lemma 10, ifn > 2—2\/5 log(pK) then with high probabilityHXj(.k)H2 < 2n and hence Va(Wj(-k)) < 2%

2
Notice thatE [HXJ(’“) Hz] = n and we added the factor @farbitrarily to use the concentration theorems. Using the

concentration results for the zero-mean Gaussian randd&biawj(k) and using the union bound, we get

2
(k) t“n
P Lerrﬁa}fug W; ’ > t] < 2exp <4O_2 +log (p— (2 — a)s)) vt > 0.

()

Conditioning on(Xuk ,wk) Z(k))’s, we have thaizj(k) is a zero-mean Gaussian random variable with

-1
(k) 1 L /) (k) > (k)
var (2 )gnw<<n<xuk,xuk )) )HZW

According to the result of [4] on singular values of Gaussiatrices, for the matrizX(i), we have

P omin (X)) < (1-8) (VA= v5)| < exp (—W) V8 > 0,

2
.
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and since\,,,qz <(<X(k) Xb(,k)>)1) = Omin (Xé,’?)ﬂ, we get

P [)\mm <<; <X1§1]Z)7XZE{IZ)>>_1> > (1(i+\/(2)2

According to Lemma 11, iﬂ@;(l)‘ - ‘@ H = o()\,), then with high probabilitys; = 0, so that|@ | | 5.2)|.

Thus, among shared features (with sizg, a fractionr have differing magnitudes oft. Let; be the fraction with
larger magnitude on the first task andthe fraction with larger magnitude on the second task (sbrtha 7 + 73).
Then, with high probability, recalling that, = <\ for somel < x < 2, we get

o [T ) (- S
=P 2(1+0) '

|2
var ;") < VG
_ (1 — a)sA2 + rrasA? + mas(Ap — A)2 + (1 — 71 — TQ)CES%?’
(Vi V5)’
_ (1—(1—7 —m)a—2nak + (12 + 1E0=72) ak?) sA?
(V= /5)"
a f1(k)sA? .
(Vi —5)"

Similarly,

var(2)7) < <\HF— Nok
(1 —(1=7 —m)a—2nak+ (7'1 + 1_7}%”) omg) s\2

(Vi —/5)"

fa(k)sA '
(Vi = V3"

[I>

By concentration of Gaussian random variables, we have

]P’[ max > } < 2exp (W_\/E)QJrlog(p(la)s)) vt > 0.

JENk=1 U},

2fr(r)sA2

Using these bounds, we get

P[HPUSC(Z)H <)\S]>P[ max )’<>\5 v1<k<K]

00,00 JENk=1 Uj; JENG_ U
IP’{ max V1<k‘<r} [ max W(k)’</\5—to nggr}
JEMi=a U, JENk=1 U I

3 (Vi — )’
<1 — 2exp ( (%) + Fa(m)) 512 +1log (p— (2 —a)s) + log(r)))

<1 — 2exp (M;U’;O)% +log (p— (2 —a)s) + 10g(r)>> .
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, " VLR Fa()msAs , B(Vi-v5)"  u—to)?n
This probability goes td for £ = V{(f1(8)+f2 () nsha+20(Vn—/5) As (the solution tO(fl (K)+f2(r))sAZ — 402 ),
if

\/402 (1= v/2)? (108(r) +105 (p — (2~ )s)
V= (Va0 + £ s (1ostr) +1og (- (2 - 1)) )

provided that (substituting = 2),

> (Ai(R) + fo(x)) s1og (p— (2 a)s)

As >

+ (1 + (f1(5) + fo(s)) log(2) + 2\/ (fi(k) + fa(x)) (log(2) +log (p = (2 - a)s))) 5.
For large enough with > = o(1), we require

> (A1(8) + f2(r)) slog (p = (2= )s). (®)

Next, we need to bound the projectionfbﬁnto the spacé/;. Notice that

Xsl185l0 j € | U — RowSuppB)
- _ =t
Py:(Z = s T
x| @) 1= s e
k=1 k=1
0 ow

We have,||S;[lo < A\sD(S) < A, by our assumption on the ratio of penalty regularizer cdeffits. For allj €
M-, Ug, we have
-1
®) y® (1 /5® w (k)
= <Xj xE (n <Xuk xE >) >Zuk

