CS311H

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Your quest quest is over!
Logistics

- Your quest quest is over! (no more modules)
- Warning: Quiz on program correctness in discussion
Logistics

- Your quest quest is over! (no more modules)

- Warning: Quiz on program correctness in discussion
 - If you did your homework well, you shouldn’t have trouble with the quiz.
Logistics

- Your quest quest is over! (no more modules)
- Warning: Quiz on program correctness in discussion
 - If you did your homework well, you shouldn’t have trouble with the quiz.
- Thursday: wrap up and test review
Questions / Important Points

- Diagonalization argument?
Questions / Important Points

- Diagonalization argument?
- How did T(P) work? IGN?
Questions / Important Points

- Diagonalization argument?
- How did T(P) work? IGN?
- Some sets must be undecidable:
Questions / Important Points

- Diagonalization argument?
- How did T(P) work? IGN?
- Some sets must be undecidable: countably many programs, uncountably many sets
Proving Undecidability

- HELLO = \{P \mid P \text{ Prints “Hello” and halts}\}
Proving Undecidability

- HELLO = \{P \mid P \text{ Prints “Hello” and halts}\}
- Recall: HELLO is undecidable.
Proving Undecidability

- HELLO = \{P | P Prints “Hello” and halts\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that EQUAL(P,Q) outputs “yes” if \(\forall I \ P(I) = Q(I) \) else “no”
Proving Undecidability

- HELLO = \{P | P Prints “Hello” and halts\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that EQUAL(P,Q) outputs “yes” if \(\forall I \ P(I) = Q(I) \) else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs
Proving Undecidability

- **HELLO** = \{P | P Prints “Hello” and halts\}
- Recall: **HELLO** is undecidable.
- Prove: There is no program “EQUAL” such that \(\text{EQUAL}(P,Q)\) outputs “yes” if \(\forall IP(I) = Q(I)\) else “no”
- i.e. **EQUAL** tells us if P and Q have same behavior on all inputs
- Let HI = Print “Hello”; halt;
Proving Undecidability

- HELLO = \{P | P Prints “Hello” and halts\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that
 EQUAL(P,Q) outputs “yes” if \(\forall IP(I) = Q(I) \)
 else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs
- Let HI = Print “Hello”; halt;
- P ∈ HELLO iff EQUAL(P,HI) = yes
Proving Undecidability

- HELLO = \{P \mid P \text{ Prints “Hello” and halts}\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that
 EQUAL(P,Q) outputs “yes” if \(\forall I P(I) = Q(I) \)
 else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs

- Let HI = Print “Hello”; halt;
- P \in HELLO iff EQUAL(P,HI) = yes
- So EQUAL would give us a decision procedure for HELLO
Enumerating K

- K is not decidable
Enumerating K

- K is not decidable

- But we can write a program to enumerate its elements!
Enumerating K

• K is not decidable

• But we can write a program to enumerate its elements!

• How?
Enumerating K

- K is not decidable

- But we can write a program to enumerate its elements!

- How?

- $\overline{K} = \{P \mid P(P) \text{ does not halt}\}$
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
- How?
 - $\overline{K} = \{ P \mid P(P) \text{ does not halt} \}$
- Theorem: \overline{K} can’t be enumerated by a program
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
- How?

- $\overline{K} = \{ P \mid P(P) \text{ does not halt}\}$
- Theorem: \overline{K} can’t be enumerated by a program
- Why not?
Vocabulary

• Decidable set also called **Recursive**
Vocabulary

• Decidable set also called **Recursive**
 – (Nothing to do with recursion)
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable? yes
 - \overline{K} recursively enumerable?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable? yes
 - \overline{K} recursively enumerable? no
Vocabulary

• Decidable set also called **Recursive**
 – (Nothing to do with recursion)

• A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 – K recursive? no
 – K recursively enumerable? yes
 – \overline{K} recursively enumerable? no

• Whole topic: “Computability Theory”
Philosophy: Church-Turing Thesis

- Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.
Philosophy: Church-Turing Thesis

- Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.

- If true, problems which are undecidable to a computer are similarly undecidable to the human mind.
Philosophy: Church-Turing Thesis

- Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.

- If true, problems which are undecidable to a computer are similarly undecidable to the human mind.

- A matter of belief...
Undecidable Problems

- Given an initial configuration in the game of life, will it go on forever?
- Given 2 context-free grammars, are they equivalent?
- Given a multi-variate polynomial over the integers, does it have a root?
- Generalization of the Collatz conjecture
Undecidable Problems

• Given an initial configuration in the game of life, will it go on forever?

• Given 2 context-free grammars, are they equivalent?

• Given a multi-variate polynomial over the integers, does it have a root?

• Generalization of the Collatz conjecture
 - n even: $\rightarrow n/2$
Undecidable Problems

- Given an initial configuration in the game of life, will it go on forever?
- Given 2 context-free grammars, are they equivalent?
- Given a multi-variate polynomial over the integers, does it have a root?
- Generalization of the Collatz conjecture
 - n even: $\rightarrow n/2$
 - n odd: $\rightarrow 3n+1$