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Abstract
We study robust high-dimensional estimation of
generalized linear models (GLMs); where a small
number k of the n observations can be arbitrarily
corrupted, and where the true parameter is high di-
mensional in the “p � n” regime, but only has
a small number s of non-zero entries. There has
been some recent work connecting robustness and
sparsity, in the context of linear regression with cor-
rupted observations, by using an explicitly mod-
eled outlier response vector that is assumed to be
sparse. Interestingly, we show, in the GLM set-
ting, such explicit outlier response modeling can be
performed in two distinct ways. For each of these
two approaches, we give `

2

error bounds for pa-
rameter estimation for general values of the tuple
(n, p, s, k).

1 Introduction
Statistical models in machine learning allows us to make
strong predictions even from limited data, by leveraging spe-
cific assumptions imposed on the model space. However, on
the flip side, when the specific model assumptions do not ex-
actly hold, these standard methods could deteriorate severely.
Constructing estimators that are robust to such departures
from model assumptions is thus an important problem, and
forms the main focus of Robust Statistics [Huber, 1981; Ham-
pel et al., 1986; Maronna et al., 2006]. In this paper, we focus
on the robust estimation of high-dimensional generalized lin-
ear models (GLMs). GLMs are a very general class of models
for predicting a response given a covariate vector, and include
many classical conditional distributions such as Gaussian, lo-
gistic, etc. In classical GLMs, the data points are typically
low dimensional and are all assumed to be actually drawn
from the assumed model. In our setting of high dimensional
robust GLMs, there are two caveats: (a) the true parameter
vector can be very high dimensional and furthermore, (b) cer-
tain observations are outliers, and could have arbitrary values
with no quantitative relationship to the assumed generalized
linear model.
Existing Research: Robust Statistics. There has been a long
line of work [Huber, 1981; Hampel et al., 1986; Maronna et

al., 2006] on robust statistical estimators. These are based

on the insight that the typical log-likelihood losses, such as
the squared loss for the ordinary least squares estimator for
linear regression, are very sensitive to outliers, and that one
could devise surrogate losses instead that are more resistant
to such outliers. Rousseeuw [1984] for instance proposed the
least median estimator as a robust variant of the ordinary least
squares estimator. Another class of approaches fit trimmed
estimators to the data after an initial removal of candidate
outliers Rousseeuw and Leroy [1987]. There have also been
estimators that model the outliers explicitly. [Gelman et al.,
2003] for instance model the responses using a mixture of
two Gaussian distributions: one for the regular noise, and the
other for the outlier noise, typically modeled as a Gaussian
with high variance. Another instance is where the outliers are
modeled as being drawn from heavy-tailed distributions such
as the t distribution [Lange et al., 1989].
Existing Research: Robustness and Sparsity. The past few
years have actually led to an understanding that outlier ro-
bust estimation is intimately connected to sparse signal re-

covery [Candes and Tao, 2005; Antoniadis, 2007; Jin and
Rao, 2010; Mitra et al., 2010; She and Owen, 2011]. The
main insight here is that if the number of outliers is small,
it could be cast as a sparse error vector that is added to the
standard noise. The problem of sparse signal recovery it-
self has seen a surge of recent research, and where a large
body of work has shown that convex and tractable methods
employing the likes of `

1

regularization enjoy strong statisti-
cal guarantees [Donoho and Elad, 2003; Ng, 2004; Candes
and Tao, 2006; Meinshausen and Bühlmann, 2006; Tropp,
2006; Zhao and Yu, 2007; Wainwright, 2009; Yang et al.,
2012]. Intriguingly, Antoniadis [2007]; She and Owen [2011]
show that even classical robust statistics methods could be
cast as sparsity encouraging M-estimators that specifically
use non-convex regularization. Jin and Rao [2010]; Mitra et

al. [2010] have also suggested the use of non-convex penal-
ization based methods such as SCAD [Fan and Li, 2001] for
robust statistical estimation. Convex regularization based es-
timators however have been enormously successful in high-
dimensional statistical estimation, and in particular provide
tractable methods that scale to very high-dimensional prob-
lems, and yet come with rigorous guarantees. To complete
the story on the connection between robustness and spar-
sity, it is thus vital to obtain bounds on the performance of
the convex regularization based estimators for general high-



dimensional robust estimation. For the task of high dimen-
sional robust linear regression, there has been some interest-
ing recent work [Nguyen and Tran, 2011] that have provided
precisely such bounds. In this paper, we provide such an anal-
ysis for GLMs beyond the standard Gaussian linear model.

