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Abstract

We study the consistency of listwise ranking
methods with respect to the popular Normal-
ized Discounted Cumulative Gain (NDCG)
criterion. State of the art listwise approaches
replace NDCG with a surrogate loss that is
easier to optimize. We characterize NDCG
consistency of surrogate losses to discover a
surprising fact: several commonly used sur-
rogates are NDCG inconsistent. We then
show how to modify them so that they be-
come NDCG consistent. We then state a
stronger but more natural notion of strong
NDCG consistency, and surprisingly are able
to provide an explicit characterization of all
strongly NDCG consistent surrogates. Go-
ing beyond qualitative consistency considera-
tions, we also give quantitive statements that
enable us to transform the excess error, as
measured in the surrogate, to the excess er-
ror in comparison to the Bayes optimal rank-
ing function for NDCG. Finally, we also de-
rive improved results if a certain natural “low
noise” or “large margin” condition holds.

Our experiments demonstrate that ensuring
NDCG consistency does improve the perfor-
mance of listwise ranking methods on real-
world datasets. Moreover, a novel surro-
gate function suggested by our theoretical re-
sults leads to further improvements over even
NDCG consistent versions of existing surro-
gates.

1 Introduction

Ranking a set of instances by their relative relevance
arises in many contemporary problems, such as collab-
orative filtering, text mining and document retrieval.
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We are interested in a particular formulation of this
problem, natural in information retrieval (IR), where
the ranking is at the resolution of a data item such as
a query. Each query has a list of documents, and the
task is to rank these documents in the order of rele-
vance to the query. In the training set, the documents
for each query are typically represented as feature vec-
tors derived from the query-document pairs, and are
annotated with relevance scores indicating the rela-
tive preference of the document in the list for that
query. Given any new query, the goal is to rank its
documents in an order that best respects their rel-
evance scores according to some ranking evaluation
measure. User studies have motivated specific rank-
ing evaluation measures such as Mean Average Pre-
cision (MAP) [3], Expected Reciprocal Rank [8] and
the popular Normalized Discounted Cumulative Gain
(NDCG) [15].

In this paper, we study the NDCG evaluation mea-
sure, which evaluates the ranking of the entire list of
documents by penalizing errors in higher ranked doc-
uments more strongly. While easy to evaluate, this
is nonetheless a difficult measure to directly use for
training a ranking model. A broad line of work has
thus focused on breaking the ranking problem down
into pointwise and pairwise problems [6]. In the point-
wise approach, the ranking problem is viewed as a
regression or classification problem of predicting the
specific relevance score for any document [24]. The
hope is that by minimizing some measure of the dif-
ference between each document’s true relevance level
and the model’s estimate for it, the listwise NDCG
measure of the ranking of the entire list of the docu-
ments would in turn be minimized. Examples include
linear regression minimizing mean squared error, and
ordinal regression. In the pairwise approach on the
other hand, the ranking problem is reduced to the bi-
nary classification task of predicting the more relevant
document amongst pairs of documents. Note that the
training data for such an approach would only need
pairwise relative preferences, which is easier to obtain
than listwise relevance judgements, for instance using
query log click-through data [16]. But on the other
hand, such training instances of document pairs and
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their pairwise relative relevances are typically not iid
which impairs test performance.

The main caveat with such approaches is that they
are ill-suited to the listwise NDCG evaluation mea-
sure that is a function of the entire list of ranked
documents. Cao et al. [6], Xia et al. [23] in particu-
lar note that methods based on listwise loss functions
outperform their pointwise and pairwise counterparts.
Accordingly, one class of such listwise approaches at-
tempt to optimize the NDCG (and such) evaluation
measures directly using heuristics [5, 24, 20, 22, 21].

The state of the art set of listwise approaches how-
ever optimize surrogate listwise loss functions in-
stead [19, 6, 23], motivated in part by successes of
such an approach in classification. The use of such
surrogate ranking loss functions gives rise to the main
question of this paper: when are surrogate loss func-
tions consistent with respect to the NDCG evaluation
measure, and which classes of surrogate loss functions
are better suited to the NDCG evaluation measure un-
der finite samples? A line of recent results have stud-
ied consistency and Bayes optimality of estimates for
the cases where the target evaluation measure is point-
wise [10], and when it is pairwise [9, 12], and for the
zero-one listwise loss [6]. In this paper, we study the
consistency of any surrogate ranking loss function with
respect to the listwise NDCG evaluation measure.

We first provide a characterization of any NDCG con-
sistent ranking estimate: it has to match the sorted
order of the expectation of the document relevance
levels normalized by a particular DCG norm. As we
show, this normalization provides a stabilizing effect
on the ranking estimates, and suggests why user stud-
ies have validated the NDCG measure to some ex-
tent. However it turns out that many popular list-
wise surrogate loss functions such as Cosine [19] and
ListNet [6] do not yield NDCG consistent ranking esti-
mates, primarily because they employ a different nor-
malization of the expected relevance scores. We then
show how simple modifications of these methods then
make them NDCG consistent. In our second set of re-
sults, we implicitly characterize the set of all NDCG
consistent surrogate loss functions. We then define
a slightly stronger, and as we point out more natural,
notion of consistency called strong-NDCG consistency.
We then provide an explicit characterization of the
set of all such strong-NDCG consistent surrogate loss
functions. In our final set of results, for the strong-
NDCG family of surrogate loss functions, we provide
explicit transform functions relating the excess surro-
gate error of their ranking estimates, to their devia-
tion in NDCG error from the Bayes optimal ranking
estimate. This not only proves consistency of these
loss functions, but provides a means for quantitatively

comparing different surrogate loss functions. Indeed,
these transforms can be used to provide explicit con-
vergence rate bounds though we defer this due to lack
of space. Finally, we provide a notion of “low-noise” or
“large-margin” distributions under which we are able
to derive much tighter transforms.

