CS311H
Discrete Math for CS: Honors

Prof: Peter Stone
TA: Matthew Hausknecht
Proctor: Sudheesh Katkam

Department of Computer Science
The University of Texas at Austin
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Questions about the syllabus?
Logistics

• Questions about the syllabus?
 – Office hours up
Logistics

• Questions about the syllabus?
 – Office hours up
 – Assignments for next week up
Logistics

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you’re lost
Logistics

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you’re lost

- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
Logistics

• Questions about the syllabus?
 – Office hours up
 – Assignments for next week up
 – Trying to keep a high pace, but push back if you’re lost

• Email class-related questions to me, TA, and proctor (or better yet, use piazza)

• Modules star: Prof. Adam Klivans
Logistics

• Questions about the syllabus?
 – Office hours up
 – Assignments for next week up
 – Trying to keep a high pace, but push back if you’re lost

• Email class-related questions to me, TA, and proctor (or better yet, use piazza)

• Modules star: Prof. Adam Klivans
 – Make sure the laws make sense while watching modules
Logistics

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you’re lost

- Email class-related questions to me, TA, and proctor (or better yet, use piazza)

- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules

- Module questions: last is free form
Logistics

- Questions about the syllabus?
 - Office hours up
 - Assignments for next week up
 - Trying to keep a high pace, but push back if you’re lost
- Email class-related questions to me, TA, and proctor (or better yet, use piazza)
- Modules star: Prof. Adam Klivans
 - Make sure the laws make sense while watching modules
- Module questions: last is free form
 - Post it also on piazza!
Logistics

• Questions about the syllabus?
 – Office hours up
 – Assignments for next week up
 – Trying to keep a high pace, but push back if you’re lost

• Email class-related questions to me, TA, and proctor (or better yet, use piazza)

• Modules star: Prof. Adam Klivans
 – Make sure the laws make sense while watching modules

• Module questions: last is free form
 – Post it also on piazza!
 – And ask in class!
Logistics (cont.)

• How to treat the book
Logistics (cont.)

• How to treat the book
 – Work problems
Logistics (cont.)

• How to treat the book
 – Work problems
 – Student’s Solutions Guide
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can’t have the right pace for everyone
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can’t have the right pace for everyone
 - Point out my mistakes
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can’t have the right pace for everyone
 - Point out my mistakes

- Go to discussion section
Logistics (cont.)

- How to treat the book
 - Work problems
 - Student’s Solutions Guide

- Class sessions: for working problems
 - If you don’t get it, seek help
 - If you do get it, be engaged as a teacher
 - Never be idle
 - Can’t have the right pace for everyone
 - Point out my mistakes

- Go to discussion section

- Quizzes may happen in class or discussion section
Some important concepts

- Notation: ¬
Some important concepts

- Notation: ¬ ∨
Some important concepts

- Notation: \(\neg \lor \land \)
Some important concepts

- Notation: \(\neg \lor \land \Rightarrow \)
Some important concepts

• Notation: \(\neg \lor \land \Rightarrow \)

• Proposition vs. predicate vs. function
Some important concepts

- Notation: ¬ ∨ ∧ ⇒
- Proposition vs. predicate vs. function
- Truth table
Some important concepts

- Notation: $\neg \lor \land \Rightarrow$
- Proposition vs. predicate vs. function
- Truth table
 - Especially for $P \Rightarrow Q$
Some important concepts

- Notation: \(\neg \lor \land \Rightarrow \)

- Proposition vs. predicate vs. function

- Truth table
 - Especially for \(P \Rightarrow Q \)
 - (Correlation vs. causation)
Some important concepts

- Notation: $\neg \lor \land \Rightarrow$

- Proposition vs. predicate vs. function

- Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)

- DeMorgan’s laws (including for more than 2 elements)
Some important concepts

- Notation: \(\neg \lor \land \Rightarrow \)
- Proposition vs. predicate vs. function
- Truth table
 - Especially for \(P \Rightarrow Q \)
 - (Correlation vs. causation)
- DeMorgan’s laws (including for more than 2 elements)
- CNF and DNF (single term “and” or “or”)
Some important concepts

• Notation: \(\neg \lor \land \Rightarrow \)

• Proposition vs. predicate vs. function

• Truth table
 – Especially for \(P \Rightarrow Q \)
 – (Correlation vs. causation)

• DeMorgan’s laws (including for more than 2 elements)

• CNF and DNF (single term “and” or “or”)
 – Why do we care in practice?
Some important concepts

• Notation: $\neg \lor \land \Rightarrow$

• Proposition vs. predicate vs. function

• Truth table
 - Especially for $P \Rightarrow Q$
 - (Correlation vs. causation)

• DeMorgan’s laws (including for more than 2 elements)

• CNF and DNF (single term “and” or “or”)
 - Why do we care in practice?

