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Challenge

e Define A=R - {-1},and define f: A — R by
f(a) =2a/(a +1).

Prove f is injective but not surjective.
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Good Morning, Colleagues
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Good Morning, Colleagues

Are there any questions?
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Logistics

e Next week has relatively little new material

— Time for concepts 1o sink in
— Test review
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Quiz!

e Write the power set of { A, 1}:
P({A,1}) =7

e Write the Cartesian product of {A, B} and {C, D}:
{A,B} x{C,D} =7

e \Which of the pictures on the board is an injection?
¢ \Which of the pictures on the board is a surjection?

e \Which of the pictures on the board is a bijection?
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Prove that...

e SUppPOSe f: A — Band g : B — C. Prove that if f and g
are injective, then g o f is injective.
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Challenges

e Prove that for any non-empty set A, there does not exist a
pijective function from A fo P(A) where P(A) is power set
of A (remember that A could be infinite).
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Challenges

e Prove that for any non-empty set A, there does not exist a
pijective function from A fo P(A) where P(A) is power set
of A (remember that A could be infinite).

e Define A=R - {-1},and define f: A — R by
f(a) = 2a/(a+1).

Prove f is injective (one-to-one) but not surjective (onto).
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Prove or disprove

NOTE - 1st is on the homework, and something very related
to the 2nd is on the homework. Try to do the 2nd on piazza

e Given f: A— BandsubsetsY,Z C A, is it true that
fYuz)=f(Y)U f(Z)? Prove or disprove.
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Last Quest Problem

o flz,y)=(1/2)(x+y—-2)(x+y—1)+y
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o flz,y)=(1/2)(x+y—-2)(x+y—1)+y
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Cantor-Bernstein-Schroder Theorem

e If A and B are sets with |A| < |B| and |B| < |A],
then |A| = |B|.
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Prove...

e A x Nis countably infinite, where A is a finite set with n > 0
elements.
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e A x Nis countably infinite, where A is a finite set with n > 0
elements.
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2. Define f:N— AxNas f(x) = (ar,q+1) where (x —1) =
qn +r

3. ¢ and r in f are guaranteed to exist by the Division
Algorithm.
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Prove...

e A x Nis countably infinite, where A is a finite set with n > 0
elements.

1. A hasn elements: ag, ..., a,—1

2. Define f:N— AxNas f(x) = (ar,q+1) where (x —1) =
qn +r

3. ¢ and r in f are guaranteed to exist by the Division
Algorithm.

4. Prove f is bijective

Prove f is injective

5. Let f(x) = f(y) where x,y € N
6. Then (a,,q1 + 1) = (ary, g2 + 1) Where (z — 1) = gin + 1y
and (y — 1) = gan + o
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/. 30 a,, = a,,. SINCe sefs have no duplicates, r; = rqy. Let
poth equal r
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8. Also, g1 +1=¢g>+1— ¢1 = ¢2. Let both equal ¢

. Thenx—1=gn+r=y—1—-x=y
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11. Define x = (m — 1)n + 1+ 1, which is a natural number
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13. f(x) =(ar,g+1)wWhere (m—1)n+i+1—-1)=qn+r
14. f(x) = (ar,q+1)where (m —1)n+i=qn+r

15. Due to the unigueness of solufions tfo the Division
Algorithm, we know m —1=qgand: =r

16. Therefore f(x) = (a;, m)
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Assignments for Tuesday

e Fourth homework due at start of class

e Modules 16.6 with associated readings
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