In gist, we provide an extensive quantitative analysis
of NDCG consistency of surrogate ranking loss func-
tions. The resulting characterizations posit new meth-
ods as well. In Section 3.2, we show that the surrogate
losses of linear regression (minimizing mean squared
error), Cosine and Listnet are not NDCG consistent,
and then provide simple modifications to make them
NDCG consistent. In our first set of experiments, we
compared the NDCG performance of these three loss
functions with their counterparts with our modifica-
tions on multiple datasets, and largely show improve-
ment across these datasets. In Section 4, we propose a
family of NDCG consistent surrogates, and highlight a
member of that family, which to the best of our knowl-
edge has not been studied before. In our second set
of experiments, we compare this novel surrogate loss
to Cosine and squared-error loss functions, and again
largely show improvement across datasets.

2 Preliminaries

Let m be the number of documents for each query.
Let X̄ be the space of the feature vectors in which the
documents are represented (typically derived from the
query-document pairs). Let R̄ ⊆ R be the space of the
relevance scores each document receives. Thus for any
query, we have a list X = (X1, . . . , Xm) ∈ X := X̄m
of document feature vectors, and a corresponding list
R = (R1, . . . , Rm) ∈ R := R̄m of document relevance
scores. The dataset consists of n (Xi,Ri) pairs which
we assume to be drawn iid from some distribution over
X ×R.

A permutation π is a bijection from [m] to [m]. We in-
terpret π(i) as “the position of document i”. Thus, ac-
cording to π, the documents x = (x1, . . . , xm) should
be ordered as

(xπ−1(1), . . . , xπ−1(i), . . . , xπ−1(m))

Let Pm be the set of all such degree m permuta-
tions. A listwise ranking evaluation metric measures
the goodness of fit of any candidate ranking to the
corresponding relevance scores, so that it is a map
` : Pm × R 7→ R. We are interested in the NDCG
class of ranking loss functions:
Definition 1 (NDCG-like loss functions).

`NDCG(π, r) = − 1
Z(r)

m∑
j=1

G(rj)
F (π(j))

, (1)
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where G : R 7→ R+ is a monotonically increasing func-
tion of the relevance judgments, and F : R 7→ R+ is
also a monotonically increasing function. The normal-
ization Z(r) is the highest possible DCG value:

Z(r) = max
π∈Pm

m∑
j=1

G(rj)
F (π(j))

The NDCG criterion [15] uses G(r) = 2r − 1, and
F (t) = log(1 + t), but in the sequel we allow G(·) and
F (·) to be any general monotonic functions. We will
use G(r) to denote (G(r1), . . . , G(rm))>.

We begin with a simple observation. All proofs omit-
ted from the main paper can be found in the appendix.
Lemma 1. The function Z(r) can be written as
‖G(r)‖D for a norm ‖·‖D.

We will need a notion of when the sorted order of one
vector s is compatible with the sorted order of a given
vector r. This assymetric binary relation between s
and r is denoted by s ; r, and it holds precisely when,
for all i, j ∈ [m], ri > rj implies si > sj . We will call
a map g : Rm → Rm order preserving, iff g(r) ; r
for all r ∈ Rm. We will also need the following lemma
whose proof is elementary.
Lemma 2. s ; r iff there is an invertible order pre-
serving map g such that s = g(r).

3 NDCG Consistency

Note that the first argument of `NDCG as defined in (1)
is a permutation. It is useful, both for learning and op-
timization, to define it as a function of a real-valued
score vector instead. Indeed with some overloading
of notation we can define `NDCG(s, r) = `NDCG(πs, r)
where πs is a permutation such that πs(j) is the posi-
tion of sj when elements of s are sorted in decreasing
order of their values. Note that now the first argument
is a real-valued score vector. Unfortunately, the above
function is still difficult to optimize, since it depends
in a complicated manner on s, and is not convex in
s. This has thus motivated the search for convex sur-
rogate ranking loss functions. A convex surrogate is
simply a function φ : Rm × Rm that is chosen as a
proxy for the NDCG loss. To ascertain whether the
surrogate is indeed a good proxy, we need the notion
of NDCG-consistency.

Given any ranking function f : X → R, define the
expected NDCG loss as,

LNDCG(f) = E [`NDCG(f(X),R)] .

Similarly, for a surrogate φ, define the expected surro-
gate loss as,

Φ(f) = E [φ(f(X),R)] .

Denote the minimum expected losses by

L?NDCG = min
f
LNDCG(f) Φ? = min

f
Φ(f) ,

where we are assuming, for simplicity, that the mini-
mum over all measurable f is achieved.

Definition 2. A surrogate φ is said to be NDCG con-
sistent if for any distribution on X × R, and for any
sequence fn such that

Φ(fn)→ Φ?

we necessarily have

LNDCG(fn)→ L?NDCG

Thus a surrogate is NDCG-consistent if the ranking
estimate minimizing the surrogate loss in turn is Bayes
consistent with respect to the NDCG loss.