It turns out that the story for robust GLMs beyond the stan-
dard Gaussian linear model is more complicated. In particu-
lar, outlier modeling in GLMs could be done in two ways: (a)
in the parameter space of the GLM, or (b) in the output space.
For the linear model these two approaches are equivalent, but
significant differences emerge in the general case. We show
that the former approach always leads to convex optimiza-
tion problems but only works under rather stringent condi-
tions. On the other hand, the latter approach can lead to a
non-convex M-estimator, but enjoys better guarantees. How-
ever, we show that all global minimizers of the M-estimation
problem arising in the second approach are close to each
other, so that the non-convexity in the problem is rather be-
nign. Leveraging recent results [Agarwal et al., 2010; Loh
and Wainwright, 2011], we can then show that projected gra-
dient descent will approach one of the global minimizers up
to an additive error that scales with the statistical precision of
the problem. Our main contributions are thus as follows:

1. For robust estimation of GLMs, we show that there are
two distinct ways to use the connection between robust-
ness and sparsity.

2. For each of these two distinct approaches, we provide
M-estimators, that use `

1

regularization, and in addi-

tion, appropriate constraints. For the first approach, the
M-estimation problem is convex and tractable. For the
second approach, the M-estimation problem is typically
non-convex. But we provide a projected gradient descent
algorithm that is guaranteed to converge to a global min-
imum of the corresponding M-estimation problem, up to
an additive error that scales with the statistical precision
of the problem.

3. One of the main contributions of the paper is to pro-
vide `

2

error bounds for each of the two M-estimators,
for general values of the tuple (n, p, s, k). The anal-
ysis of corrupted general non-linear models in high-
dimensional regimes is highly non-trivial: it combines
the twin difficulties of high-dimensional analysis of non-
linear models, and analysis given corrupted observa-
tions. The presence of both these elements, specifically
the interactions therein, required a subtler analysis, as
well as slightly modified M-estimators.

2 Problem Statement and Setup
We consider generalized linear models (GLMs) where the re-
sponse variable has an exponential family distribution, condi-
tioned on the covariate vector,

P(y|x, ✓?) = exp

(

h(y) + yh✓?, xi �A

�

h✓?, xi
�

c(�)

)

. (1)

Examples. The standard linear model with Gaussian noise,
the logistic regression and the Poisson model are typical ex-
amples of this model. In case of standard linear model, the
domain of variable y, Y , is the set of real numbers, R, and

with known scale parameter �, the probability of y in (1) can
be rewritten as

P(y|x, ✓?) / exp

⇢

�y2
/2 + yh✓?, xi � h✓?, xi2/2

�

2

�

, (2)

where the normalization function A(a) in (1) in this case be-
comes a2/2. Another very popular example in GLM models
is logistic regression given a categorical output variable:

P(y|x, ✓?) = exp

�

yh✓?, xi � log

�

1 + exp(h✓?, xi)
� 

, (3)

where Y is {0, 1}, and the normalization function A(a) =

log(1 + exp(a)). We can also derive the Poisson regression
model from (1) as follows:
P(y|x, ✓?) = exp {� log(y!) + yh✓?, xi � exp(h✓?, xi)} , (4)

where Y is {0, 1, 2, ...}, and the normalization function
A(a) = exp(a). Our final example is the case where the
variable y follows an exponential distribution:

P(y|x, ✓?) = exp {yh✓?, xi+ log(�h✓?, xi)} , (5)

where Y is the set of non-negative real numbers, and the nor-
malization function A(a) = � log(�a). Any distribution
in the exponential family can be written as the GLM form
(1) where the canonical parameter of exponential family is
h✓?, xi. Note however that some distributions such as Pois-
son or exponential place restrictions on h✓?, xi to be valid
parameter, so that the density is normalizable, or equivalently
the normalization function A(h✓?, xi) < +1.

