
CS311H

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin



Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is its Big-O runtime?

Peter Stone



Good Morning, Colleagues

Peter Stone



Good Morning, Colleagues

Are there any questions?

Peter Stone



Logistics

• No discussion next Wed.

Peter Stone



Logistics

• No discussion next Wed.

• Long module on proving correctness of mergesort for
Thursday.

Peter Stone



Logistics

• No discussion next Wed.

• Long module on proving correctness of mergesort for
Thursday.

• Rest of modules published.

Peter Stone



Logistics

• No discussion next Wed.

• Long module on proving correctness of mergesort for
Thursday.

• Rest of modules published.

• More Big-O practice on last slides of this slide deck

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

• What do we need to know?

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

• What do we need to know?

− Wouldn’t expect you to come up with the algorithm on
your own. . .

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

• What do we need to know?

− Wouldn’t expect you to come up with the algorithm on
your own. . .

− . . . or even reproduce it without notes

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

• What do we need to know?

− Wouldn’t expect you to come up with the algorithm on
your own. . .

− . . . or even reproduce it without notes
− Given the algorithm, you should be able to come up

with the recurrence and analyze the complexity.

Peter Stone



Questions / Important Points

• What’s the point of the fast multiplication module?

− Synthesizes recurrences and Master theorem,and starts
to introduce analysis of algorithms.

• What do we need to know?

− Wouldn’t expect you to come up with the algorithm on
your own. . .

− . . . or even reproduce it without notes
− Given the algorithm, you should be able to come up

with the recurrence and analyze the complexity.

Peter Stone



Binary Search

Binary search can determine if a specific value x is in a
sorted list of size n. It works by comparing x to the element
in the middle of the list, and then searching half of the
remaining list recursively.

Peter Stone



Binary Search

Binary search can determine if a specific value x is in a
sorted list of size n. It works by comparing x to the element
in the middle of the list, and then searching half of the
remaining list recursively.

• What is the recurrence relation describing the runtime?

Peter Stone



Binary Search

Binary search can determine if a specific value x is in a
sorted list of size n. It works by comparing x to the element
in the middle of the list, and then searching half of the
remaining list recursively.

• What is the recurrence relation describing the runtime?

• What is the Big-O runtime?

Peter Stone



Binary Search

Binary search can determine if a specific value x is in a
sorted list of size n. It works by comparing x to the element
in the middle of the list, and then searching half of the
remaining list recursively.

• What is the recurrence relation describing the runtime?

• What is the Big-O runtime?

• Would it help to do a ternary or quaternary search?

Peter Stone



Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements of
a sequence. To win, a candidate must receive a majority
(more than half) of the votes. Devise a (constant space)
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)

Peter Stone



Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements of
a sequence. To win, a candidate must receive a majority
(more than half) of the votes. Devise a (constant space)
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is its Big-O runtime?

Peter Stone



Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements of
a sequence. To win, a candidate must receive a majority
(more than half) of the votes. Devise a (constant space)
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is its Big-O runtime?

− Hint: If you split the sequence in half (or off by one), note
that a candidate could not have an overall majority
without receiving a majority of votes in at least one of
the 2 halves.

Peter Stone



Compute an

• What is the run time of the trivial iterative method?

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n).

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2),

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0.

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0. Since we have a = bd, by Master
Theorem, we have

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0. Since we have a = bd, by Master
Theorem, we have
T (n) = O(n0 log n) = O(log n)

Peter Stone



Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0. Since we have a = bd, by Master
Theorem, we have
T (n) = O(n0 log n) = O(log n) which is better than O(n).

Peter Stone



Nuts and Bolts

• You are given a collection of n bolts of different widths
and n corresponding nuts. You are allowed to try a
nut and bolt together, from which you can determine
whether the nut is larger than the bolt, smaller than the
bolt, or matches the bolt exactly. However, there is no
way to compare two nuts together or two bolts together.
Create and analyze the expected runtime of an efficent
algorithm to match each bolt to its nut.

Peter Stone



Nuts and Bolts Solution

Peter Stone



Nuts and Bolts Solution

Solution: Randomly select a nut and traverse all bolts to find
its match. Meanwhile, partition all bolts into two sets. One
contains all bolts smaller than this nut and the other contains
all bolts larger than this nut. Then after finding the matched
bolt, use this bolt to do same partition for all nuts. These two
partitions can be done in 2n comparisons. Then we need to
deal with two sets, each of size n

2 (on average). Thus we get
the recurrence relation below:

T (n) = 2T (
n

2
) + 2n

By Master Theorem, we have T (n) = O(n log n).

Peter Stone



More Big-O practice

• Let a be any positive number. Show that an = O(n!).

Peter Stone