~ 1/ W (1m0 v\ (@D
k
= <X - X (n (X, xip >) (%)) >w< )

T
Z‘Z k)‘ < max
JENL= 11/{c

+omax Y-

JENMk=1 U},

k=1
T
k k)
= max Z‘Z( )‘—l— max ‘W( ‘
FEMi=a U 1 2 TEMa=r YR

Letv € {—1,+1}" be a vector of signs such that}_, ‘WJ(.’“)’ =30 oW Thus,

ar (Z ‘W}’”)) — Var (Z kaJ(-k)> < QU:T.
k=1

k=1

Using the union bound and previous discussion, we get

[ max Z‘Wk)‘>t
J k=1

=P max v W
EMpey UE Leﬂk LU ve{— 1+1}fZ k ]

< 2exp (

2

t“n
4o2r

+ rlog(2) +log (p— (2 - a)s)> vt > 0.
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Also from the previous analysis, assumikg= x\; for somel < x < 2, we get

N 2
r r T |27
Var (Z ‘Z;k)’> — Var (Z ukz;“) <1
k=1 k=1

(V-5
_ 2(1 — a)sA2 + (11 + m2)asA2 + (11 + 12)as( Ny — Xs)2 +2(1 — 71 — Tg)as%g
(Vi = V5)°

2 (1) + fo() 523
(Vi =)’

ans consequently,

P max ‘Z(k)‘ >t| =P max max v Z(k) >t
Len;':lu;,; 7T GEN;_ Uf ve(- 1+1}rZ *

< 2exp (— T (;1 ((;)f—kf;(fz))) BY + rlog(2) +log (p— (2 — a)s)) vt > 0.

Finally, we have
#llr@)] o] 2 25 P
res@ion 22 |, 312571+ o 2o
p 2] <10 B ‘W(k)‘<)\—t
Le rI]Iiai(leC Z o max b —to

JENK=1 U

> (1—2exp (—1(1}0 (VA= V5)° + rlog(2) + log (p—(2—a)s)>>

1(K) + fa(K)) sAD

1—2exp (—W + rlog(2) + log (p — (2 — a)s))) .

_ N V22 (F1(0)+F2(k))ns . —to)?n
This probability goes tol for ¢, = JE e if( ) fi( 1)2 (\bf \[)/\b (the solution to 7(“4;2“22 =
5 (f1(r 2(k))nsAp+20(v/n—/s

t5(vn—/s)* ), if
3 (f1(0)+f2(r))sAZ 7

\/402 (1- \/5)2 r(r log(2) +1log (p— (2 — a)s))
Vit (Va2 () + 1)) s (rlog(@) + g (0 2= )9))

provided that (substituting = 2),

> (fi) + fali)) slog (p = (2 )s)

Ap >

+ (1 2 (al) + fal)) 2108(2) + 2\/ 2 () + o) (2108(2) + log (p - (2 - a)s))> s
For large enougl with IS; = o(1), we require
n> 2 () + falr)) slog (p— (2 a)s).

Combining this result with (8), the lemma follows. O
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G.1.2 Proof of Theorem 4(c)

We prove this result by contradiction.  Suppose there exissolution to (2), say(B,S) such that
sign(Supr(B+S)) = sign(SupdB* + S*)). By Lemma 4, this is equivalent to having siéﬁupp(B)) =

sign(Supg B*)) and sign(Supp(S)) = sign(SupgS*)) andi—z = K.

Now, suppose: < (1 — v) max (Qf(;“) , f(m)) slog(p — (2 — «)s), for somer > 0. This entails that either either (i)
n < (1—v)f(r)slog(p — (2 — a)s), or (i) n < (1 —v) (2 G )) slog(p — (2 — a)s).
Case (i).

We will show that with high probabilityik3; € (), _, Uf such thaq Zj(k)‘ > \,. This is a contradiction to Lemma 5.