In the GLM setting, suppose that we are given n covariate
vectors, x

i

2 Rp, drawn i.i.d. from some distribution, and
corresponding response variables, y

i

2 Y , drawn from the
distribution P(y|x

i

, ✓

?

) in (1). A key goal in statistical esti-
mation is to estimate the parameters ✓⇤, given just the samples
Z

n

1

:= {(x
i

, y

i

)}n
i=1

. Such estimation becomes particularly
challenging in a high-dimensional regime, where the dimen-
sion p is potentially even larger than the number of samples
n. In this paper, we are interested in such high dimensional
parameter estimation of a GLM under the additional caveat
that some of the observations y

i

are arbitrarily corrupted. We
can model such corruptions by adding an “outlier error” pa-
rameter e?

i

in two ways: (i) we consider e?
i

in the “parameter
space” to the uncorrupted parameter h✓?, x

i

i, or (ii) introduce
e

?

i

in the output space, so that the output y
i

is actually the sum
of e?

i

and the uncorrupted output ȳ
i

. For the specific case of
the linear model, both these approaches are exactly the same.
We assume that only some of the examples are corrupted,
which translates to the error vector e

? 2 Rn being sparse.
We further assume that the parameter ✓? is also sparse. We
thus assume:

k✓?k
0

 s, and ke?k
0

 k,

with support sets S and T , respectively. We detail the two
approaches (modeling outlier errors in the parameter space
and output space respectively) in the next two sections.

3 Modeling gross errors in the parameter space
In this section, we discuss a robust estimation ap-
proach by modeling gross outlier errors in the param-
eter space. Specifically, we assume that the i-th re-
sponse y

i

is drawn from the conditional distribution in



(1) but with a “corrupted” parameter h✓?, x
i

i +

p
ne

?

i

,
so that the samples are distributed as P(y

i

|x
i

, ✓

?

, e

?

i

) =

exp

⇢
h(yi)+yi(h✓?

,xii+
p
ne

?
i )�A

�
h✓?

,xii+
p
ne

?
i

�

c(�)

�
. We can

then write down the resulting negative log-likelihood as,
L

p

(✓, e;Z

n

1 ) :=

�h✓, 1
n

n

X

i=1

y

i

x

i

i � 1p
n

n

X

i=1

y

i

e

i

+

1

n

n

X

i=1

A

�

h✓, x
i

i+
p
ne

i

�

.

We thus arrive at the following `

1

regularized maximum like-
lihood estimator:

(

b
✓, be) 2 argminL

p

(✓, e;Z

n

1

) + �

n,✓

k✓k
1

+ �

n,e

kek
1

.

In the sequel, we will consider the following constrained ver-
sion of the MLE (a

0

, b

0

are constants independent of n, p):

(

b
✓, be) 2 argmin

k✓k
2

a

0

kek
2

 b
0p
n

L
p

(✓, e;Z

n

1

) + �

n,✓

k✓k
1

+ �

n,e

kek
1

. (6)

The additional regularization provided by the constraints al-
low us to obtain tighter bounds for the resulting M-estimator.

We note that the M-estimation problem in (6) is convex:
adding the outlier variables e does not destroy the convexity
of the original problem with no gross errors. On the other
hand, as we detail below, extremely stringent conditions are
required for consistent statistical estimation. (The strictness
of these conditions is what motivated us to also consider out-
put space gross errors in the next section, where the condi-
tions required are more benign).

3.1 `2 Error Bound
We require the following stringent condition:
Assumption 1. k✓?k

2

 a

0

and ke?k
2

 b

0p
n

.

We assume the covariates are multivariate Gaussian dis-
tributed as described in the following condition:
Assumption 2. Let X be the n ⇥ p design matrix, with the

n samples {x
i

} along the n rows. We assume that each sam-

ple x

i

is independently drawn from N(0,⌃). Let �

max

and

�

min

> 0 be the maximum and minimum eigenvalues of the

covariance matrix ⌃, respectively, and let ⇠ be the maximum

diagonal entry of ⌃. We assume that ⇠�

max

= ⇥(1).