Some commonly used surrogates are:

φcos(s, r) = 1− s
‖s‖2

· G(r)
‖G(r)‖2

(Cosine)

φsq(s, r) = ‖s−G(r)‖22 (Least Squares)
φlist(s, r) = KL(r′||s′) (ListNet/Cross Entropy)

In the last example, r′, s′ are probability vectors de-
rived from r, s as follows: r′j = exp(rj)/

∑
k exp(rk),

s′j = exp(sj)/
∑
k exp(sk).

3.1 Fisher Optimal Ranking Functions

Any probability distribution on X×R is fully specified
by the marginal µ on X and the conditional ηx(r) on
R, i.e. P ((X,R) = (x, r)) = µ(x) · ηx(r). For any
score vector s and any ditribution η on R, define

¯̀
NDCG(s; η) = Er∼η [`NDCG(s, r)] ,

φ̄(s; η) = Er∼η [φ(s, r)] .

Also define the minimum losses

¯̀?
NDCG(η) = min

s
¯̀
NDCG(s; η) φ̄?(η) = min

s
φ̄(s; η) .

We have again assumed that these minima are
achieved. To make the analysis less cumbersome, we
will make a few more technical assumptions. First, we
assume that the minimum of φ̄(s; η) is always achieved
at a unique point s?φ(η). Moreover, for any sequence
such that

φ̄(sn; η)→ φ̄?(η)

we assume that it must be the case that sn → s?φ(η).

Note that, with these definitions, we have

LNDCG(f) = E
[¯̀

NDCG(f(X); ηX)
]

Φ(f) = E
[
φ̄(f(X); ηX)

]
.
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and

L?NDCG = E
[¯̀?

NDCG(ηX)
]

Φ? = E
[
φ̄?(ηX)

]
.

We now give an equivalent characterization of NDCG
consistency of a surrogate.

Lemma 3. A surrogate φ is NDCG consistent iff for
any distribution η on R and any sequence sn such that

φ̄(sn; η)→ φ̄?(η)

we have
¯̀
NDCG(sn; η) = ¯̀?

NDCG(η) ,

for n large enough.

The next lemma identifies the set of scores that max-
imize ¯̀

NDCG(·; η) for a given distribution η.

Lemma 4. Fix a distribution η over R. Then,

¯̀
NDCG(s; η) = ¯̀?

NDCG(η)

iff

s ; Er∼η

[
G(r)
‖G(r)‖D

]
.

An immediate corollary of the above lemma is the iden-
tification of the Fisher optimal ranking functions
minimizing NDCG loss.

Corollary 5. A function f : X → R satisfies

LNDCG(f) = L?NDCG

iff

f(X) ; Er∼ηX

[
G(r)
‖G(r)‖D

]
µ-almost surely.

This in turn gives a characterization of NDCG-
consistent surrogates.

Theorem 6. A surrogate φ is NDCG consistent iff
for any distribution η on R, there exists an invertible
order preserving map g : Rm → Rm such that the
unique minimizer s?φ(η) of φ̄(s; η) can be written as

s?φ(η) = g

(
Er∼η

[
G(r)
‖G(r)‖D

])
.

3.2 Inconsistency of common surrogates

We have seen above that the optimal score vector
(for minimizing NDCG loss) is not obtained simply
from the sorted order of E [G(r)], but rather from the
sorted order of the expected “normalized” relevance
score vector, i.e. E [G(r)/ ‖G(r)‖D]. Here, the normal-
ization is achieved inversely scaling the raw relevance

vector by its DCG norm. We argue below that, intu-
itively, some normalization of the raw relevance scores
is needed to derive the optimal ordering in order to
have a sort of “robustness” against high relevance val-
ues that show up due to noise, or only occasionally.
Furthermore, we show that common surrogates are not
NDCG consistent precisely because the normalizations
they implicitly use are not the same as the one used
by NDCG.

3.2.1 The Need for Normalization

To see how normalization helps, it is useful to consider
the following simple example. Suppose that m = 2
(two documents to be ranked per query). Consider a
conditional distribution η that supported on just two
vectors:

(
5
4

)
and

(
1
3

)
. The probability of the first vector

is small, say 0.3 while that of the second is relatively
larger, say 0.7. So, in this case, document 1 usually
looks much less relevant (relevance level 1 versus level
3) than document 2 but 30% of the time, it is just
slightly more relevant (relevance level 5 versus level
4). Should we prefer document 1 to 2? Intuitively, it
seems clear that we should not.

But if we do not normalize and simply compute
E [G(r)] for G(ri) = 2ri − 1 as in NDCG, we get

E [G(r)] =
(

0.3 · 31 + 0.7 · 1
0.3 · 15 + 0.7 · 7

)
=
(

10
9.4

)
.

According to this, document 1 will be ranked first. For
the same example, the expected normalized relevance
vector E [G(r)/ ‖G(r)‖D] will be(

0.3 · 31
31+ 15

log2 3
+ 0.7 · 1

7+ 1
log2 3

0.3 · 15
31+ 15

log2 3
+ 0.7 · 7

7+ 1
log2 3

)
=
(

0.3216
0.7533

)
.

This matches out intuition that document 2 should be
ranked first.

3.2.2 Are Common Surrogates Inconsistent?

If we compute the minimizers of φ̄(s; η) for φ =
φcos, φsq and φlist, we find that they rank the docu-
ments according to the sorted order of

E
[

G(r)
‖G(r)‖D

]
,E [G(r)] , and E

[
exp(r)
‖ exp(r)‖1

]
respectively. Thus, the least squares loss does not use
any normalization, while the normalizations used by
Cosine and Cross Entropy are different from that used
by NDCG. We thus obtain the following surprising re-
sult.
Proposition 7. The three surrogates φcos, φsq and
φlist are not NDCG consistent.

