
CS311H: Problem Set 9

RULES: You must indicate who you worked with (at most two others). If you worked by yourself
please indicate this. You MAY NOT USE THE INTERNET OR ANY OTHER SOURCE TO
LOOK UP SOLUTIONS (one small exception noted below). CHEATING WILL NOT BE TOL-
ERATED. You may use anything we discussed in class/modules and any statement proved in the
book.

1. This problem has three parts (10 points each). You will write several algorithms that take as
input a strictly sorted n× n matrix of integers and a specific integer x, and return true if x
is in the matrix, and false otherwise. Matrix M is strictly sorted iff ∀i, j, p, q ∈ {1, . . . , n}
where i ≤ j and p ≤ q, but not (i = j ∧ p = q), M [i, p] < M [j, q] is true. In other words, all
rows and columns are increasing.

For each algorithm: (1) write pseudo-code, (2) show that the algorithm has the specified
big-O time complexity, and (3) formally prove the correctness of the algorithm.

For each algorithm, you are encouraged to work on the pseudo-code part of the assignment
collaboratively on Piazza. You can actually post your pseudo-code and talk about the ideas
behind it with other students in the class. However, we don’t want one person doing all the
work for everyone. No single person should post pseudo-code for more than one algorithm,
but everyone should feel free to comment on whatever anyone else posts.

(a) quadSearch(M,n,x) is a divide-and-conquer algorithm that looks for x by check-
ing the center element of the n × n matrix M and recursively searching what-
ever quadrants of M are necessary (a quadrant is a roughly n/2 × n/2 sub-
matrix in one of the corners of the current matrix). For ease of notation,
let M [1 . . . n/2, 1 . . . n/2] be the quadrant starting in the lowest-indexed corner
of the matrix and going towards the center (similarly, the other quadrants are
M [n/2 . . . n, 1 . . . n/2], M [1 . . . n/2, n/2 . . . n], M [n/2 . . . n, n/2 . . . n]). Also, feel free
(throughout this assignment) to ignore the issue of whether or not there are an even
or odd number of rows/columns, and how this affects the sizes of the submatrices. For
example, the center element of the matrix is simply M [n/2, n/2]. You can also ignore
out-of-bounds calls to matrices, by assuming that if you search a submatrix M [x...i, x...i]
and i happens to be out of bounds, you can simply assume your code automatically
searches M [x...(i−1), x...(i−1)] instead (rather than crashing the way it would in a real
program). This algorithm should run in super-linear time (worse than O(n)). (Hint:
For the proof of correctness, first prove a lemma or two about which quadrants need to
be searched on each recursive call.)

(b) itrSearch(M,n,x) is NOT a divide-and-conquer algorithm. This algorithm takes a
strictly sorted n× n matrix M and searches for x using a loop or loops. This algorithm
must run in linear (O(n)) time, so a simple double-loop traversal of the entire matrix will
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not work (that would be O(n2)). You still need to provide an analysis of the runtime,
even though it will not be possible to use the Master Theorem. (Hint: consider a zig-zag
path through the matrix).

(c) binDiagSearch(M,n,m,x) is a divide-and-conquer algorithm that looks for x in a strictly
sorted n × m matrix M using the standard (almost) binary search algorithm on the
diagonal of the matrix, and then recursively checking some sub-portion(s) (which?) of
the matrix to look for x. Even though the algorithm deals with rectangular matrices,
the initial matrix will always be n×n, and the overall efficiency of this algorithm should
be O(n). Here is the variant of plain binary search that you can call in your code:

// pre: A is a strictly sorted array of integers, x is an integer,
// imin and imax are the lowest and highest indices (inclusive)
// within which to search for x.
binSearch(A,x,imin,imax){
if (x > imax) return (imax+1);
if (imin == imax) return imin;
else if (imin + 1 == imax) {

if (x <= A[imin]) return imin;
else return imax;

} else {
mid = imin + floor((imax - imin)/2);
if (A[mid] == x) return mid;
else if (A[mid] < x) return binSearch(A,x,mid+1,imax);
else return binSearch(A,x,imin,mid-1);

}
}

This algorithm runs in O(log n) time (n = imax− imin + 1, which should be the length
of A whenver this code is called from your code). When using the Master Theorem,
remember we only care about big-O, so you can replace a log n with something bigger,
but be warned that replacing it with O(n) is already too big. Notice that this algorithm
always returns an index within the array, even if x is not found. In particular, you are
allowed to assume the following fact about this algorithm:
Lemma: For strictly sorted integer array A of length n (indexed from 1 to n), and some
integer x, the index i returned by binSearch(A,x,1,n) will be an index of A such that
A[i− 1] < x ≤ A[i] (if we define A[0] = −∞ and define A[n + 1] =∞).
As a notational convenience, the call binSearch([M[1,1], ... , M[n,n]],x,1,n)
would call the binary search algorithm with an array filled with all elements in the
diagonal of a square matrix. However, since only the initial matrix is guaranteed to be
square, the above call won’t really work ... you need to tweak it. When measuring the
size of the sub-problems you are recursively solving, account for the worst case in overall
size.
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