• Distributing negation over quantifiers
Simplify

\[(\neg T \lor F) \land (\neg F \lor T) \land \neg (F \lor F) \]
Simplify

- \((\neg T \lor F) \land (\neg F \lor T) \land \neg (F \lor F)\)

- \(\neg (F \lor \neg (T \land \neg (\neg T \lor \neg (F \land T))))\)
Simplify

\[\neg T \lor F \land (\neg F \lor T) \land \neg (F \lor F) \]

\[\neg (F \lor \neg (T \land \neg (\neg T \lor \neg (F \land T)))) \]

\[\equiv \neg (F \lor \neg (T \land \neg (\neg T \lor \neg F))) \]
\[\equiv \neg (F \lor \neg (T \land \neg (F \lor T))) \]
\[\equiv \neg (F \lor \neg (T \land \neg T)) \]
\[\equiv \neg (F \lor \neg (T \land F)) \]
\[\equiv \neg (F \lor \neg F) \]
\[\equiv \neg (F \lor T) \]
\[\equiv \neg T \]
\[\equiv F \]
Satisfiable?

\[(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q) \]
Satisfiable?

- \((P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)\)
- \(\neg (A \lor C \lor \neg (B \land \neg A \land \neg (\neg B \lor A \lor C)))\)
CNF, DNF, or neither? (and convert)

- \((A \land \neg B) \lor (B \land \neg C)\)
CNF, DNF, or neither? (and convert)

• \((A \land \neg B) \lor (B \land \neg C)\)

• \((A \land B) \lor (\neg B \land C) \lor \neg(A \land C)\)
Prove equivalence

\[A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C)) \equiv A \]
Prove equivalence

- \(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \)

Proof

\(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \) (original)
Prove equivalence

- \(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \)

Proof

\[
\begin{align*}
A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) & \equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C))) \quad (\land \text{ commut.})
\end{align*}
\]
Prove equivalence

\[A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \]

Proof

\[A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \text{ (original)} \]
\[\equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C))) \text{ (\land commut.)} \]
\[\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor (C \land \neg C)))) \text{ (dist.)} \]
Prove equivalence

- \(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \)

Proof

\[
A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \text{ (original)} \\
\equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C))) \text{ (\& commut.)} \\
\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor (C \land \neg C)))) \text{ (dist.)} \\
\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor F))) \text{ (negation)}
\]
Prove equivalence

- \(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \)

Proof

\[
A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \quad (\text{original})
\]
\[
\equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C))) \quad (\land \text{ commut.})
\]
\[
\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor (C \land \neg C)))) \quad (\text{dist.})
\]
\[
\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor F))) \quad (\neg \text{ negation})
\]
\[
\equiv A \land (B \lor \neg(\neg B \land C \land \neg A)) \quad (\lor \text{ ident.})
\]
Prove equivalence

\[A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \equiv A \]

Proof

\[A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C))) \] (original)

\[\equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C))) \] (\land \text{ commut.})

\[\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor (C \land \neg C')))) \] (dist.)

\[\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor F))) \] (negation)

\[\equiv A \land (B \lor \neg(\neg B \land (C \land \neg A)) \] (\lor \text{ ident.})

\[\equiv A \land (B \lor B \lor \neg C \lor A) \] (De Morgan, double neg)

Prove equivalence

• \(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C')))) \equiv A \)

Proof

\(A \land (B \lor \neg(C \land \neg B \land (\neg A \lor \neg C'))) \) (original)
\(\equiv A \land (B \lor \neg(\neg B \land C \land (\neg A \lor \neg C'))) \) (\(\land \) commut.)
\(\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor (C \land \neg C')))) \) (dist.)
\(\equiv A \land (B \lor \neg(\neg B \land ((C \land \neg A) \lor F'))) \) (negation)
\(\equiv A \land (B \lor \neg(\neg B \land C \land \neg A)) \) (\(\lor \) ident.)
\(\equiv A \land (B \lor B \lor \neg C \lor A) \) (De Morgan, double neg)
\(\equiv A \) (absorbtion)
Assignments for Thursday

- Module 3 with associated readings
Assignments for Thursday

• Module 3 with associated readings

• Start on first HW assignment (requires module 3 to complete)