We provide explicitly worked out examples demon-
strating inconsistency in the appendix.
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3.3 Restoring consistency

The following surrogates, obtained by modifying
φcos, φsq and φlist respectively, are NDCG consistent.

φ̃cos(s, r) = 1− s
‖s‖2

· G(r)
‖G(r)‖D

,

φ̃sq(s, r) =
∥∥∥∥s− G(r)

‖G(r)‖D

∥∥∥∥2

2

,

φ̃list(s, r) = KL (r′||s′) ,

where, the last line, r′, s′ are defined as r′j =
G(rj)/ ‖G(r)‖D, s′j = exp(sj) Moreover, we are us-
ing the extended definition of KL that defines it over
all pairs of positive vectors (not necessarily probability
vectors):

KL(p||q) =
∑
j

pj log(pj/qj)−
∑
j

pj +
∑
j

qj .

Of these, the last two are convex. We will now see
that these are just some examples from a large class
of consistent surrogates.

4 A Family of NDCG Consistent
Surrogates

The NDCG-consistent examples presented in the last
section leads naturally to the question: are there other
NDCG consistent surrogates? In order to answer this
question, we first consider the following notion that we
call strong NDCG consistency.

Definition 3. A surrogate φ is said to be strongly
NDCG consistent if there is an invertible order pre-
serving map g : Rm → Rm such that for any distribu-
tion η on R, the unique minimzer s?φ(η) of φ̄(s; η) can
be written as

s?φ(η) = g

(
Er∼η

[
G(r)
‖G(r)‖D

])
.

Comparing to Theorem 6, the reader might wonder
whether the above definition is any different from the
usual NDCG consistency. There is, however, a sub-
tle difference: in the above definition the same map g
works for all distributions η. We expect any reasonable
NDCG consistent surrogate to be actually strongly
NDCG consistent: indeed g as a functional of the sur-
rogate φ would typically not have knowledge of the
distribution η. In fact, this has been true for all our
positive examples (except for φ̃cos which does not have
a unique minimizers). We remark that any strongly
NDCG consistent surrogate is also NDCG consistent.

The following results provides a complete characteriza-
tion of strongly NDCG consistent surrogates. In other

words, the family is exhaustive w.r.t. the property of
strong NDCG consistency. We first setup some nota-
tion. Let ψ : Rm 7→ R be a strictly convex function.
Any such function induces a Bregman divergence [7]
Dψ : Rm × Rm 7→ R as follows:

Dψ(u,v) := ψ(u)− ψ(v)− 〈(∇ψ)−1 (v) ,u− v〉.

A Bregman divergence satisfies Dψ(u,v) ≥ 0 with
equality if and only if u = v, but need not be sym-
metric or satisfy the triangle inequality, so it is only a
generalized distance. With this notation, we can now
state our surprising result: any strongly NDCG consis-
tent surrogate has the form of a Bregman divergence:

Theorem 8. Consider a surrogate of the form
φ(s, r) = Φ(s, G(r)/ ‖G(r)‖D). Then, φ is strongly
NDCG consistent iff

Φ(s,u) = Dψ(u, g(s)), (2)

for some Bregman divergence Dψ for some strictly con-
vex ψ and an invertible, order preserving g.

Proof. Since φ is strongly NDCG consistent, there
is some invertible order preserving map h such that
the unique minimizer of E [Φ(s, G(r)/ ‖G(r)‖D] is
h(E [G(r)/ ‖G(r)‖D]). Defining the random variable
u = G(r)/ ‖G(r)‖D, we see that E [Φ(s,u)] being
uniquely minimized at h(E [u]) for any η, is equivalent
to: E [Φ(h(s),u)] being uniquely minimized at E [u] for
any η. Banerjee et al. [4] proved that this happens iff
Φ(h(s),u) = Dψ(u, s) for some strictly convex ψ.

Not every surrogate in the family identified above is
convex. Below, we describe one large sub-family of
convex NDCG consistent surrogates.

Theorem 9. Let ψ : Rm → R be a strictly convex
function whose gradient ∇ψ is order preserving. Then
the surrogate defined as

φ(s, r) = Dψ

(
G(r)
‖G(r)‖D

, (∇ψ)−1 (s)
)

(3)

is convex (in s) and NDCG consistent.

Proof. Since ψ is strictly convex, its gradient ∇ψ is in-
vertible. By assumption, it is order preserving. Hence,
by Theorem 8, φ is strongly NDCG consistent. To see
that this surrogate is convex, simply rewrite it as

φ(s, r) = Dψ?

(
s,∇ψ

(
G(r)
‖G(r)‖D

))
,

where ψ∗ is the Fenchel conjugate [14] of ψ. This is
easily seen to be convex in s because any Bregman
divergence is convex in its first argument.
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Note that it is easy to find ψ’s whose gradients are
order preserving maps. Any ψ of the form

ψ(r) = ψout

 m∑
j=1

h(rj)


for a strictly convex function h : R→ R, and a strictly
increasing function ψout : R → R has the property.
Note that φ̃sq and φ̃list are in this family. They arise
by choosing ψout(x) = x, h(x) = x2 and ψout(x) =
x, h(x) = exp(x) respectively.

Note that this family contains only convex surrogates
with unique minimizers (of expected loss). As such, it
does not include φ̃cos which is neither convex nor has
unique minimizers. But φ̃cos is actually closely related
to φ̃sq. Ignoring terms independent of s, φ̃sq can be
written as:

‖s‖22 − 2
〈

s,
G(r)
‖G(r)‖D

〉
while φ̃cos can be written as

−
〈

s
‖s‖2

,
G(r)
‖G(r)‖D

〉
.