Additionally, we place a mild restriction on the normalization
function A(·) that all examples of GLMs in Section 2 satisfy:
Assumption 3. The double-derivative A

00
(·) of the normal-

ization function has at most exponential decay: A

00
(⌘) �

exp(�c⌘) for some c > 0.

Theorem 1. Consider the optimal solution (

b
✓, be) of (6) with

the regularization parameters:

�

n,✓

= 2c

1

r
log p

n

and �

n,e

= 2c

2

r
log n

n

,

where c

1

and c

2

are some known constants. Then, there exist

positive constants K, c

3

and c

4

such that with probability at

least 1� K

n

, the error (

b
�,

b
�) := (

b
✓� ✓

?

, be� e

?

) is bounded

by

kb�k
2

+ kb�k
2

 c

3

p
s log p+

p
k log n

n

1/2�c

4

/

p
logn

.

Note that the theorem requires the assumption that the out-
lier errors are bounded as ke?k

2

 b

0p
n

. Since the “corrupted”
parameters are given by h✓?, x

i

i+
p
ne

?

i

, the gross outlier er-
ror scales as

p
nke?k

2

, which the assumption thus entails be
bounded by a constant (independent of n). Our search to find
a method that can tolerate larger gross errors led us to intro-
duce the error in the output space in the next section.

4 Modeling gross errors in the output space
In this section, we investigate the consequences of mod-
eling the gross outlier errors directly in the response
space. Specifically, we assume that a perturbation of
the i-th response, y

i

�
p
ne

?

i

is drawn from the con-
ditional distribution in (1) with parameter h✓?, x

i

i, so
that the samples are distributed as P(y

i

|x
i

, ✓

?

, e

?

i

) =

exp

⇢
h(yi�

p
ne

?
i )+(yi�

p
ne

?
i )h✓

?
,xii�A

�
h✓?

,xii
�

c(�)

�
. We can

then write down the resulting likelihood as, L
o

(✓, e;Z

n

1 ) :=

1
n

P

n

i=1

h

B (y

i

�
p
ne

i

) � (y

i

�
p
ne

i

)h✓, x
i

i + A(h✓, x
i

i)
i

,
where B(y) = �h(y), and the resulting `

1

regularized maxi-
mum likelihood estimator as:

(

b
✓, be) 2 argminL

o

(✓, e;Z

n

1

) + �

n,✓

k✓k
1

+ �

n,e

kek
1

. (7)

Note that when B(y) is set to �h(y) as above, the estimator
has the natural interpretation of maximizing regularized log-
likelihood, but in the sequel we allow it to be an arbitrary
function taking the response variable as an input argument.
As we will see, setting this to a function other than �h(y)

will allow us to obtain stronger statistical guarantees.
Just as in the previous section, we consider a constrained

version of the MLE in the sequel:

(

b
✓, be) 2 argmin

k✓k
1

a

0

p
s

kek
1

b

0

p
k

L
o

(✓, e;Z

n

1

) + �

n,✓

k✓k
1

+ �

n,e

kek
1

. (8)

A key reason we introduce these constraints will be seen in
the next section: these constraints help in designing an effi-
cient iterative optimization algorithm to solve the above opti-
mization problem (by providing bounds on the iterates right
from the first iteration). One unfortunate facet of the M-
estimation problem in (8), and the allied problem in (7), is that
it is not convex in general. We will nonetheless show that the
computationally tractable algorithm we provide in the next
section is guaranteed to converge to a global optimum (up to
an additive error that scales at most with the statistical error
of the global optimum).

We require the following bounds on the `
2

norms of ✓?, e?.
Assumption 4. k✓?k

2

 a

0

and ke?k
2

 b

0

for some con-

stants a

0

, b

0

.

