1. Let G be a graph. An independent set is a collection S of some of the vertices (perhaps none, perhaps all) of G such that no two vertices from S are adjacent in G. Let $\omega(G)$ be the size of the largest independent set of G. Let $\chi(G)$ be the chromatic number of G (the chromatic number is the smallest number of colors needed to validly color a graph). If G has n vertices, show $\omega(G) \cdot \chi(G) \geq n$.

2. Is it possible for each person in a group of 9 people to be friends with exactly five of the nine? Explain your answer.

3. Show that in every (not necessarily connected) graph there is a path from every vertex u of odd degree to some other vertex v ($u \neq v$) also of odd degree.

4. Show that every connected graph on n vertices has at least $n - 1$ edges. Use induction on the number of vertices. Be careful in the inductive step-- if you remove just any old vertex you may disconnect the graph, and the I.H. will not apply. The handshaking theorem may be useful here.

5. Consider a grid with height $p \geq 2$ and width $q \geq 2$, so there are pq squares in the grid. A valid walk on the grid is a walk that starts on one square and subsequently moves to adjacent squares (you cannot move diagonally). Define a tour to be a valid walk on the grid that touches each and every square exactly once and begins and ends on the same square. Prove that if p and q are odd, there does not exist a tour. (Hint: do not use induction; model the problem using a graph).