Usmg (6) and conditioning 0(1X(k) Z(’j)) for all j € (,_, Ui we have that the random vanablE# ) are
i.i.d. zero-mean Gaussian random varlables with

—1 —1
Loy (1 /o) (k) Sk 1 L (k) (k) x (k) e\ T\
ot <n<quXuk> 2+ 1 Xt (5 (@ X)) (i) ) u
2
Low (170t v\ 20 ik Lo (170w v\ (voNT) . ®
G (G lhxl) ) 2| (e (G () ) () ) w

2
The second equality holds by orthogonality of projectioie. thus have

Var (Z](k)) = 2

2

2

Var (Zj(k)) > max | Amin (( <X(k) X(k)>) ) H
H (I B 1X(k) ( <X(k) X(k)>)_1(XZE{k))T) w®) 2
L k

2
)
n2

The second inequality holds with probability at leastc; exp (—cQ (v + \/§)2> as aresult of [4] on the eigenvalues

of Gaussian matrices. The third inequality holds with plolig at leastl — c¢3 exp(—cyn) as a result of [1] on the
magnitude ofy? random variables. Consideririg+ S, assume that among shared features (with@igea portion of

71 has larger magnitude on the fist task and a portion, dfas larger magnitude on the second task (and consequently
a portion ofl — 7, — 75 has equal magnitude on both tasks). Assuming- x\ for somex € (1, 2), we get

2
o1 == Var (Z;”) _ - ) sAZ + TiasAT + maas(Ay — )2\5)2 +(1 -7 —m)asit
(Vn+/s)
_hs
n 1+
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The first equality follows from the construction of the duatnix and the fact that we have recovered the sign support
correctly. The last strict inequality follows from the asgption thatd(n, p, s, «) < 1. Similarly, we have

(1 — a)sA2 + masA? + ras( Ay — Ag)? + (1 — 71 — 72)045/\7g

n(1+y/3)

o3 := Var (Zj(z)) >
fa(r)sA
(V)

Given these lower bounds on the variance, by results on @ausgxima (see [4]), for any > 0, with high proba-
bility,

max  max
1<k<rjeUr_, Us

ZJ(’“)] >(1— 5)\/(5% +52)log (r(p —(2- a)s)).

This in turn can be bound as
(1-0) @ +53)log (r(p— (2—a)s))
() + £2(9) 5 log (r(p = 2= 0)s))
n (1+/%)° :
() s log (r(p— (2= a)s)) |
n(1+/%)° :

> (1-9)

>(1-9)

Consider two cases:

1. £ =Q(1): In this case, we have > cn for some constant > 0. Then,

s
n

(1-9)

(f(x) (s/m) log (r(p — (2~ a)s))
(14 vorm)

> f(k) log (r(p - (2- a)s)) 22

> (1+e)AZ,

for any fixede > 0, asp — oo.
2. 2 — 0: In this case, we have/n = o(1). Here we will use that the sample size scalesias (1 —

v) (f(r)) slog(p — (2 — a)s).

() s log (r(p— 2= )s)) |
n(1+ 3 S

. (1— (?(1 — 0(1))A§
> (14 €)A2,

for somee > 0 by takingé small enough.

(1-9)

Thus with high probability3k3; € (), _, U such tha4 Z](k)‘ > \,. This is a contradiction to Lemma 5.
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Case (ii). We need to show that with high probability, there exist a rbat tviolates the sub-gradient condition of
ls-norm: 35 € (,_, Us such thatHZj(k) Hl > ). This is a contradiction to Lemma 5.

Following the same proof technique, notice thal,_, Zj(k) is a zero-mean Gaussian random variable with
Var (ZZ:1 Z}’”) > (52 + 53). Thus, with high probability

max

(k) , ~9 | ~9
7 ; > (1— + 1 —(2— .
j€ﬂ£:11/{,§ 7 ‘ 1= ( 5) \/T(Ul 0-2) 0og (p ( O[)S)

Following the same line of argument for this case, yieldséugired bountﬂ Zj(.k) H1 > (14 €)p.

This concludes the proof of Theorem 3(b). O

H Synthetic and Real World Data used for Performance Analyss

In this section we present the structure of synthetic aniddiaasets we used and how we fit them into our model.

