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Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements
of a sequence. To win, a candidate must receive
a majority (more than half) of the votes. Devise a
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is its Big-O runtime?
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• No discussion next Wed.

• Long module on proving correctness of mergesort for
Thursday.

• Rest of modules published.

• More Big-O practice on last slides of this slide deck
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Binary Search

Binary search can determine if a specific value x is in a
sorted list of size n. It works by comparing x to the element
in the middle of the list, and then searching half of the
remaining list recursively.

• What is the recurrence relation describing the runtime?

• What is the Big-O runtime?

• Would it help to do a ternary or quaternary search?
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Multi-person Elections

• Suppose that the votes of n people for several (more than
2) candidates for a particular office are the elements of
a sequence. To win, a candidate must receive a majority
(more than half) of the votes. Devise a (constant space)
divide-and-conquer algorithm that determines whether a
candidate received a majority and if so determine who
this candidate is. (must use constant, i.e. O(1), memory)
What is its Big-O runtime?

− Hint: If you split the sequence in half (or off by one), note
that a candidate could not have an overall majority
without receiving a majority of votes in at least one of
the 2 halves.
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provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a
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2
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n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0. Since we have a = bd, by Master
Theorem, we have
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Compute an

• What is the run time of the trivial iterative method? O(n)

• Propose a divide and conquer algorithm which can
provide better time complexity.
− Find the recurrence relation and complexity.

Answer: Let the runtime be T (n). Since we have an = a
n
2 ×a

n
2

and a
n
2 can be computed in T (n

2), we get the recurrence
relation: T (n) = T (n

2) + 1.
So a = 1, b = 2, d = 0. Since we have a = bd, by Master
Theorem, we have
T (n) = O(n0 log n) = O(log n) which is better than O(n).
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Nuts and Bolts

• You are given a collection of n bolts of different widths
and n corresponding nuts. You are allowed to try a
nut and bolt together, from which you can determine
whether the nut is larger than the bolt, smaller than the
bolt, or matches the bolt exactly. However, there is no
way to compare two nuts together or two bolts together.
Create and analyze the expected runtime of an efficent
algorithm to match each bolt to its nut.
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Nuts and Bolts Solution

Solution: Randomly select a nut and traverse all bolts to find
its match. Meanwhile, partition all bolts into two sets. One
contains all bolts smaller than this nut and the other contains
all bolts larger than this nut. Then after finding the matched
bolt, use this bolt to do same partition for all nuts. These two
partitions can be done in 2n comparisons. Then we need to
deal with two sets, each of size n

2 (on average). Thus we get
the recurrence relation below:

T (n) = 2T (
n

2
) + 2n

By Master Theorem, we have T (n) = O(n log n).
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More Big-O practice

• Let a be any positive number. Show that an = O(n!).
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