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Logistics
e Final: Sat., Dec. 14, /pm-10pm, JGB 2.216
— Like midterms: hand-written notes allowed. No book or
electronic devices.
— Covers the whole class
— Difficulty like The midterms (but longer)
— Can skip one guestion
e HOw to study
— Review modules, slides, notes, book
— Practice doing problems (noft just understanding)
— Ask us for more practice problems if needed
e Office hour Monday: 1:00-2:00
— Available by piazza, email, and appointment unfil final
e Please complete the official survey
— Think about what you've learned. ..
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e Propositional logic and Satisfiability

e Predicates, and Quantifiers

e Basic proof techniques, mathematical induction
e Sets and functions

e (¥) Infinite sets

e Graphs and graph coloring

e Special types of graphs (planar, bipartite)

e (M) Eulerian and Hamiltonian graphs

e (M) Counting and pigeonhole principle

e Recurrences

e Big O, program efficiency, and master theorem
e (7) Proving program correctness

e () Undecidability
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Test Review

e Just a start to jog your memory
e Can’t cover all problem types
e Will go through some of these quickly

e Confinue on your own for the next 9 days!

Peter Stone
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True or False?

e Predicate : Vady(x < y A —3z(z < 2 Az <))

— Domain: rational numbers
— Domain: integers

Answer: Under rafional domain, the predicate is false
because for dll z,y where = < y tThere always exists z = “”Tﬂ/
which satisfies that condition that = < z < y. So for all x, such
y doesn’t exist. which means the predicate is false.

Under integer domain, there exists y = = + 1 such that no
iInfeger z exists such that z < z < y. Thus the predicate is
frue.
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Solution

1. Suppose a finite number of primes N and seek
contradiction,

2. Let pq, ..., p, De the primes, and define m = (p; X ... X p,) +1
3. For every prime p;, m is not divisible by p; since there will
be aremainder of 1.

4, Use the fact: m is either prime or can be written as a
product of primes.

S. If mis prime, it is bigger than all of pq, ..., p,,, and therefore
not equal fo any of them. Contradiction.

6. If m is not prime, it is a product of primes. Let g be one of
these primes.
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Solution

1. Suppose a finite number of primes N and seek
contradiction,

2. Let pq, ..., p, De the primes, and define m = (p; X ... X p,) +1
3. For every prime p;, m is not divisible by p; since there will
be aremainder of 1.

4, Use the fact: m is either prime or can be written as a
product of primes.

S. If mis prime, it is bigger than all of pq, ..., p,,, and therefore
not equal fo any of them. Contradiction.

6. If m is not prime, it is a product of primes. Let g be one of
these primes.

/. Then m is divisible by q.

8. Since m is not divisible by any p;, prime g is not equal to
any of p;. Contradiction.
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bijection from the integers to the primes.

Call the primes in order starting from 2 as pq, pa2, p3, . ..
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saome as the cardindlity of the infegers by defining a
bijection from the integers to the primes.

Call the primes in order starting from 2 as pq, pa2, p3, . ..
f(0) =p1

n>0= f(n)=pau
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Infinite sets

e Prove that the cardinality of the prime numlbers is the
saome as the cardindlity of the infegers by defining a
bijection from the integers to the primes.

Call the primes in order starting from 2 as pq, pa2, p3, . ..
f(O) — P1

n>0:>f(n):p2n

n<0= f(n)=p-on

To show:
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Infinite sets

e Prove that the cardinality of the prime numlbers is the
saome as the cardindlity of the infegers by defining a
bijection from the integers to the primes.

Call the primes in order starting from 2 as pq, pa2, p3, . ..
f(O) = P1

n>0:>f(n):p2n

n<0= f(n)=p_ony1

To show:

Every infeger has a unique image (injective)

Every prime has a pre-image (surjective)
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Graphs

o P2rove that any bipartite graph with t vertices has at most
L edges.

Proof: If G is a bipartite graph, G can be partition into vertex
set A and B such that v(A) + v(B) = t and there is no edge
within set A and B. For every vertex in A, its degree is at

most v(B),
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L edges.

Proof: If G is a bipartite graph, G can be parfition info vertex
set A and B such that v(A) + v(B) = t and there is no edge
within set A and B. For every vertex in A, its degree is at
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Graphs

o P2rove that any bipartite graph with t vertices has at most
L edges.

Proof: If G is a bipartite graph, G can be parfition info vertex
set A and B such that v(A) + v(B) = t and there is no edge
within set A and B. For every vertex in A, its degree is at
most v(B), thus the total number of edges are at most |E| <

v(A)v(B) =v(A)(t —v(A)) = % — (v(4) =42 < é
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Graphs

o P2rove that any bipartite graph with t vertices has at most
L edges.

