A Appendix A: Proofs

A.1 Proof of Proposition 1

Observe that the EUM utility (2) corresponding to micro-averaged metric is sim-
ply:  UE; Ui, P) =  W(TP(), FP(f), EN(f), FP(f)) where TP(f) = EP[TAP(f)]

(FP(f),FN(f), TN(f) defined similarly). = By linearity of expectation, Ep [ﬁ(f)} =
S zﬁf:lEp[ﬁ)(f)m,n] But Ep[ﬁ(f)m,n} = P(fm(z) = 1,Y,, = 1). Simi-

larly, for the instance-averaged metric, we see that the corresponding TP(f) = Ep ["fl\)(f )} =

P(fm(z) = 1,Y,, = 1). Analogously, FP(f), FN(f), TN(f) can be seen to be identical for micro-
and instance-averaged metrics. Thus, whereas the sample metrics may be different, the population
EUM utilities of the micro-averaged and instance-averaged metrics coincide. The second claim that
f;- =fg. isimmediate.

micro instance

A.2 Proof of Theorem 2

For simplicity, the proof is presented for the finite domain case. Extension to the continuous case
follows directly from the approach in Theorem 2 of [9], which requires a more technical definition
of the derivatives. Let F = {f : ¥ > RM},and ©® = {f : X — {1, +1}M} C F (Note that we
use the encoding {+1, —1} for ease and it is equivalent to {0, 1} encoding used in the main text).
The derivative of U (f; Uynicro, P) w.r.t. f,,, () is given by:
1 d2 Z/[(f) — C2
- e | #(@)
(Cl — dl Z/{(f))DT(f) C1 — d1 Z/{(f)

where D,.(f) is denominator of /(f). A (multivariate) function f* € @ optimizes U/ if f* € © and:

SN Vi UE ) fm(@)dz >N Vi o UE) fr(x)de V£ €O

m reX m xzeX

Vo U(E) = [nmcr)

Thus, when ¢; > dyj U*, a necessary condition for local optimality is that the sign of f, and
the sign of [V () U(f*)] agree point-wise wrt. x, V m. This is equivalent to the condition
that sign(f¥) = sign(nm,(x) — 6*). Combining this result with the constraint set f € ©, we
have that f* = sign(f}), thus f} = sign(n,,(z) — §*) is locally optimal. Finally, we note that
1k = sign(nm,(z) — 6*) is unique for f € O, thus f* is globally optimal. The proof for ¢; < dy U*
follows using similar arguments. The observation that the threshold is shared between labels follows
by definition of the gradient, where we observe that the threshold depends on the optimal utility. We
note that despite the close similarity, the above result cannot be derived from Theorem 2 of [9]
without significant modification to accommodate a non-iid sampling distribution i.e. different label
distributions when viewed as a binary classification problem.

A.3 Proof of Proposition 3

Note that the population utility corresponding to macro-averaged metric W, can be written as:
M
U(E; Wi, P) = 7 mzl U (TP, (£), FPy (£), FN,yi (£), TN,y (£)),

where TP,,,(f) = P(f,.(z) = 1,Y,, = 1) (FP,,,(f),FN,,,(f), TN,,,(f) defined similarly). Let P,,
denote the marginal P(X,Y,, = 1). Note that U (f; Uycr0, P) is maximized by £* if, for all m,
U (TP, (f), FPm (f), FNpo (), TN, (f)) is optimized by ff,, where f : X — {0,1} and TP,,,(f) =
P,.(f(x) = 1,Y = 1). From Theorem 2 of [9], we know that the Bayes optimal f; (z) for
linear-fractional ¥ with respect to P, is given by [, () > 67,], where §, depends only on ¥ and
marginal P,,,.
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A.4 Proof of Theorem 4

We first show the following claim:

Claim. For a fixed multilabel classifier f, Uyicro(f; {x("), y (™) W) LN U(E; W icro; P), where
W icro defined in (6) is the micro-averaged metric computed on iid samples.

Proof. The proof follows closely that of Lemma 8 of [9]. Consider the simplified empirical W picro
corresponding to the simplified population utility in (10), obtained by replacing TP(f) with TP(f),
~(£) with 4(f) := e M SN [£5) = 1] and 7 (in the definition of ¢y and do) with 7 =
D DD D [y&") = 1]. Note that for any given e; > 0,p > 0, there exists N’ such that
for any N > N’, P(|TP(f) — E[TP(f)]| < e1) > 1 — p/3, P(|5(f) — ~v(f)] < 1) > 1 —p/3
and P(]& — 7| < €1) > 1 — p/3. Thus by union bound it follows that all the three events hold with
probability 1 — p. Write cg = ¢, +cjmand dy = djy +d{jm. Leté, = 1/|cq|if ¢y # Oelseleté = 0.
Define ¢9, dy, dy accordingly. Let C' = max(¢1, ¢2) and D = max(dy, ds). Note that for U yicro to
be valid and bounded, max(C, D) > 0. For a given € > 0, we want ¢; < (lotdomtdiTP(B)+day(F))e
’ ’ : given € =1, 1= T DU T P)T6)TC

so that we can guarantee | picro(f) — U (£; Uicro; P)| < €. Thus for all N > N’, for given € and 4,
we have shown that | W icro (£) — U(f; Wpicro; P)| < € with probability at least 1 — p. This completes
the proof of the claim.

