Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

• No discussion tomorrow
Logistics

- No discussion tomorrow
- Tricky module due next Tuesday
Logistics

- No discussion tomorrow
- Tricky module due next Tuesday
- Official course surveys
Who Comes Out Ahead?

Peter Stone
Who Comes Out Ahead?

- If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA.
Who Comes Out Ahead?

- If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?
Who Comes Out Ahead?

- If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?

- So if the boys use TMA, the boys and girls will be running TMA.
Who Comes Out Ahead?

- If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?

- So if the boys use TMA, the boys and girls will be running TMA.

- Is it in the boys’ interest to use TMA?
Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running TMA.

• Is it in the boys’ interest to use TMA?
 – What if there are multiple stable pairings?
Who Comes Out Ahead?

• If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?

• So if the boys use TMA, the boys and girls will be running TMA.

• Is it in the boys’ interest to use TMA?
 – What if there are multiple stable pairings?
 – How should we define a person’s optimal mate?
 Pessimal mate?
Who Comes Out Ahead?

- If a girl can never propose to a boy, she has no better strategy than the one she uses in TMA. Why?

- So if the boys use TMA, the boys and girls will be running TMA.

- Is it in the boys’ interest to use TMA?
 - What if there are multiple stable pairings?
 - How should we define a person’s optimal mate? Pessimal mate?
 - Theorem: TMA is optimal for the males and pessimal for the females
Male Optimality (ack: Steven Rudich)

- Suppose not.
Male Optimality (ack: Steven Rudich)

- Suppose not.
- There must be a first time in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.
Male Optimality (ack: Steven Rudich)

- Suppose not.
- There must be a **first time** in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.
- Since its the first time a boy gets rejected by his optimal, \hat{b} has not yet been rejected by his optimal.
Male Optimality (ack: Steven Rudich)

- Suppose not.
- There must be a **first time** in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.
- Since its the first time a boy gets rejected by his optimal, \hat{b} has not yet been rejected by his optimal.
- So \hat{b} likes g at least as much as his optimal.
Male Optimality (ack: Steven Rudich)

- Suppose not.
- There must be a **first time** in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.
- Since its the first time a boy gets rejected by his optimal, \hat{b} has not yet been rejected by his optimal.
- So \hat{b} likes g at least as much as his optimal.
- Let Δ be a stable pairing in which b and g are paired (why does it exist?)
Suppose not.

There must be a **first time** in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.

Since it's the first time a boy gets rejected by his optimal, \hat{b} has not yet been rejected by his optimal.

So \hat{b} likes g at least as much as his optimal.

Let Δ be a stable pairing in which b and g are paired (why does it exist?)

Δ pairs \hat{b} with some \hat{g}
Male Optimality (ack: Steven Rudich)

• Suppose not.
• There must be a first time in TMA that some boy b gets rejected by his optimal girl g because she said “maybe” to some better \hat{b}.
• Since its the first time a boy gets rejected by his optimal, \hat{b} has not yet been rejected by his optimal.
• So \hat{b} likes g at least as much as his optimal.
• Let Δ be a stable pairing in which b and g are paired (why does it exist?)
 • Δ pairs \hat{b} with some \hat{g}
 • \hat{b} and g form a rogue couple in Δ
Female Pessimality

- The pairing output by TMA, T, is male-optimal
Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing Δ where g does worse in Δ than in T.
Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing Δ where g does worse in Δ than in T.

• Let b be her mate in T.
Female Pessimality

• The pairing output by TMA, T, is male-optimal

• Assume there is a stable pairing \(\Delta \) where \(g \) does worse in \(\Delta \) than in \(T \).

• Let \(b \) be her mate in \(T \).

• Let \(\hat{b} \) be her mate in \(\Delta \).
Female Pessimality

- The pairing output by TMA, T, is male-optimal.

- Assume there is a stable pairing Δ where g does worse in Δ than in T.

- Let b be her mate in T.

- Let \hat{b} be her mate in Δ.

