
Learning and Multiagent Reasoning
for Autonomous Agents

Prof. Peter Stone

Director, Learning Agents Research Group
Department of Computer Sciences

The University of Texas at Austin

IJCAI 2007 Computers and Thought Lecture



A Goal of AI
Robust, fully autonomous
agents in the real world

How?
• Build complete solutions to relevant challenge tasks

Complete agents: sense, decide, and act — closed loop
Challenge tasks: specific, concrete objectives

• Drives research on component algorithms, theory

− Improve from experience (Machine learning)
− Interact with other agents (Multiagent systems)

• A top-down, empirical approach
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Bottom-Up Metaphors

Russell, ’95
“Theoreticians can produce the AI equivalent of bricks,
beams, and mortar with which AI architects can build the
equivalent of cathedrals.”

Koller, ’01
“In AI . . . we have the tendency to divide a problem into
well-defined pieces, and make progress on each one.
. . . Part of our solution to the AI problem must involve
building bridges between the pieces.”
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The Bricks
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The Beams and Mortar
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Towards a Cathedral?

?
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Or Something Else?

Vision

Multiagent
Reasoning

Game
Theory

Learning Robotics

Representation
KnowledgeDistributed

Optimization

Natural
Language

?

c© 2007 Peter Stone



A Different Problem Division

AI
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Top-Down Approach
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“Good problems . . . produce good science” [Cohen, ’04]
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Meeting in the Middle

Vision

Multiagent
Reasoning

Game
Theory

Learning Robotics

Representation
KnowledgeDistributed

Optimization

Natural
Language

Top-down approaches underrepresented: (IJCAI ’05: 35/237)
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Choosing the Challenge
• Features of good challenges: [Cohen, ’04]

− Frequent tests; Graduated series of challenges
− Accept poor performance; Complete agents

• Closed loop + specific goal (beyond [Brooks, ’91])

• 50-year technical, scientific goals
− Beyond commercial applications — not possible now
− Moore’s law not enough

• There are many — choose one that inspires you

− Leverage “bricks and mortar” from past
− Hybrid symbolic/probabilistic methods

[Richardson & Domingos, ’06]
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Good Problems Produce Good Science

Manned flight Apollo mission

Manhattan project RoboCup soccer

Goal: By the year 2050, a team of humanoid robots
that can beat the human World Cup champion team.
[Kitano, ’97]
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RoboCup Soccer

• Still in the early stages (small houses)

• Many virtues:

− Incremental challenges, closed loop at each stage
− Relatively easy entry
− Multiple robots possible
− Inspiring to many

• Visible progress
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The Early Years
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A Decade Later
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Advances due to RoboCup

• Drives research in many areas:

− Control algorithms; computer vision, sensing; localization;
− Distributed computing; real-time systems;
− Knowledge representation; mechanical design;
− Multiagent systems; machine learning; robotics
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• 200+ publications from simulation league alone

• 200+ from 4-legged league

• 15+ Ph.D. theses
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Layered Learning
• For domains too complex for tractably mapping state

features S 7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}

• Machine learning: exploit data to train, adapt

• Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine LearningMulti-Agent Behaviors

World State
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Layered Learning in Practice

First applied in simulated robot soccer [Stone & Veloso, ’97]

Strategic Level Example
L1 individual ball interception
L2 multiagent pass evaluation
L3 team pass selection Vision
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Recently applied on real robots [Stone, Kohl, & Fidelman, ’06]

Strategic Level Example
L1 individual fast walking
L2 individual ball control

c© 2007 Peter Stone



Robot Vision
• Great progress in computer vision
− Shape modeling, object recognition, face detection. . .

• Robot vision offers new challenges
− Mobile camera, limited computation, color features

• Autonomous color learning [Sridharan & Stone, ’05]

− Learns color map based on known object locations
− Recognizes and reacts to illumination changes

− Object detection in real-time, on-board a robot
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Other Good AI Challenges

Trading agents

Autonomous vehicles

Autonomic computing

Socially assistive robots
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Challenge Problems Drive Research
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Learning and Multiagent Reasoning
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Outline

• Build complete solutions to relevant challenge tasks

− Drives research on component algorithms, theory

• Learning Agents

− Scaling up Reinforcement Learning
− Adaptive representations

• Multiagent reasoning

− Prepare for the unexpected
− Adaptive interaction protocols
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Machine Learning

“. . . resurgence of interest in machine learning” [Mitchell, ’83]

Supervised learning mature [Kaelbling, ’97]

For agents, reinforcement learning most appropriate

Environment

Agent
πPolicy   : S    A

action (a[t])
state (s[t])

reward (r[t+1])

− Foundational theoretical results
− Challenge problems require innovations to scale up
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RL Theory

Success story: Q-learning converges to π∗ [Watkins, 89]

s[t]

r[t]

a[t−1]

s a

Q(s,a)

s[t−1]

a[t]

− Table-based representation
− Visit every state infinitely often
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Scaling Up
• Backgammon [Tesauro, ’94]

• Helicopter control [Ng et al., ’03]

• RoboCup Soccer Keepaway [Stone & Sutton, ’01]

− Play in a small area (20m × 20m)
− Keepers try to keep the ball
− Takers try to get the ball
− Performance measure: average possession duration