Thus, we see that penalization by ‖s‖22 in φ̃sq is re-
placed with normalization by ‖s‖2 in φ̃cos.

An interesting sub-family (that includes φ̃sq but not
φ̃list) is obtained by choosing ψ(r) = ‖r‖2p for p > 1.
This corresponds to ψout(x) = x2/p, h(x) = |x|p. It is
most interesting to focus on the range p ∈ (1, 2], where
ψ is strongly convex w.r.t. ‖ · ‖p and the excess risk
transform of the next section applies. To the best of
our knowledge, this subfamily has so far not been used
as surrogates for NDCG. Thus, using this ψ(r) = ‖r‖2p
for p ∈ (1, 2] we obtain the family of loss functions:

‖s‖2q − 2
〈

s,
G(r)
‖G(r)‖D

〉
,

where q = p/(p − 1) is the dual exponent of p and
lies in the range [2,∞). Correspondingly, given this
penalized form, we again can define the normalized
version:

−
〈

s
‖s‖q

,
G(r)
‖G(r)‖D

〉
. (4)

In the experiments, we compare this novel surrogate
loss to Cosine and Cross Entropy loss functions, and
show that it largely leads to improvement in NDCG
performance across datasets.

5 Excess Risk Transforms

Recall that a function ψ is strongly convex w.r.t. a
norm ‖ · ‖ if Dψ(s, r) ≥ Cφ‖s − r‖2 for some Cφ > 0.

The next result shows that under a strong convexity
assumption, we can relate the excess error as measured
in the surrogate to the excess NDCG error over the
Bayes optimal error. Thus, it provides a quantified
form of NDCG consistency.
Theorem 10. Suppose we’re using the surrogate φ
as defined in (2). Further, assume that the func-
tion ψ is Cφ-strongly convex w.r.t a norm ‖ · ‖.
Then, for any f , for a constant CF defined as

CF = 2
∥∥∥∥( 1

F (1) , . . . ,
1

F (j) , . . . ,
1

F (m)

)>∥∥∥∥
?

, it holds that

LNDCG(f)− L?NDCG ≤
CF√
Cφ
·
√

Φ(f)− Φ? .

5.1 Better Transforms under “Low Noise”
Conditions

We can improve the bound in Theorem 10 under a
“low noise” condition that is reminiscent of similar as-
sumptions for classification [18, 25]. We first define
a notion of “margin” for the conditional distribution
ηx(r) on R as follows. Let r̄ = sort(Er∼ηX

[
G(r)
‖G(r)‖D

]
).

We then define

γx =
m−1
min
l=1

(r̄l − r̄l+1)
(

1
F (l)

− 1
F (l + 1)

)
. (5)

It can be verified that for any s ∈ R,
¯̀
NDCG(s; ηx)− ¯̀?

NDCG(ηx) ≥ γx,

so that γx is the minimum margin by which the con-
ditional NDCG loss of any score vector would differ
from that of the Fisher optimal score vector. Note
that γx ≤ 1 by the definition of the DCG norm. But
the closer it is to one, the larger the margin between
the Fisher optimal score vector and any other score
vector — which we would hope would entail that the
ranking problem be easier. Let α ≥ 0 be such that

Cγ = E
[(

1
γx

)α]
<∞. (6)

Note that larger the margin γx (i.e. closer to one), the
larger the value of α, so that the latter provides an
alternative quantification of the size of the margin. We
then define vx = γ−αx /Cγ . Note that by construction
E [vx] = 1. The next theorem quantifies the advantage
of a distribution with large margin.
Theorem 11. Suppose we’re using the surrogate
φ as defined in (2). Assume that the function
ψ is α strongly convex w.r.t a norm ‖ · ‖. Fur-
ther, let Cγ and α be defined as in (5-6). Then,
for any f , and for a constant CF defined as

CF = 2
∥∥∥∥( 1

F (1) , . . . ,
1

F (j) , . . . ,
1

F (m)

)>∥∥∥∥
?

, it holds that

LNDCG(f)−L?NDCG ≤ (Φ(f)− Φ?)
α+1
α+2 ·[C2

F C
−1
φ ]

α+1
α+2C

1
α+2
γ .
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Proof. Proceeding as in the proof of Theorem 10, we
arrive at(¯̀

NDCG(s; η)− ¯̀?
NDCG(η)

)2 ≤ C2
F C

−1
φ · φ̄(s, η)− φ̄?(η) .

(7)

We then proceed along the lines of the proof of Theo-
rem 13 in [25]. Since(¯̀

NDCG(s; η)− ¯̀?
NDCG(η)

)
≥ γx,

it can then be shown that[(¯̀
NDCG(s; η)− ¯̀?

NDCG(η)
)2
/γ−αx

]α+1
α+2

≥
(¯̀

NDCG(s; η)− ¯̀?
NDCG(η)

)
/γ−αx . (8)

Recalling that vx = γ−αx /Cγ , and using the inequali-
ties (7),(8) we get

C2
F C

−1
φ ·

φ̄(s, η)− φ̄?(η)
vx

≥
(¯̀

NDCG(s; η)− ¯̀?
NDCG(η)

)2
vx

≥
[ ¯̀

NDCG(s; η)− ¯̀?
NDCG(η)

vx

]α+2
α+1

C
− 1
α+2

γ .

Taking expectations of both sides with respect to µvx

and using Jensen’s inequality completes the proof.