When compared with Assumption 1 in the previous sec-
tion, the above assumption imposes a much weaker restric-
tion on the magnitude of the gross errors. Specifically, with
the

p
n scaling included, the above Assumption 4 allows the

`

2

norm of the gross error to scale as
p
n, whereas Assump-

tion 1 in the previous section required the norm k✓?k
2

to be
bounded above by a constant.



4.1 `2 Error bound
It turned out, given our analysis, that a natural selection of the
function B(·) is to use the quadratic function (we defer dis-
cussion due to lack of space). Thus, in the spirit of classical
robust statistics, we considered the modified log-likelihood
objective in (7) with the above setting of B(·): L

o

(✓, e;Z

n

1 ) :=

1
n

P

n

i=1

h

1
2 (y

i

�
p
ne

i

)

2 � (y

i

�
p
ne

i

)h✓, x
i

i+A(h✓, x
i

i)
i

.
Similarly here, we assume the random design matrix has

rows sampled from a sub-Gaussian distribution:
Assumption 5. Let X be the n⇥ p design matrix which has

each sample x

i

in its ith row. Let �

max

and �

min

> 0 be the

maximum and minimum eigenvalues of the covariance matrix

of x, respectively. For any v 2 Rp

, the variable h✓, x
i

i is

sub-Gaussian with parameter at most 

2

u

kvk2
2

.

Theorem 2. Consider the optimal solution (

b
✓, be) of (8) with

the regularization parameters:

�

n,✓

= max

(
2c

1

r
log p

n

, c

2

r
max(s, k) log p

sn

)
and

�

n,e

= max

(
2

c

00
n

1/2� c0p
log n

, c

3

r
max(s, k) log p

kn

)
,

where c

0
, c

00
, c

1

, c

2

, c

3

are some known constants. Then,

there exist positive constants K, L and c

4

such that if n �
Lmax(s, k) log p, then with probability at least 1 � n

K

, the

error (

b
�,

b
�) := (

b
✓ � ✓

?

, be� e

?

) is bounded by

kb�k
2

+ kb�k
2

 c

4

max

( p
k

n

1

2

� c0p
log n

,

r
max(s, k) log p

n

)
.

Remarks. Nguyen and Tran [2011] analyze the specific
case of the standard linear regression model (which nonethe-
less is a member of the GLM family), and provide the bound:

kb�k2 + kb�k2  cmax

(

r

s log p

n

,

r

k log n

n

)

,

which is asymptotically equivalent to the bound in Theo-
rem 2. As we noted earlier, for the linear regression model,
both approaches of modeling outlier errors in the parameter
space or the output space are equivalent, so that we could also
compare the linear regression bound to our bound in Theo-
rem 1.There too, the bounds can be seen to be asymptotically
equivalent. We thus see that the generality of the GLM fam-
ily does not adversely affect `

2

norm convergence rates even
when restricted to the simple linear regression model.

5 A Tractable Optimization Method for the
Output Space Modeling Approach

In this section we focus on the M -estimation problem (8)
that arises in the second approach where we model errors in
the output space. Unfortunately, this is not a tractable opti-
mization problem: in particular, the presence of the bilinear
term e

i

h✓, x
i

i makes the objective function L
o

non-convex.
A tractable seemingly-approximate method would be to solve

for a local minimum of the objective, by using a gradient de-
scent based method. In particular, projected gradient descent
(PGD) applied to the M -estimation problem (8) produces the
iterates:

(✓

t+1
, e

t+1
) argmin

k✓k
1

a

0

p
s

kek
1

b

0

p
k

n

h✓,r
✓

L
o

(✓

t

, e

t

;Z

n

1 )i+
⌘

2

k✓ � ✓

tk22

+ he,r
e

L
o

(✓

t

, e

t

, Z

n

1 )i+
⌘

2

ke� e

tk22 + �

n,✓

k✓k1 + �

n,e

kek1
o

,

where ⌘ > 0 is a step-size parameter. Note that even though
L
o

is non-convex, the problem above is convex, and decou-
ples in ✓, e. Moreover, minimizing a composite objective over
the `

1

ball can be solved very efficiently by performing two
projections onto the `

1

-ball (see Agarwal et al. [2010] for in-
stance for details).

