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electronic devices.
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• Modules assigned for next week.

• Wed. before Thanksgiving?

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

4|R| ≤ 2|E|

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

4|R| ≤ 2|E|

By Euler’s Formula we can write in terms of |E|, |V |:

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

4|R| ≤ 2|E|

By Euler’s Formula we can write in terms of |E|, |V |:

4(|E|+ 2− |V |) ≤ 2|E|

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

4|R| ≤ 2|E|

By Euler’s Formula we can write in terms of |E|, |V |:

4(|E|+ 2− |V |) ≤ 2|E|

Simplifying the inequality we have |E| ≤ 2|V | − 4.

Peter Stone



Graph Theory
• Prove for any connected planar bipartite graph

with |V | ≥ 3, |E| ≤ 2|V | − 4

Proof: Note that bipartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is no more
than twice the number of edges:

4|R| ≤ 2|E|

By Euler’s Formula we can write in terms of |E|, |V |:

4(|E|+ 2− |V |) ≤ 2|E|

Simplifying the inequality we have |E| ≤ 2|V | − 4. QED.

Peter Stone



Chromatic Number

• Removing one vertex from a graph can never decrease
the chromatic number by more than one.
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Chromatic Number

• Removing one vertex from a graph can never decrease
the chromatic number by more than one.

− BWOC assume vertex v is removed from G to get G’, and
X(G) = k, but X(G’) <= k-2.

− Validly color G’ using k-2 colors.
− Put v and its edges back in G’ to get G.
− v’s neighbors have at most k-2 distinct colors.
− v can be give a new color, which means X(G) <= k-1,

contradiction.
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Counting

• Take two decks of cards and mix them. How many ways
can the 104 cards be arranged?

• How many ways to choose a dozen donuts if there are 4
types?
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Harder Counting

• How many ways to place 20 identical balls in 4 bins if each
bin must have an even number of balls?

• How many ways are there to place 35 students into 7
groups of 5?
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Counting Functions

• How many surjective (onto) functions are there from 6
elements to 3 elements?

− Hint: reason by inclusion/exclusion
− 36 total functions
− Subtract non-surjective functions
− 36 −

(
3
1

)
26

− Functions with only one element in range subtracted
twice
− 36 − (

(
3
1

)
26 −

(
3
2

)
) = 540
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Binomial Coefficients

• Why does n2n−1 = Σn
k=1k

(
n
k

)
?

• Consider picking a committee and then a leader.

• Left equation: pick a leader first from n, then there are
2n−1 possible subsets of other people.

• Right equation: consider how many committees of size k

there are from k = 1 to n. For each of these, there are k

possible leaders.

Peter Stone



Soccer Balls

• The surface of a soccer ball is a planar graph satisfying
the following two conditions: (1) Each vertex has degree
3. (2) There are only two kinds of regions: pentagons and
hexagons. There are 20 hexagons. Figure out the number
of pentagons.
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Soccer Balls

• The surface of a soccer ball is a planar graph satisfying
the following two conditions: (1) Each vertex has degree
3. (2) There are only two kinds of regions: pentagons and
hexagons. There are 20 hexagons. Figure out the number
of pentagons.

• Suppose that a planar graph with E edges and V vertices
contains no simple circuits of length 4 or less.

Show that |E| ≤ 5
3
|V | − 10

3
if |V | ≥ 4
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Soccer Balls
Answer: Assume there are x pentagons. Since each vertex
is shared by 3 regions, we have

v =
5x + 120

3

And each edge is shared by 2 regions, we have

e =
5x + 120

2

By Euler’s Formula we have

x + 20 +
5x + 120

3
=

5x + 120
2

+ 2

Thus we have x = 12. So we have 12 pentagons.
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Counting subgraphs

• Prove that a fully connected graph Kn has 2n − 1 fully
connected subgraphs.
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