6 Experiments

This section reports two types of experiments. Firstly,
we demonstrate the effectiveness of NDCG consistent
variants of existing surrogates on the various datasets.
Secondly, we give the performance of one novel loss
function, as an example, from our proposed normalized
family of loss functions (4).

As our data, we used ten typical LETOR [17] datasets.
These included LETOR 3.0, with three datasets from
the 2003-2004 TREC Web track [11], as well as
the older OHSUMED collection [13]. We also used
LETOR 4.0 which is based on the 2007-2008 TREC
Million Query tracks [2]. Finally, we also used Mi-
crosoft Learning to Rank Dataset [1] from the commer-
cial web search engine with 10,000 queries (MS10K).
We computed the NDCG metric with various trun-
cated positions from 1 to 10, since these are the most
popular metrics in Information Retrieval. Note that
all the analysis above was based on the non-truncated
version of NDCG. Therefore, we used Z(r)1,Z(r)10
as the approximations of DCG norm where Z(r)k =

maxπ
∑k
j=1

G(rπ−1(j))

F (j) .

Figure 1 shows the improvements from the NDCG-
consistency modifications in Section 3 of each sur-
rogate over various datasets. For each surrogate as

a baseline, three ’NDCG’ labels indicate the mod-
ified versions with Z(r)1,Z(r)10 and Z(r). As the
best case, restoring NDCG consistency led to almost
30% improvement for cross-entropy surrogate on the
HP2003 1(a). However, there were (small) perfor-
mance degradations on some datasets; especially on
the NP2004 for cross-entropy surrogate 1(i). We be-
lieve that this is because of the lack of the training
and test queries: there are only 45 and 15 queries
in the NP2004 dataset. Due to space limitations, we
only present the cases where restoring each surrogate
has pronounced effect. Plots for the rest of the cases
are included in the appendix. Note that the original
papers proposing listwise surrogates employed differ-
ent loss functions and techniques for optimizing those
loss functions. For example, ListNet [6] used gradi-
ent descent to minimize the cross-entropy loss, with
the number of iterations and learning rate as param-
eters tuned on the validation set. On the other hand,
RankCosine [19] minimized the cosine loss with the
additive model. To evaluate across methods in a fair
manner, we adopt the same optimization technique
for all loss functions: gradient descent. In particu-
lar, we used the MATLAB implementation of gradient
descent without any parameter tuning. And we did
not include any other parameter for each surrogate
and cross-validation for it. Finally, to avoid confu-
sion, please note that in developing the theory we fol-
lowed the convention used in Statistics of working with
losses instead of gains. However, for reporting our re-
sults we adhere to reporting NDCG as a gain. Thus,
higher NDCG values are better. We also ran random
permutation significance tests for these comparisons,
which we present in detail in Table 1 in the appendix.
We note that the “large” changes are all one-sided:
the only changes larger than 3% are all improvements;
some of them as large as 30% as noted above.

Secondly, we give the performance of one loss func-
tion, as an example, from the normalized family of
loss functions (4). We chose q = log(mi)+2 to make p
close to 1. Figure 2 describes the NDCG@10 metrics
of three surrogates: original Cosine, our new proposal
with this choice of q, and original Cross Entropy, on
the LETOR v3.0 and v4.0 datasets. Our surrogate
loss function was much better than the cosine loss or
even better than the state ofthe art cross-entropy loss
on the 3 datasets, while comparable performance is
seen on the other 6 datasets. Since Cross Entropy
is strongly convex w.r.t. the `1-norm (for probability
vectors), there is some hope that choosing p ≈ 1 will
make our proposed surrogate competitive with NDCG
consistent version of Cross Entropy. Indeed the per-
formance is comparable and sometime even better as
Figure 6 in the Appendix demonstrates.
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(a) Cross Entropy on the HP2003 (b) Cross Entropy on the NP2003 (c) Cross Entropy on the TD2003

(d) Cross Entropy on the TD2004 (e) Cosine on the TD2003 (f) Cosine on the MS10K

(g) Square on the MQ2007 (h) Square on the MS10K (i) Cross Entropy on the NP2004

Figure 1: Selected results for NDCG@1-10: original surrogate vs. modifications to be NDCG consistent surrogate
with different DCG norm approximations.

Figure 2: One example of normalized loss functions, q = log(mi) + 2 vs. existing listwise loss functions
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Supplementary Material

Proofs

Proof of Lemma 1

The norm in question is just

g 7→ max
π∈Pm

m∑
j=1

|gi|
F (π(j))

.

Each term inside the max is a weighted `1-norm.
Pointwise maximum of any number of norms is also
a norm.

Proof of Lemma 2

We note that the lemma would be easy to show if all
entries of r were distinct. It was more delicate however
to handle the general case where this need not hold.

The reverse implication is straightforward so we only
prove the forward direction. Assume s ; r. This
means there is a permutation σ such that

sσ(1) ≥ sσ(2) ≥ . . . ≥ sσ(m) ,

rσ(1) ≥ rσ(2) ≥ . . . ≥ rσ(m) .

Now, define the map g as follows. Given x, let τ be
any permutation that sorts x in decreasing order, i.e.

xτ(1) ≥ xτ(2) ≥ . . . ≥ xτ(m) .