While the projected gradient descent algorithm with the it-
erates above might be tractable, one concern might be that
these iterates would atmost converge to a local minimum,
which might not satisfy the consistency and `

2

convergence
rates as outlined in Theorem 2. However, the following theo-
rem shows that the concern is unwarranted: the iterates con-
verge to a global minimum of the optimization problem in
(8), up to an additive error that scales at most as the statisti-

cal error,
⇣
kb✓ � ✓

?k2
2

+ kbe� e

?k2
2

⌘
.

Theorem 3. Suppose all conditions of Theorem 2 hold and

that n > c

2

0

(k + s)

2

log(p). Let F (✓, e) denote the objec-

tive function in (8) and let (

b
✓, be) be a global optimum of

the problem. Then, when we apply the PGD steps above

with appropriate step-size ⌘, there exist universal constants

C

1

, C

2

> 0 and a contraction coefficient � < 1, inde-

pendent of (n, p, s, k), such that k✓t � b
✓k2

2

+ ket � bek2
2


C

1

⇣
kb✓ � ✓

?k2
2

+ kbe� e

?k2
2

⌘

| {z }
�

2

for all iterates t � T where

T = C

2

log

F (✓

0

,e

0

)�F (

b
✓,be))

�

2

/ log(1/�).

6 Experimental Results
In this section, we provide experimental validation, over both
simulated as well as real data, of the performance of our M -
estimators.

6.1 Simulation Studies
In this section, we provide simulations corroborating Theo-
rems 1 and 2. The theorems are applicable to any distribution
in the GLM family (1), and as canonical instances, we con-
sider the cases of logistic regression (3), Poisson regression
(4), and exponential regression (5). (The case of the stan-
dard linear regression model under gross errors has been pre-
viously considered in Nguyen and Tran [2011].)

We instantiated our models as follows. We first randomly
selected a subset S of {1, . . . , p} of size p

p as the support
set (indexing non-zero values) of the true parameter ✓⇤. We
then set the nonzero elements, ✓⇤

S

, to be equal to !, which
we vary as noted in the plots. We then randomly gener-
ated n i.i.d samples, {x

1

, ..., x

n

}, from the normal distribu-
tion N(0,�

2

I

p⇥p

). Given each feature vector x

i

, we drew
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(a) Logistic regression models: ! = 0.5 and � = 5.
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(b) Poisson regression models: ! = 0.1, � = 5 and � = 50.
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(c) Exponential regression models: ! = 0.1, � = 1 and � = 20.

Figure 1: Comparisons of `
2

error norm for ✓ vs. n, and where p = 196, for different regression cases: logistic regression
(top row), Poisson regression (middle row), and exponential regression (bottom row). Three different types of corruptions are
presented: k = log(n) (Left column), k =

p
(n) (Center), and k = 0.1(n) (Right column).

the corresponding true class label ȳ
i

from the corresponding
GLM distribution. To simulate the worst instance of gross
errors, we selected the k samples with the highest value of
h✓⇤, x

i

i and corrupted them as follows. For logistic regres-
sion, we just flipped their class labels, to y

i

= (1 � ȳ

i

). For
the Poisson and exponential regression models, the corrupted
response y

i

is obtained by adding a gross error term �

i

to
ȳ

i

. The learning algorithms were then given the corrupted

dataset {x
i

, y

i

}n
i=1

. We scaled the number of corrupted sam-
ples k with the total number of samples n in three different
ways: logarithmic scaling with k = ⇥(log n), square root
scaling with k = ⇥(

p
n), and linear scaling with k = ⇥(n).

For each tuple of (n, p, s, k), we drew 50 batches of n sam-
ples, and plot the average.