H.1 Synthetic Dataset

Data Generating We explain how we generated the data for our simulation.h&ve pick three different values

of p = 128,256,512 and lets = |0.1p]. For different values of;, we letn swipe from0.Eslog(p — (2 — a)s)
to Dslog(p — (2 — a)s). We generate a random sigmatrix ©* € RP*?2 (each entry is eithed, 1 or —1) with

column support size and row support siz€2 — «)s as required by Theorem 3. Then, we multiply each row by
a real random number with magnitude greater than the minimaguired for sign support recovery by Theorem 3.
We generate two sets of matricdS"), X(2) andW and use one of them for training and the other one for cross
validation (test), subscripted Tr and Ts, respectivelychEentry of the noise matricédr,, Wrs € R™*2 is drawn
independently according t& (0, %) wheres = 0.1. Each row of a design matriX#f),X%) € R™"*P is sampled,
independent of any other rows, frad(0,I>2) for all & = 1,2. Having X&) Theta* and W in hand, we can

calculateYr, Yrs € R™*2 using the modey*) = X®)g(*) 4 () for all k = 1,2 for both train and test set of
variables.

Coordinate Descent Algorithm Given the generated daﬁéﬁ) for kK = 1,2 and Y7, in the previous section, we
want to recover matriceB and S that satisfy (2). We use the coordinate descent algorithnutoerically solve the
problem (see Appendix ). The algorithm inputs the tu@érl), X%Q), Y1, As, Aoy €, B, S) and outputs a matrix pair
(B,S). The inputs(B, S) are initial guess and can be set to zero. However, when welséar optimal penalty
regularizer coefficients, we can use the result for preverif coefficientg\;, As) as a good initial guess for the
next coefficientg\, + &, As + ¢). The parameter captures the stopping criterion threshold of the algorithive
iterate inside the algorithm until the relative update deaof the objective function is less thanSince we do not run

the algorithm completely (untd = 0 works), we need to filter the small magnitude values in thatsoi (B, 5) and
set them to be zero.

. . . . . . g AS 1 .
Choosing penalty regularizer coefficientsDictated by optimality conditions, we have> >3 Thus, searching
range for one of the coefficients is bounded and known. Weyset ¢4/ % and search foe € [0.01, 100], where

this interval is partitioned logarithmic. For any p&k;, \;) we compute the objective function &%s andX%“) for
k = 1,2 using the fiIterec{B, 5”) from the coordinate descent algorithm. Then across allogsaf( )\, \), we pick

the one with minimum objective function on the test dataafjnwe let® = Filter(B3 + 5) for (B, S) corresponding
to the optimal( Ay, As).

H.2 Handwritten Digits Dataset

Structure of the Dataset In this dataset, there are 200 instances of handwrittetsdig) (totally 2000 digits). Each
instance of each digit is scanned to an image of theXize 48 pixels. This image is NOT provided by the dataset.
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L1 Feature | Size| Type | Dynamic Range |

1 Pixel Shape 15 x 16) 240 | Integer 0-6
2 2D Fourier Transform Coefficients | 74 Real 0-1
3 || Karhunen-Loeve Transform Coeficients 64 Real -17:17
4 Profile Correlation 216 | Integer 0-1400
5 Zernike Moments 46 Real 0-800
3 Integer 0-6
6 Morphological Features 1 Real 100-200
1 Real 1-3
1 Real 1500-18000

Table 1: Six different classes of features provided in theskt. The dynamic ranges are approximate not exact. The
dynamic range of different morphological features are detepy different. For thosé morphological features, we
provide their different dynamic ranges separately.

Using the full resolution image of each digit, the dataseivjales six different classes of features. A total6df
features are provided for each instance of each digit. Tfarmation about each class of features is provided in
Table 1. The combined handwriting images of the record numiigis shown in Fig 1 (ten images are concatenated
together with a spacer between each two).

Fitting the dataset to our modetl Regardless of the nature of the features, we laiefeatures for each o200
instance of each digit. We need to ledkh= 10 different tasks corresponding to ten different digits. Take the
associated numbers of features comparable, we shrink thenug range of each feature to the interval and 1.

We divide each feature by an appropriate number (perhagerléinan the maximum of that feature in the dataset)
to make sure that the dynamic range of all features is a (wo$twall) subset of—1, 1]. Notice that in this division
process, we don’t care about the minimum and maximum of Hiritrg set. We just divide each feature by a fixed
and predetermined number we provided as maximum in Tabl@dexample, we divide the Pixel Shape feature by
6, Karhunen-Loeve coefficients by or the last morphological feature B$000 and so on. We do not shift the data;
we only scale it.