- g and b form a rogue couple in Δ.
Lessons

• Boys act in their own self-interest if they follow TMA
Lessons

- Boys act in their own self-interest if they follow TMA
- If girls don’t propose to boys, they will follow TMA
Lessons

- Boys act in their own self-interest if they follow TMA
- If girls don’t propose to boys, they will follow TMA
- Dating advice for girls...
Linear Majority

Recall from last week:
Linear Majority

Recall from last week:

- Suppose that the votes of \(n \) people for several (more than 2) candidates for a particular office are the elements of a sequence. To win, a candidate must receive a majority (more than half) of the votes. Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and if so determine who this candidate is. (must use constant, i.e. \(O(1) \), memory) What is it’s Big-O runtime?
Linear Majority

Recall from last week:

- Suppose that the votes of n people for several (more than 2) candidates for a particular office are the elements of a sequence. To win, a candidate must receive a majority (more than half) of the votes. Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and if so determine who this candidate is. (must use constant, i.e. $O(1)$, memory)

 What is its Big-O runtime?

- It was $O(n \log n)$
Linear Majority

Recall from last week:

- Suppose that the votes of n people for several (more than 2) candidates for a particular office are the elements of a sequence. To win, a candidate must receive a majority (more than half) of the votes. Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and if so determine who this candidate is. (must use constant, i.e. $O(1)$, memory) What is it’s Big-O runtime?
- It was $O(n \log n)$
- There is a simple algorithm that is linear: $O(n)$
Linear Majority

Recall from last week:

- Suppose that the votes of n people for several (more than 2) candidates for a particular office are the elements of a sequence. To win, a candidate must receive a majority (more than half) of the votes. Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and if so determine who this candidate is. (must use constant, i.e. $O(1)$, memory) What is it’s Big-O runtime?
 - It was $O(n \log n)$
 - There is a simple algorithm that is linear: $O(n)$
 - Correctness proof doesn’t (technically) use induction
Linear Majority

Recall from last week:

• Suppose that the votes of \(n \) people for several (more than 2) candidates for a particular office are the elements of a sequence. To win, a candidate must receive a majority (more than half) of the votes. Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and if so determine who this candidate is. (must use constant, i.e. O(1), memory) What is it’s Big-O runtime?

• It was O(n log n)

• There is a simple algorithm that is linear: \(O(n) \)
 – Correctness proof doesn’t (technically) use induction
 – First lets see the algorithm illustrated
Some notation

- \texttt{concat(A, B)}: the concatenation of lists A and B
Some notation

- `concat(A, B)`: the concatenation of lists A and B
- `append(A, x)`: the list obtained by appending integer x to the list A
Some notation

- `concat(A, B)`: the concatenation of lists A and B
- `append(A, x)`: the list obtained by appending integer x to the list A
- `bad(A)`: the predicate “List A is of even length and does not have a majority element”
Some notation

- \text{concat}(A, B): \text{the concatenation of lists } A \text{ and } B
- \text{append}(A, x): \text{the list obtained by appending integer } x \text{ to the list } A
- \text{bad}(A): \text{the predicate “List } A \text{ is of even length and does not have a majority element”}
- \text{count}(A, x): \text{the number of times integer } x \text{ occurs in list } A
Some notation

- \text{concat}(A, B):$ the concatenation of lists A and B
- \text{append}(A, x):$ the list obtained by appending integer x to the list A
- \text{bad}(A):$ the predicate “List A is of even length and does not have a majority element”$
- \text{count}(A, x):$ the number of times integer x occurs in list A

Some simple facts:
Some notation

- \text{concat}(A, B): \text{the concatenation of lists } A \text{ and } B
- \text{append}(A, x): \text{the list obtained by appending integer } x \text{ to the list } A
- \text{bad}(A): \text{the predicate "List } A \text{ is of even length and does not have a majority element"}
- \text{count}(A, x): \text{the number of times integer } x \text{ occurs in list } A

Some simple facts:

1. If \text{bad}(A) \text{ and } \text{bad}(B), \text{ then } \text{bad}(\text{concat}(A, B)).
Some notation

- `concat(A, B)`: the concatenation of lists A and B
- `append(A, x)`: the list obtained by appending integer x to the list A
- `bad(A)`: the predicate “List A is of even length and does not have a majority element”
- `count(A, x)`: the number of times integer x occurs in list A

Some simple facts:

1. If `bad(A)` and `bad(B)`, then `bad(concat(A, B))`.
2. If L has a majority element and L = concat(A, B) and `bad(A)`, then B has a majority element and the majority element of B is equal to the majority element of L.
An Update Procedure

• `update(x)` will process one list element at a time
An Update Procedure

• \text{update}(x) \text{ will process one list element at a time}

• \text{L will be initially empty, and end up as the whole list}
An Update Procedure

• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can be anything)
An Update Procedure

- $\text{update}(x)$ will process one list element at a time
- L will be initially empty, and end up as the whole list
- z will be the majority element, if it exists (otherwise, it can be anything)
- k will be the algorithm’s counter
An Update Procedure

• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority
An Update Procedure

• update(x) will process one list element at a time

• L will be initially empty, and end up as the whole list

• z will be the majority element, if it exists (otherwise, it can be anything)

• k will be the algorithm’s counter

• A will be the front part of the list with no majority

• B will be the back part of the list with z as the majority
An Update Procedure

- update(x) will process one list element at a time
- L will be initially empty, and end up as the whole list
- z will be the majority element, if it exists (otherwise, it can be anything)
- k will be the algorithm’s counter
- A will be the front part of the list with no majority
- B will be the back part of the list with z as the majority
- Invariant I: “L=concat(A,B) and bad(A) and
An Update Procedure

- update(x) will process one list element at a time
- L will be initially empty, and end up as the whole list
- z will be the majority element, if it exists (otherwise, it can be anything)
- k will be the algorithm’s counter
- A will be the front part of the list with no majority
- B will be the back part of the list with z as the majority
- Invariant I: \[L = \text{concat}(A,B) \text{ and bad}(A) \text{ and } k = 2 \times \text{count}(B,z) - |B| \text{ and } k \geq 0\]
Initial Update Procedure

Initialize L=A=B={}, k=0, z=anything // I

update(x)
 if (k = 0)
 A := concat(A, B)
 B := empty list
 z := x
 // I and (k = 0 => z = x)
 L := append(L, x)
 B := append(B, x)
 if (z = x)
 k := k + 1
 else
 k := k - 1
 return z // I
Lemmas

- Lemma 1: After initialization, I holds.
Lemmas

• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then “I and ($k = 0 \Rightarrow z = x$)” holds after.
Lemmas

● Lemma 1: After initialization, I holds.

● Lemma 2: If I holds before first block, then “I and (k = 0 \Rightarrow z = x)” holds after.

● Lemma 3: If “I and (k = 0 \Rightarrow z = x)” holds before 2nd block, then I holds after.
Lemmas

• Lemma 1: After initialization, I holds.

• Lemma 2: If I holds before first block, then “I and (k = 0 \implies z = x)” holds after.

• Lemma 3: If “I and (k = 0 \implies z = x)” holds before 2nd block, then I holds after.

• Lemma 4: If I holds and L has a majority element, then z is equal to the majority element of L.
Lemmas

- **Lemma 1**: After initialization, \(I \) holds.

- **Lemma 2**: If \(I \) holds before first block, then “\(I \) and \((k = 0 \Rightarrow z = x) \)” holds after.

- **Lemma 3**: If “\(I \) and \((k = 0 \Rightarrow z = x) \)” holds before 2nd block, then \(I \) holds after.

- **Lemma 4**: If \(I \) holds and \(L \) has a majority element, then \(z \) is equal to the majority element of \(L \).

- These lemmas can be used to easily prove that the algorithm works correctly!
Lemmas

- Lemma 1: After initialization, I holds.
- Lemma 2: If I holds before first block, then “I and (k = 0 \implies z = x)” holds after.
- Lemma 3: If “I and (k = 0 \implies z = x)” holds before 2nd block, then I holds after.
- Lemma 4: If I holds and L has a majority element, then z is equal to the majority element of L.

These lemmas can be used to easily prove that the algorithm works correctly! Why?
Lemmas

- Lemma 1: After initialization, \(I \) holds.

- Lemma 2: If \(I \) holds before first block, then "\(I \) and \((k = 0 \Rightarrow z = x)\)" holds after.

- Lemma 3: If "\(I \) and \((k = 0 \Rightarrow z = x)\)" holds before 2nd block, then \(I \) holds after.

- Lemma 4: If \(I \) holds and \(L \) has a majority element, then \(z \) is equal to the majority element of \(L \).

- These lemmas can be used to easily prove that the algorithm works correctly! Why? Was this the same algorithm?
Final update procedure

- k and z do not depend on L, A, and $B.$
Final update procedure

• k and z do not depend on L, A, and B. Neither does the return value.
Final update procedure

• k and z do not depend on L, A, and B. Neither does the return value. So:
Final update procedure

- \(k \) and \(z \) do not depend on \(L, A, \) and \(B \). Neither does the return value. So:

```python
update(x)
    if (k = 0)
        z := x
    if (z = x)
        k := k + 1
    else
        k := k - 1
    return z
}```
Challenge Problem

- Use divide and conquer to find the closest pair of points in a (planar) set in time $O(n \log n)$