Vision

Game
Theory

Robotics

Representation
KnowledgeDistributed

Optimization

Natural
Language

Multiagent
Reasoning

Learning

c© 2007 Peter Stone



Function Approximation

In practice, visiting every state impossible

s[t]

r[t]

a[t−1]

s a

Q(s,a)

s[t−1]

a[t]

Function approximation of value function

s[t]

a[t]

s[t−1]

s a

Q(s,a)

r[t]

a[t−1]

Theoretical guarantees harder to come by
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Main Result
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Episode
Duration
(seconds)

Hours of Training Time
(bins of 1000 episodes)

handcoded random
always
hold

Learning: Distributed SMDP SARSA(λ) with CMACs

− Algorithm modified to enable distributed updates

1 hour = 720 5-second episodes
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Batch Methods
In practice, often experience is scarce

s[t]

a[t]

s[t−1]

s a

Q(s,a)

r[t]

a[t−1]

Save transitions:

s[t]

r[t]

a[t]

s a

Q(s,a)

<r[i], s[i], a[i]> for i=0 to t−1
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“Few Zeroes” [Kalyanakrishnan & Stone, ’07]

Experience replay [Lin, ’92], Fitted Q Iteration [Ernst et al., ’05]
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Other ways to scale up

• Advice/demonstration, state/temporal abstraction
• Hierarchical representations, transfer learning
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A Big Caveat

So far, representations chosen manually

Tiling #1

State Variable #1

Tiling #2

State Variable #1
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The crucial factor for a successful approximate
algorithm is the choice of the parametric approximation
architecture. . . .” [Lagoudakis & Parr,’03]
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Representations for RL

Can RL agents automatically learn
effective representations?
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NEAT+Q [Whiteson & Stone, ’06]

Evolve agents that are better able to learn

• Evolution chooses representation and initial weights

− NEAT learns NN topologies [Stanley & Miikkulainen, ’02]

• Q-learning learns weights that approximate value function
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NEAT+Q Results
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• Neural net function approx. works on mountain car!
• Tested Q-learning with 24 manual configurations
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Outline

• Build complete solutions to relevant challenge tasks

− Drives research on component algorithms, theory

• Learning Agents

− Scaling up Reinforcement Learning
− Adaptive representations

• Multiagent reasoning

− Prepare for the unexpected
− Adaptive interaction protocols

Vision

Game
Theory

Robotics

Representation
KnowledgeDistributed

Optimization

Natural
Language

Multiagent
Reasoning

Learning

c© 2007 Peter Stone



Multiagent Reasoning
Robust, fully autonomous
agents in the real world

• Once there is one, there will soon be many
• To coexist, agents need to interact
• Example: autonomous vehicles
− DARPA “Grand Challenge” was a great first step
− Urban Challenge continues in the right direction
− Traffic lights and stop signs still best? [Dresner & Stone, ’04]
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Autonomous Bidding Agents

Agent

Agent

Agent

AgentAgent

Agent

Market

• Usual assumption: rational agents
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• In practice, must prepare for the unexpected

− Other agents created by others
− Teammate/opponent modeling
− Especially in competition scenarios
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Trading Agent Competitions

ATTac: champion travel agent [Stone et al., ’02]

− Learns model of auction closing prices from past data
− Novel algorithm for conditional density estimation

TacTex: champion SCM agent [Pardoe & Stone, ’06]

− Adapts procurement strategy based on recent data
− Predictive planning and scheduling algorithms

Common multiagent tradeoff:
learn detailed static model vs.
adapt minimally on-line
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Adaptive Mechanism Design
• Traditional mechanism design done manually
− Protocols fixed and given
− e.g. Telecom spectrum auctions

• Like RL representations, protocols can be the hard part!
− Language learning [Steels ’96; Jim & Giles, ’00]

− Automated mechanism design [Sandholm, ’03]

− Let the mechanism adapt itself: [Pardoe & Stone, ’06]
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Outline
• Build complete solutions to relevant challenge tasks

− Drives research on component algorithms, theory

• Learning Agents

− Scaling up Reinforcement Learning
− Adaptive representations

• Multiagent reasoning

− Prepare for the unexpected
− Adaptive interaction protocols
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A Goal of AI

Robust, fully autonomous
agents in the real world

What happens when we achieve this goal

? ?

• Question: Would you rather live
− 50 years ago? Or 50 years in the future?

• Not clear — world changing in many ways for the worse

AI can be a part of the solution
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Additional Technical Details
• Learned robot vision [Sridharan & Stone] (Wed., 2:40pm)

• Autonomic computing [Wildstrom & Stone] (Wed., 3:00pm)

• Intersection management [Dresner & Stone] (Thurs., 3:00pm)

• Transfer learning [Banerjee & Stone] (Thurs., 5:00pm)
Original subtree

Lowest−level coalescing
(intermediate step)

Mid−level coalescing
(final step)
producing a feature
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Summary
Robust, fully autonomous
agents in the real world

• Build complete solutions to relevant challenge tasks

− Good problems drive research

Combine algorithmic research,
problem-oriented approaches
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• Current challenges need learning, multiagent reasoning
− Adaptive representations
− Adaptive interaction protocols
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