CS311H Discrete Math for CS: Honors

Prof: Peter Stone

TA: Matthew Hausknecht

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Questions about the syllabus?

- Questions about the syllabus?
 - Office hours up

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules
- Module questions: last is free form

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules
- Module questions: last is free form
 - Post it also on piazza!

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you're lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules
- Module questions: last is free form
 - Post it also on piazza!
 - And ask in class!

How to treat the book

- How to treat the book
 - Work problems

- How to treat the book
 - Work problems
 - Student's Solutions Guide

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can't have the right pace for everyone

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can't have the right pace for everyone
 - Point out my mistakes

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can't have the right pace for everyone
 - Point out my mistakes
- Go to discussion section

- How to treat the book
 - Work problems
 - Student's Solutions Guide
- Class sessions: for working problems
 - If you don't get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can't have the right pace for everyone
 - Point out my mistakes
- Go to discussion section
- Quizzes may happen in class or discussion section

• Notation: ¬

Notation: ¬ ∨

Notation: ¬ ∨ ∧

• Notation: $\neg \lor \land \Rightarrow$

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)
- DeMorgan's laws (including for more than 2 elements)

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)
- DeMorgan's laws (including for more than 2 elements)
- CNF and DNF (single term "and" or "or")

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)
- DeMorgan's laws (including for more than 2 elements)
- CNF and DNF (single term "and" or "or")
 - Why do we care in practice?

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)
- DeMorgan's laws (including for more than 2 elements)
- CNF and DNF (single term "and" or "or")
 - Why do we care in practice?
- Distributing negation over quantifiers

Simplify

 $\bullet \ (\neg T \lor F) \land (\neg F \lor T) \land \neg (F \lor F)$

Simplify

$$\bullet \ (\neg T \lor F) \land (\neg F \lor T) \land \neg (F \lor F)$$

$$\bullet \neg (F \lor \neg (T \land \neg (\neg T \lor \neg (F \land T))))$$

Simplify

•
$$(\neg T \lor F) \land (\neg F \lor T) \land \neg (F \lor F)$$

Satisfiable?

• $(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$

Satisfiable?

$$\bullet \ (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

$$\bullet \neg (A \lor C \lor \neg (B \land \neg A \land \neg (\neg B \lor A \lor C)))$$

CNF, DNF, or neither? (and convert)

• $(A \land \neg B) \lor (B \land \neg C)$

CNF, DNF, or neither? (and convert)

- $\bullet \ (A \land \neg B) \lor (B \land \neg C)$
- $\bullet \ (A \land B) \lor (\neg B \land C) \lor \neg (A \land C)$

•
$$A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$$

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original)

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge (\neg A \vee \neg C)))$ (\wedge commut.)

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge (\neg A \vee \neg C)))$ (\wedge commut.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee (C \wedge \neg C))))$ (dist.)

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge (\neg A \vee \neg C)))$ (\wedge commut.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee (C \wedge \neg C))))$ (dist.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee F)))$ (negation)

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge (\neg A \vee \neg C)))$ (\wedge commut.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee (C \wedge \neg C))))$ (dist.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee F)))$ (negation) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge \neg A))$ (\vee ident.)

• $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C))) \equiv A$ Proof $A \wedge (B \vee \neg (C \wedge \neg B \wedge (\neg A \vee \neg C)))$ (original) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge (\neg A \vee \neg C)))$ (\wedge commut.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee (C \wedge \neg C))))$ (dist.) $\equiv A \wedge (B \vee \neg (\neg B \wedge ((C \wedge \neg A) \vee F)))$ (negation) $\equiv A \wedge (B \vee \neg (\neg B \wedge C \wedge \neg A))$ (\vee ident.) $\equiv A \wedge (B \vee B \vee \neg C \vee A)$ (De Morgan, double neg)

• $A \land (B \lor \neg (C \land \neg B \land (\neg A \lor \neg C))) \equiv A$ Proof $A \land (B \lor \neg (C \land \neg B \land (\neg A \lor \neg C)))$ (original) $\equiv A \land (B \lor \neg (\neg B \land C \land (\neg A \lor \neg C)))$ (\land commut.) $\equiv A \land (B \lor \neg (\neg B \land ((C \land \neg A) \lor (C \land \neg C))))$ (dist.) $\equiv A \land (B \lor \neg (\neg B \land ((C \land \neg A) \lor F)))$ (negation) $\equiv A \land (B \lor \neg (\neg B \land C \land \neg A))$ (\lor ident.) $\equiv A \land (B \lor B \lor \neg C \lor A)$ (De Morgan, double neg) $\equiv A$ (absorbtion)

Assignments for Thursday

Module 3 with associated readings

Assignments for Thursday

- Module 3 with associated readings
- Start on first HW assignment (requires module 3 to complete)