Figure 1 plots the `

2

norm error kˆ✓ � ✓

⇤k
2

of the param-
eter estimates, against the number of samples n. We com-
pare three methods: (a) the standard `

1

penalized GLM MLE
(e.g. `

1

logistic reg.), which directly learns a GLM regression
model over the corrupted data; (b) our first M -estimator (6),
which models error in the parameter space (Gross error in
param); and (c) our second M -estimator, which models er-
ror in the output space (8) (Gross error in output). As a gold
standard, we also include the performance of the standard `

1

penalized GLM regression over the uncorrupted version of

the dataset, {x
i

, ȳ

i

}n
i=1

(w/o gross error). Note that the `

2

norm error is just on the parameter estimates, and we exclude
the error in estimating the outliers e themselves, so that we
could compare against the gold-standard GLM regression on
the uncorrupted data.

While the M -estimation problem with gross errors in the
output space is not convex, it can be seen that the proximal
gradient descent (PGD) iterates converge to the true ✓

⇤, cor-
roborating Theorem 3. In the figure, the three rows corre-
spond to the three different GLMs, and the three columns
correspond to different outlier scalings, with logarithmic (first
column), square-root (second column), and linear (third col-
umn) scalings of the number of outliers k as a function of the
number of samples n. As the figure shows, the approaches
modeling the outliers in the output and parameter spaces per-
form overwhelmingly better than the baseline `

1

penalized
GLM regression estimator, and their error even approaches
the estimator that is trained from uncorrupted data, even un-
der settings where the number of outliers is a linear fraction
of the number of samples. The approach modeling outliers
in the output space seems preferable in some cases (logistic,
exponential), while the approach modeling outliers in the pa-
rameter space seems preferable in some cases (Poisson).
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(c) splice

Figure 2: Comparisons of the empirical prediction errors for different types of outliers on 3 real data examples. Percentage of
the used samples in the training dataset: 10% (Left column), 50% (Center) and 100% (Right column)

6.2 Real Data Examples

In this section, we evaluate the performance of our esti-
mators on some real binary classification datasets, obtained
from LIBSVM (http://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/
datasets/). We focused on the logistic regression case, and
compared our two proposed approaches against the standard
logistic regression. Note that the datasets we consider have
p < n so that we can set �

n,✓

= 0, thus not adding further
sparsity encouraging `

1

regularization to the parameters. We
created variants of the datasets by adding varying number of
outliers (by randomly flipped the values of the responses y

as in the experiments on the simulated datasets). Given each
dataset, we split it into three groups; 0.2 of training dataset,
0.4 of validation dataset and 0.4 of test dataset. The valida-
tion dataset is used to choose the best performance of �

n,e

and the constraint constant ⇢ where we solved the optimiza-
tion problem under the constraint kek  ⇢.

Figure 2 plots performance comparisons on 3 datasets,
one row for each dataset. We varied the fraction of training
dataset provided to each algorithm, and columns correspond
to these varying fractions: 10% (Left column), 50% (Cen-
ter) and 100% (Right column). Each graph has a group of
four bar-plots corresponding to the four different types of out-
liers: original dataset without adding artificial outliers (w/o),
and where the number of outliers scales as log(n) (Log),

p
n

(Sqrt) or 0.1(n) (Linear), given n training examples. Our pro-
posed robust methods perform as well or better, with partic-

ularly strong performance, with more outliers, and/or where
less samples are used for the training. We found the latter
phenomenon interesting, and worthy of further research: that
robustness might help the performance of regression models
even in the absence of outliers by preventing overfitting.

7 Conclusion
We have provided a comprehensive analysis of statistical es-
timation of high dimensional GLMs with grossly corrupted
observations. We detail two distinct approaches for modeling
sparse outlier errors in GLMs: incidentally these are equiva-
lent in the linear case, though distinct for general GLMs. For
both approaches, we provide tractable M-estimators, and an-
alyze their consistency by providing `

2

error bounds. The pa-
rameter space approach is nominally more intuitive and com-
putationally tractable, but requires stronger conditions for the
error bounds to hold (and in turn for `

2

consistency). In con-
trast, the second output space based approach leads to a non-
convex problem, which makes statistical and computational
analyses harder. Nonetheless, we show that this second ap-
proach is better than the first on the statistical front, since we
obtain better bounds that require weaker conditions to hold,
and on the computational front it is comparable, as we show a
simple projected gradient descent algorithm converges to one
of the global optima up to statistical precision.
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