Assume the estimated 7j,,, () satisfies 7, () 2> 7, (2) as stated in the Theorem (this can be guar-
anteed by using a suitable class density estimation algorithm). Consider the multilabel classifier
£5 = ([nm(z) > 6])M_,. Let 6* be the optimal threshold corresponding to the Bayes optimal

fy . Because § is the empirical minimizer on a finite sample, we have \Ilmicro(fg‘) > Wiiero (£52)
on the sample. So:

Z/{:Ik}mlcm - Z/{(fg, W nicros P) = u\};micm - \Ijmicro(fg) + \Ijmicro(fg) - u(fga WY hicros ]P)
S u\};micm - \I}micro(fg*) + \I}micro(fg) - u<f§a \Ilmicma ]P)
<2 S%P |\I/micr0(f§) - U(f§7 \Pmicrm P)| (13)

Now, to conclude the proof, we argue that the last term in the RHS of the inequality above
vanishes as N — oo. For a given f € RM let Fs5 denote the class of multilabel classifiers
obtained by thresholding f for some § € (0,1). Using Lemma 29.1 in [6], for given p and
€1 > 0, supgcx, |ﬁ(f) — TP(f)| < €, with probability at least 1 — p/3. Following similar ar-
guments in the claim above, given € > 0 and p, we can choose €; and N large enough such that
sup; | Wmicro (£5) — U (£5; Unmicro, P)| < € with probability at least 1 — p. This shows that the RHS of
(13) vanishes as NV — oo. The proof of the theorem is complete.

B Appendix B

B.1 Connection to Existing Results

Our results in Section 3 and Algorithm 1 generalize some of the existing results for learning with
general performance metrics in binary classification. In particular, when M = 1, our multilabel per-
formance metrics considered in Section 3 reduce to the linear-fractional family binary classification
metrics studied by Koyejo et al. [9]. The Bayes optimal characterization in Theorem 2 of Koyejo
et al. [9] can be seen as a special case of our Theorem 2. Similarly, the plugin-estimation algorithm
of Koyejo et al. [9] can be derived from our Algorithm 1 for the binary case.

More recently, Narasimhan et al. [11] considered generalized performance metrics for multiclass
classification and showed that the Bayes optimal (of the EUM utility) can be characterized as a
thresholding of the class-conditional probability. We observe that our framework of metrics intro-
duced in Section 2 readily gives rise to the multiclass performance metrics studied by Narasimhan
et al. [11] with the additional constraint of a single label choice for each instance. While they show
the Bayes optimal and consistency of learning for a different family than the linear-fractional family

11



we consider in this paper, many of the popular metrics including multiclass F-measure and multi-
class Jaccard belong in both the families.

B.2 Multilabel Decision-Theoretic Utility

Existing consistency results and algorithms for multilabel learning focus on the population utility
based on decision-theoretic analysis (DTA) defined in (4). Furthermore, we are not aware of consis-
tency results for general multilabel performance metrics. Gao and Zhou [7] define the consistency
of multilabel learning with respect to DTA utility. They focus on two specific losses — Hamming
and rank loss (the corresponding measures are defined in Section 2) and suggest surrogates for con-
sistent learning with respect to the losses. Note that Hamming loss is a linear metric (i.e. it is linear

in the primitives FN(f),,, ,, and lgf’(f )m,n) and hence the Bayes optimal characterizations coincide
for both DTA and EUM utility (See Equation (8) of Gao and Zhou [7]). For the Hamming loss, they
showed that the Bayes optimal for the DTA utility depends on pairwise conditional distributions, i.e.
P (Y, Yor|z). However, Dembcezynski et al. [2] subsequently showed that the Bayes optimal for the
un-normalized ranking loss indeed depends only on the label marginals P(Y,, |x), and in turn showed
that minimizing appropriately weighted univariate loss functions (such as exponential and logistic
losses) independently for M labels is consistent with respect to rank loss. A subtle but important
aspect of the definition of rank loss in the existing literature including [7] and [2] is that the Bayes
optimal is allowed to be a real-valued function and may not necessarily correspond to an explicit la-
bel decision (note that our definition of Bayes optimal is inherently binary valued). Also, we achieve
consistent learning with respect to multilabel EUM utility using a plugin-estimation algorithm. Sim-
ilar plugin-estimators have been studied in the context of multilabel DTA utility maximization but
only for specific metrics. [4] proposed a novel plug-in rule algorithm for estimating the parameters
required for a Bayes-optimal prediction for F'-measure (i.e., with respect to the DTA utility) via a
set of multinomial regression models. Beyond theoretical analysis, further empirical study of the
limits of the plug-in approach as compared to modern multilabel algorithms would be illuminating.
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C Appendix C

C.1 Simulated Data Results

Larger plots from Figure 1 illustrating the Bayes optimal classifier for multilabel F; measure on
synthetic data with 4 labels, and distribution supported on 5 instances. Plots from left to right show
the Bayes optimal classifier prediction for instances, for labels 1 through 4. Note that the optimal 6*
at which the label-wise marginal 7,,, () is thresholded is shared, conforming to Theorem 2.
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