Proof: If G is a bipartite graph, G can be parfition info vertex
set A and B such that v(A) + v(B) = t and there is no edge
within set A and B. For every vertex in A, its degree is at
most v(B), thus the total number of edges are at most |E| <
v(A)o(B) = v(A)(t — v(A)) = & — (v(A) — £ < &

Proof completed.
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Memory wheels

e Definition: a cycle of bifts such that every n-bit pattern
occurs among adjacent bits

e Example: memory wheel with 8 bits that contains all 3-bit
patterns

e Theorem: For every n, a memory wheel exists of size 2"
which has all n-bit patterns

e Proof: uses Eurlerian circuits

Peter Stone
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Counting

e HOw Mmany ways are there to sit /7 people at a round fable
with 7 chairs?

— Consider two ways the same if everyone has the same
2 neighbors (regardless of which side they are on)
— What if there are 2 who can’t sit next fo each other?

o%!=360

e 360 - 5! =360 - 120 = 240

Peter Stone
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Big O

e Let a be any positive number. Show that a™ = O(n!).
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Proof

Note we have

a =a X a...q
N —

n

and
nl=nx(n-1)..2x1

Whena <1, wehave C =1,k =1.
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Proof (cont.)

When a > 1, let k = 24%, when n > k we have £ > a* and

nl = nx (n—1)...g x (%-1)... x 1

> @’ X 2...a%><(g —1)...x1

wl:< -
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Proof (cont.)

When a > 1, let k = 24%, when n > k we have £ > a* and

n!

>

n

n x (n— 1)...% < (= —1)... x 1

2

a” X

2

2

a%x(g —1)...x1

(a)

a/ e o0
-~
n
2
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Proof (cont.)

When a > 1, let k = 24%, when n > k we have £ > a* and

n n
n!l = nx(n-— 1)...5 X (5 —1)...x1
> g’ ng...a%x(g —1)...x1
2
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Proof (cont.)

When a > 1, let k = 24%, when n > k we have £ > a* and

n n
n!l = nx(n-— 1)...5 X (5 —1)...x1
> g’ ng...a%x(g —1)...x1
2
> (a?)?
— q"

Thus we have C = 1, k = max(1, 2¢?) such that for all z > k&,
a” < Cn!l. SO we have a” = O(n!). Proof completed.
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e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(x).

Um Department of Computer Sciences
(o
- The University of Texas at Austin P
eter Stone



Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
Bl = [A].

Peter Stone



Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.
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Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
|B| = |A|. Since we have B C A and A has finite number of
elements, we have B = A which means f Is surjective.

Then we prove f is surjective then f Is injective.
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Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
|B| = |A|. Since we have B C A and A has finite number of
elements, we have B = A which means f Is surjective.

Then we prove f is surjective then f is injective. Assume
BWOC f is not injective which means there exists xz,y such

that f(x) = f(y) = =
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Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
|B| = |A|. Since we have B C A and A has finite number of
elements, we have B = A which means f Is surjective.

Then we prove f is surjective then f is injective. Assume
BWOC f is not injective which means there exists xz,y such
that f(z) = f(y) = z. Thuswe have |B| < |A—{z,y}|+1 = |A|—
24+1=|A|-1
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Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
|B| = |A|. Since we have B C A and A has finite number of
elements, we have B = A which means f Is surjective.

Then we prove f is surjective then f is injective. Assume
BWOC f is not injective which means there exists xz,y such
that f(z) = f(y) = z. Thuswe have |B| < |A—{z,y}|+1 = |A|—
2+1 = |A|—1 which means f is not surjective.
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Functions

e let Abe afintesetand f: A — A be a function. Prove
that f is injective if and only If f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B
be the set of the images of f(z). Since f is injective, we have
|B| = |A|. Since we have B C A and A has finite number of
elements, we have B = A which means f Is surjective.

Then we prove f is surjective then f is injective. Assume
BWOC f is not injective which means there exists xz,y such
that f(z) = f(y) = z. Thuswe have |B| < |A—{z,y}|+1 = |A|—
2+1 = |A|—1which means f is not surjective. Contradiction.
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Other problem types

e DeMorgan’s laws and otfher propositional logic

e INnduction

e Planar graphs

e Graph coloring

e Recurrences

e Master theorem

e Proving program correctness

e Undecidability
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Dismount

e |'ve readlly enjoyed teaching you

e Thank you for your confributions fo the class. .. for being
good colleagues

e Good luck on the final.
e And good luck in your future CS courses!

e See you Dec. 14th

Peter Stone