Define g(x) to be the vector y defined as:

yτ(1) = sσ(1) + tan−1
(
xτ(1) − rσ(1)

)
, and

yτ(k+1) = yτ(k) −
[
sσ(k) − sσ(k+1)

+ tan−1
(
xτ(k+1) − rσ(k+1)

)]
,

for k ≥ 1. Here, tan−1(z), for z ∈ R is a non-negative
function defined as the unique θ ∈ [0, π) such that
tan(θ) = z. It is easy to check that g is order preserv-
ing and invertible, and that g(r) = s.

Proof of Lemma 3

There are two directions to prove: NDCG consistency
↔ condition in Lemma 3. The forward direction is
trivial: just take a marginal distribution µ that puts
all mass on a single x. For the other direction, assume
condition in Lemma 3. Suppose we have a sequence fn
such that

Φ(fn)→ Φ? .

Then, it must be the case that, for µ-almost all x,

φ̄(fn(x), ηx)→ φ̄?(ηx) .

This implies that

¯̀
NDCG(fn(x), ηx)→ ¯̀?

NDCG(ηx)

for µ-almost all x. Thus we have

LNDCG(fn)→ L?NDCG .

which shows that φ is NDCG consistent.

Proof of Lemma 4

Assume that is not the case that

s ; E [u]

where

u = Er∼η

[
G(r)
‖G(r)‖D

]
.

Then, there exist i, j such that ui > uj but si ≤ sj .
Thus, there exists a permutation πs that respects the
sorted order of s and which ranks j higher than i, i.e.
πs(j) < πs(i). This means that

1
F (πs(j))

− 1
F (πs(i))

> 0 .

Multiplying by ui − uj > 0 gives

−
(

ui
F (πs(i))

+
uj

F (πs(j))

)
> −

(
uj

F (πs(i))
+

ui
F (πs(j))

)
.

That is, we can decrease the NDCG loss by swapping
i with j. Thus ¯̀

NDCG(s; η) < ¯̀?
NDCG(η).

Now assume that s ; E [u] with u as defined above.
Using the same argument we can show that the NDCG
loss does not decrease no matter which i, j we swap.
Hence ¯̀

NDCG(s; η) = ¯̀?
NDCG(η).

Proof of Theorem 6

Again there are two directions to prove: condition of
Lemma 3↔ condition of Theorem 6. Let us prove the
forward direction first. By definition of s?φ(η), we have

φ̄(s?φ(η); η) = φ̄?(η)

and hence, under the condition of Lemma 3,

¯̀
NDCG(s?φ(η); η) = ¯̀?

NDCG(η) ,

which implies

s?φ(η) ; Er∼η

[
G(r)
‖G(r)‖D

]
.

Now, by Lemma 2, there is an invertible order preserv-
ing g such that

s?φ(η) = g

(
Er∼η

[
G(r)
‖G(r)‖D

])
.
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For the reverse direction, assume condition of Theo-
rem 6 and that

φ̄(sn; η)→ φ̄?(η) (9)

for some sequence sn. We want to show that

¯̀
NDCG(sn, η) = ¯̀?

NDCG(η) (10)

for n large enough. By our regularity assumption on
φ, (9) implies that sn → s?φ(η). By the condition of
Theorem 6, we have

s?φ(η) ; Er∼η

[
G(r)
‖G(r)‖D

]
.

Again abbreviate the vector on the right to u. We
want to claim that for each fixed pair i, j such that
ui > uj , we have sn,i > sn,j for n large enough. But
this follows from

[s?φ(η)]i > [s?φ(η)]j

and the fact that sn → s?φ(η). Since there are only
finitely many pairs i, j, we can now claim that

sn ; u = Er∼η

[
G(r)
‖G(r)‖D

]
for n large enough. Thus, by Lemma 4, we know
that (10) is true for n large enough. This proves the
reverse direction and finishes the proof.

Proof of Proposition 7

To show NDCG inconsistency of a surrogate φ, it is
enough to exhibit one distribution η, where the sorted
order of the minimizer of φ̄(s; η) is different from the
sorted order of E [G(r)/ ‖G(r)‖D].

We have already done that for φ = φsq in Section 3.2.1.
For both φcos and φlist, the distribution exhibiting in-
consistency will be supported on two vectors(

1
x

) (
y
1

)
with probabilities p and 1 − p respectively. One can
simply verify that we get NDCG inconsistency if we
choose p = 0.38, x = 5, y = 2 (for Cosine) or p =
0.35, x = 5, y = 2 (for Cross Entropy). The geometric
picture behind what is causing inconsistency for these
distributions is given in Figures 3 and 4.

Proof of Theorem 10

We will show that for any s and any distribution η
over R, we have

¯̀
NDCG(s; η)− ¯̀?

NDCG(η) ≤ CF√
Cφ
·
√
φ̄(s; η)− φ̄?(η)

Figure 3: Inconsistency of Cosine The distribu-
tion is supported on u = (1, x) and v = (y, 1) with
probability p and 1 − p respectively. The 3 green
points are G(u)/ ‖G(u)‖D, G(v)/ ‖G(v)‖D and their
weighted mean. The 3 blue points are G(u)/‖G(u)‖2,
G(v)/‖G(v)‖2 and their weighted mean. Note that
the weighted means lie on different sides of the black
diagonal line.

Figure 4: Inconsistency of Cross Entropy The dis-
tribution is supported on u = (1, x) and v = (y, 1) with
probability p and 1−p respectively. The 3 green points
areG(u)/ ‖G(u)‖D, G(v)/ ‖G(v)‖D and their weighted
mean. The 3 blue points are exp(u)/1> exp(u),
exp(v)/1> exp(v) and their weighted mean. Note that
the weighted means lie on different sides of the black
diagonal line.
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from which the result follows after taking expectations
and using Jensen’s inequality.

