Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Keeping up and posting on piazza is required
Logistics

• Keeping up and posting on piazza is required

• Due to time constraints, some proofs in the videos and class aren’t fully formal: proof sketches
Logistics

• Keeping up and posting on piazza is **required**

• Due to time constraints, some proofs in the videos and class aren’t fully formal: *proof sketches*

 – But we’ve shown some fully formal examples
 – On HW and test you need to be fully formal
Logistics

• Keeping up and posting on piazza is required

• Due to time constraints, some proofs in the videos and class aren’t fully formal: proof sketches
 – But we’ve shown some fully formal examples
 – On HW and test you need to be fully formal
 – If you’re not sure what that means, go to office hours
Logistics

• Keeping up and posting on piazza is **required**

• Due to time constraints, some proofs in the videos and class aren’t fully formal: *proof sketches*
 - But we’ve shown some fully formal examples
 - On HW and test you need to be fully formal
 - If you’re not sure what that means, go to office hours

• If you need a nametag, email me
Logistics

- Keeping up and posting on piazza is required

- Due to time constraints, some proofs in the videos and class aren’t fully formal: proof sketches
 - But we’ve shown some fully formal examples
 - On HW and test you need to be fully formal
 - If you’re not sure what that means, go to office hours

- If you need a nametag, email me

- Bring in chairs?
Logistics

- Keeping up and posting on piazza is **required**
- Due to time constraints, some proofs in the videos and class aren’t fully formal: *proof sketches*
 - But we’ve shown some fully formal examples
 - On HW and test you need to be fully formal
 - If you’re not sure what that means, go to office hours
- If you need a nametag, email me
- Bring in chairs? (but then return them)
Logistics

• Keeping up and posting on piazza is **required**

• Due to time constraints, some proofs in the videos and class aren’t fully formal: *proof sketches*
 – But we’ve shown some fully formal examples
 – On HW and test you need to be fully formal
 – If you’re not sure what that means, go to office hours

• If you need a nametag, email me

• Bring in chairs? (but then return them)

• Second homework **due at start of class**
Some questions

- How do you do proof by exhaustive cases?
Some questions

• How do you do proof by exhaustive cases?
 – First establish all the possible solutions
Some questions

• How do you do proof by exhaustive cases?
 – First establish all the possible solutions
 – Then examine them one by one
Prove that...

• Every odd integer is the difference of two squares using direct proof.
Prove that...

- Every odd integer is the difference of two squares using **direct proof**.
 - Is the converse true? That is, is the difference of two squares always an odd integer?
Prove that...

• Every odd integer is the difference of two squares using **direct proof**.

 – Is the converse true? That is, is the difference of two squares always an odd integer?
Prove by Contradiction

- There are no positive integer solutions to equation

\[x^2 - y^2 = 1 \]
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.
Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.
Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \).
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence

1. Assume $\exists q, r, q', r'$ where this holds.
2. Assume $q \neq q'$. then WLOG assume $q > q'$.

Peter Stone
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence

1. Assume $\exists q, r, q', r'$ where this holds.
2. Assume $q \neq q'$. then WLOG assume $q > q'$.
3. Then we have $d(q - q') = (r' - r)$.

Peter Stone
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence

1. Assume $\exists q, r, q', r'$ where this holds.
2. Assume $q \neq q'$. then WLOG assume $q > q'$.
3. Then we have $d(q - q') = (r' - r)$.
4. Since $q > q'$ we have $d(q - q') \geq d$. (Both are integers)
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.

Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \). then WLOG assume \(q > q' \).
3. Then we have \(d(q - q') = (r' - r) \).
4. Since \(q > q' \) we have \(d(q - q') \geq d \). (Both are integers)
5. Since \(d > r' \) and \(r \geq 0 \) we have that \(d > r' - r \).
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence

1. Assume $\exists q, r, q', r'$ where this holds.
2. Assume $q \neq q'$. then WLOG assume $q > q'$.
3. Then we have $d(q - q') = (r' - r)$.
4. Since $q > q'$ we have $d(q - q') \geq d$. (Both are integers)
5. Since $d > r'$ and $r \geq 0$ we have that $d > r' - r$.
6. Combining 4 and 5, $d(q - q') > r' - r$
Uniqueness of Quotients and Remainders

Thm: Let a be an integer, d positive integer. Then there are unique integers q, r with $0 \leq r < d$ such that $a = dq + r$

d is divisor, q quotient, r remainder.
Will just prove uniqueness, you can try existence

1. Assume $\exists q, r, q', r'$ where this holds.
2. Assume $q \neq q'$. then WLOG assume $q > q'$.
3. Then we have $d(q - q') = (r' - r)$.
4. Since $q > q'$ we have $d(q - q') \geq d$. (Both are integers)
5. Since $d > r'$ and $r \geq 0$ we have that $d > r' - r$.
6. Combining 4 and 5, $d(q - q') > r' - r$—Contradicts 3.
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.
Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \). then WLOG assume \(q > q' \).
3. Then we have \(d(q - q') = (r' - r) \).
4. Since \(q > q' \) we have \(d(q - q') \geq d \). (Both are integers)
5. Since \(d > r' \) and \(r \geq 0 \) we have that \(d > r' - r \).
6. Combining 4 and 5, \(d(q - q') > r' - r \) — Contradicts 3.
7. Therefore \(q = q' \) (step 2)
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.

Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \). then WLOG assume \(q > q' \).
3. Then we have \(d(q - q') = (r' - r) \).
4. Since \(q > q' \) we have \(d(q - q') \geq d \). (Both are integers)
5. Since \(d > r' \) and \(r \geq 0 \) we have that \(d > r' - r \).
6. Combining 4 and 5, \(d(q - q') > r' - r \) — Contradicts 3.
7. Therefore \(q = q' \) (step 2) \(\Rightarrow \) \(r' - r = 0 \) (step 3).
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.

Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \). then WLOG assume \(q > q' \).
3. Then we have \(d(q - q') = (r' - r) \).
4. Since \(q > q' \) we have \(d(q - q') \geq d \). (Both are integers)
5. Since \(d > r' \) and \(r \geq 0 \) we have that \(d > r' - r \).
6. Combining 4 and 5, \(d(q - q') > r' - r \) — Contradicts 3.
7. Therefore \(q = q' \) (step 2) \(\Rightarrow r' - r = 0 \) (step 3).
8. Therefore \(r = r' \).
Uniqueness of Quotients and Remainders

Thm: Let \(a \) be an integer, \(d \) positive integer. Then there are unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \)

\(d \) is divisor, \(q \) quotient, \(r \) remainder.
Will just prove uniqueness, you can try existence

1. Assume \(\exists q, r, q', r' \) where this holds.
2. Assume \(q \neq q' \). then WLOG assume \(q > q' \).
3. Then we have \(d(q - q') = (r' - r) \).
4. Since \(q > q' \) we have \(d(q - q') \geq d \). (Both are integers)
5. Since \(d > r' \) and \(r \geq 0 \) we have that \(d > r' - r \).
6. Combining 4 and 5, \(d(q - q') > r' - r \) — Contradicts 3.
7. Therefore \(q = q' \) (step 2) \(\Rightarrow \) \(r' - r = 0 \) (step 3).
8. Therefore \(r = r' \). QED.
Prove:

- Between every two rational numbers there is an irrational number.
Prove:

- Between every two rational numbers there is an irrational number.

- \((1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100) < (1/10)\)
Prove:

- Between every two rational numbers there is an irrational number.

- \((\frac{1}{2}) \times (\frac{3}{4}) \times (\frac{5}{6}) \times \ldots \times (\frac{99}{100}) < (\frac{1}{10})\)

1. Define \(A = (\frac{1}{2}) \times (\frac{3}{4}) \times (\frac{5}{6}) \times \ldots \times (\frac{99}{100})\).
Prove:

• Between every two rational numbers there is an irrational number.

• \((1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100) < (1/10)\)

1. Define \(A = (1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100)\).
2. Define \(B = (2/3) \times (4/5) \times (6/7) \times \ldots \times (98/99) \times 1\).
Prove:

- Between every two rational numbers there is an irrational number.

- \((1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100) < (1/10)\)

 1. Define \(A = (1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100)\).

 2. Define \(B = (2/3) \times (4/5) \times (6/7) \times \ldots \times (98/99) \times 1\).

 3. Each of these consists of 50 terms, and each term in \(B\) is larger than the corresponding term in \(A\).
Prove:

- Between every two rational numbers there is an irrational number.

- \((1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100) < (1/10)\)
 1. Define \(A = (1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100).\)
 2. Define \(B = (2/3) \times (4/5) \times (6/7) \times \ldots \times (98/99) \times 1.\)
 3. Each of these consists of 50 terms, and each term in \(B\) is larger than the corresponding term in \(A.\)
 4. Therefore \(A < B \Rightarrow A^2 < AB.\)
Prove:

- Between every two rational numbers there is an irrational number.

- \((1/2) \times (3/4) \times (5/6) \times ... \times (99/100) < (1/10)\)
 1. Define \(A = (1/2) \times (3/4) \times (5/6) \times ... \times (99/100)\).
 2. Define \(B = (2/3) \times (4/5) \times (6/7) \times ... \times (98/99) \times 1\).
 3. Each of these consists of 50 terms, and each term in \(B\) is larger than the corresponding term in \(A\).
 4. Therefore \(A < B \Rightarrow A^2 < AB\).
 5. \(AB = (1/2) \times (2/3) \times (3/4) \times (4/5) \times (5/6) \times (6/7) \times ... \times (98/99) \times (99/100) \times 1 = 1/100\).
Prove:

• Between every two rational numbers there is an irrational number.

• \((1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100) < (1/10)\)

 1. Define \(A = (1/2) \times (3/4) \times (5/6) \times \ldots \times (99/100)\).
 2. Define \(B = (2/3) \times (4/5) \times (6/7) \times \ldots \times (98/99) \times 1\).
 3. Each of these consists of 50 terms, and each term in B is larger than the corresponding term in A.
 4. Therefore \(A < B \Rightarrow A^2 < AB\).
 5. \(AB = (1/2) \times (2/3) \times (3/4) \times (4/5) \times (5/6) \times (6/7) \times \ldots \times (98/99) \times (99/100) \times 1 = 1/100\).
 6. So, \(A^2 < 1/100 \Rightarrow A < 1/10\).
Show that there is no rational number r for which $r^3 + r + 1 = 0$
Prove by direct proof:

• If a and b are real numbers, then $a^2 + b^2 \geq 2ab$.
Prove by direct proof:

- If a and b are real numbers, then $a^2 + b^2 \geq 2ab$.

- (Tricky problem) The number $100...01$ (with $3n - 1$ zeros where n is a positive integer) is not a prime. (Hint: using identity $x^3 + 1 = (x + 1)(x^2 - x + 1)$.)
Assignments for Tuesday

- Second homework **due at start of class**
- Modules 7,8 with associated readings
Assignments for Tuesday

- Second homework due at start of class
- Modules 7,8 with associated readings