Out of 200 samples provided for each digit, we take< 200 samples for training. LeX () = X ¢ R197%649 for al|
0 < k < 9 be the matrix whose first rows correspond to the features of the digithe seconad: rows correspond
to the features of the digit and so on. Consequently, we set the vegtét € {0,1}'°" to be the vector such that

y(-k) = 1 if and only if the j*" row of the feature matrixX corresponds to the digk. This setup is called binary
classification setup.

We want to find a block-sparse matrx € R649%10 and a sparse matri§ € R649%10 so that for a given fea-
ture vectorx € R%Y extracted from the image of a handwritten digit< k* < 9, we ideally havek* =

arg maxop<g<g X (3 + S’)

To find such matrice® and.S, we solve (2). We tune the parametagsand )\, in order to get the best result by cross

validation. Since we hav&) tasks, we search fo% S [%0, 1] and let\, = ¢ %ﬁ“g) ~ % where, empirically
¢ € [0.01,10] is a constant to be searched.

| Coordinate Descent Algorithm

We use the coordinate descendent algorithm describediaw$olThe algorithm takes the tuplé&, Y, A5, Ay, €, B, S)

as input, and output(sé, S). Note thatX andY are given to this algorithm, whil& andS are our initial guess or the
warm start of the regression matricess the precision parameter which determines the stoppiteyion.

We update elements of the sparse mafsixusing the subroutind/pdateS, and update elements in the block

sparse matrix3 using the subroutin& pdate B, respectively, until the regression matrices converge gseudocode
is in Algorithm 1 to Algorithm 3.
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Algorithm 1 Dirty Model Solver

Input: X,AY, )‘bz Xs, B, S ande
Output: S andB

Initialization:
for j=1:pdo
fork=1:rdo

e (X5

fori=1:pdo
d) o (xM X
7,] [ J
end for

end for
end for

Updating:

loop
S < UpdateS(c;d; \s; B; S)
B «+ UpdateB(c; d; \p; B; S)
if Relative Update< e then

BREAK

end if

end loop

RETURNB =B, §= S

Algorithm 2 UpdateB

Input: c,d,\,, BandS
Output: B
UpdateB using the cyclic coordinate descent algorithmfof/., while keepingS unchanged.

for j=1:pdo
for k5~ L g0 8) L oy (R () ()
;¢ —Zi#(bi +s; )di’j —s; dj_’j
if Sr_y ol < A, then
bj ~—0
else
Sorta to be|a§k1)| > |a§.k2)| > > |a;kv~)

= (27 o )
ort=1:rdo
if > m* then
b(ki) % a(ki)
J J
else o
ki sign(er;™*") m” ) (k
b§ ) — % (Zl:l ‘ag l)‘ - )‘b)
end if
end for
end if
end for
end for
RETURNB
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Figure 1: An instance of images of the ten digits extractethfthe dataset

I.1 Correctness of Algorithms

In this algorithm,B is the block sparse matrix arfflis the sparse matrix. We alternatively updat@ndS until they
converge. When updating, we cycle through each element 8fwhile holding all the other elements éfand B
unchanged; When updating, we update each block; (the coefficient vector of thg!" feature forr tasks) as a
whole, while keepings' and other coefficient vector @? fixed.

For updatingB, the subproblem is updating,

5 : 1 k k) (k) ||?
B; = arg min 52 HR; ) _ Bj(. )Xj( )H2 + X || Bjl| oo - 9)

J
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Algorithm 3 Update-S
Input: c,d,\s, BandS
Output: S
UpdateS using the cyclic coordinate descent algorithm for LASSOlevkeepingB unchanged.
for j=1:pdo
for k5= L 7810 (k) | (B 4() _ (k) (k)
;e —Zi#(bi +s; )dm- — s, d;
if |a{"| < A, then
s;“ —0
else (k) (k)
s?f— o’ — Assign(a;’)
end if
end for
end for
RETURNS

If we take the partial residual vectﬂy") =yk) — l;(Bl(k)Xl(k)) —57,(8" x ¥, the correctness of this algorithm
J

will directly follow from the correctness of coordinate dest algorithm of; /¢;,,; in [2]. With the same argument,

the correctness of the Algorithm 3 can be proven.
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