To keep notation simple, we will omit subscripts under
expectations. All expectations are w.r.t. r drawn from
η. Let π be an arbitrary permutation. We have,

¯̀
NDCG(s; η) = E

− 1
‖G(r)‖D

m∑
j=1

G(rj)
F (πs(j))


= E

− 1
‖G(r)‖D

m∑
j=1

G(rπ−1
s (j))

F (j)

 (11)

= E

− m∑
j=1

(g(s))π−1
s (j)

F (j)

+ T1

≤ E

− m∑
j=1

(g(s))π−1(j)

F (j)

+ T1

= E

− 1
‖G(r)‖D

m∑
j=1

G(rπ−1(j))
F (j)

+ T2 + T1

= E

− 1
‖G(r)‖D

m∑
j=1

G(rj)
F (π(j))

+ T2 + T1

= ¯̀
NDCG(π; η) + T2 + T1 . (12)

where

T1 := E

 m∑
j=1

1
F (j)

·

(
(g(s))π−1

s (j) −
G(rπ−1

s (j))

‖G(r)‖D

) ,

T2 := E

 m∑
j=1

1
F (j)

·
(
G(rπ−1(j))
‖G(r)‖D

− (g(s))π−1(j)

) .

The inequality above holds because the sorted order
of s and g(s) match (i.e. s ; g(s)) since g is an
order-preserving map. Note that both T1 and T2 are
bounded by

CF
2
·
∥∥∥∥g(s)− E

[
G(r)
‖G(r)‖D

]∥∥∥∥
using the inequality 〈u,v〉 ≤ ‖u‖ · ‖v‖? and definition
of CF . Plugging this into (12), we get

¯̀
NDCG(s; η)− ¯̀

NDCG(π; η) ≤ CF
∥∥∥∥g(s)− E

[ G(r)
‖G(r)‖D

]∥∥∥∥
≤ CF√

Cφ
·
√
φ̄(s, η)− φ̄?(η) .

The last inequality above follows because by Cφ-strong

convexity of ψ w.r.t. ‖ · ‖, we have

φ̄(s, η) = E
[
Dψ

(
G(r)
‖G(r)‖D

, g(s)
)]

= min
s′

E
[
Dψ

(
G(r)
‖G(r)‖D

, g(s′)
)]

+Dψ

(
E
[

G(r)
‖G(r)‖D

]
, g(s)

)
≥ φ̄?(η) + Cφ

∥∥∥∥g(s)− E
[

G(r)
‖G(r)‖D

]∥∥∥∥2

.

Taking maximum over π yields,

¯̀
NDCG(s; η)− ¯̀?

NDCG(η) ≤ CF√
Cφ
·
√
φ̄(s, η)− φ̄?(η) .

and this completes the proof.

Plots

In Figure 6, we present the rest of the plots comparing
the NDCG consistent and unmodified versions of ex-
isting surrogates, and where the differences were not
that pronounced. We also ran significance tests for
these comparisons; presented in Figure 1. We modified
the Lemur toolkit to compute NDCG@10 and used the
random permutation test with 5% significance level for
each test. We were able to test 9 out of 10 datasets in
the paper; we were not able to run the Lemur toolkit
for the MS10K dataset due to memory limits. Out
of 81 evaluation points (9 datasets x 3 loss functions
x 3 metrics (NDCG@1,5,10) ), NDCG recovery per-
formed significantly better in 11 and worse in 9 cases.
One interesting thing here was that 5 cases out of 9
“worse” cases came from only one dataset (MQ2008).
Further, the “large” changes were all one-sided: the
only changes larger than 3% were all improvements;
some of them as large as 30%.
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(a) Cross Entropy on the OHSUMED (b) Cross Entropy on the HP2004 (c) Cross Entropy on the MQ2007

(d) Cross Entropy on the MQ2008 (e) Cross Entropy on the MS10K (f) Cosine on the OHSUMED

(g) Cosine on the HP2003 (h) Cosine on the HP2004 (i) Cosine on the NP2003

(j) Cosine on the NP2004 (k) Cosine on the TD2004 (l) Cosine on the MQ2007

(m) Cosine on the MQ2008 (n) Square on the OHSUMED (o) Square on the HP2003

(p) Square on the HP2004 (q) Square on the NP2003 (r) Square on the NP2004
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(s) Square on the TD2003 (t) Square on the TD2004 (u) Square on the MQ2008

Figure 5: NDCG@1-10 for original surrogate vs. NDCG consistent surrogate

Figure 6: One example of normalized loss functions, q = log(mi) + 2 vs. existing listwise loss functions w/
recovering NDCG consistency

Table 1: Comparison of the ‘NDCG-consistent’ version (with Z(r)10) to the baseline across 81 evaluation points:
9 datasets, 3 loss functions ( cross-entropy, cosine and squared), and 3 metrics (NDCG@{1,5,10}). For each case,
we report whether our method performed better, same, or worse than the baseline (with statistical significance).
We also report average change in relative accuracy across the 9 evaluation points for each dataset.

Dataset OHSUMED HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 MQ2007 MQ2008 Total %

Better 2 5 0 3 0 0 0 1 0 11 13.6%
Same 7 4 9 6 8 8 9 6 4 61 75.3%

Worse 0 0 0 0 1 1 0 2 5 9 11.1%
Total 9 9 9 9 9 9 9 9 9 63 100%

Avg. change 0.81% 14.9% -0.78% 11.68% -2.77% 4.73% 1.82% -0.09% -2.02% 4.34%


