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Good Morning, Colleagues

Are there any questions?

• Applications of graphs?

• Graph of degree k colorable with k + 1 colors

− Clever predicate!
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Logistics

• How was the midterm?

− I know it was long, but everything should have been
doable.
− Next exam will be of similar difficulty

• New unit: graph theory and counting

Peter Stone



How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each
other’s hand.

Peter Stone



How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each
other’s hand.

2. 12 couples go to a party and everyone shakes hands with
everyone except for their spouse.

3. Three groups of people go to a party. No one shakes
hands with anyone from the group they came with but
they all shake hands with everyone else. The sizes of the
three groups are 4, 6 and 10.
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What’s the induced subgraph?

• Vertices {v1, v2, v3} of graph
G = ({v1, v2, v3, v4}, {(v1, v2), (v2, v4), (v3, v4), (v2, v3)})
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What’s the induced subgraph?

• Vertices {v1, v2, v3} of graph
G = ({v1, v2, v3, v4}, {(v1, v2), (v2, v4), (v3, v4), (v2, v3)})
Answer: ({v1, v2, v3}, {(v1, v2), (v2, v3)}).

Peter Stone



Prove

• If in a graph with n > 1 vertices, all vertices have the same
neighborhood, then the neighborhood of all vertices is the
empty set.
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Prove

• If in a graph with n > 1 vertices, all vertices have the same
neighborhood, then the neighborhood of all vertices is the
empty set.
1. Proof by contradiction: Assume the neighborhood of
all vertices is non-empty.
2. Then all neighborhoods contain a vertex v, including v’s
neighborhood.
3. However, this means v is its own neighbor, which means
there is self-loop.
4. Self-loops are not allowed, so this is a contradiction.

Peter Stone



Possible or Impossible?

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2,
3, 4, 4.
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2. A simple graph with 8 vertices, whose degrees are 0, 1, 2,
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Possible or Impossible?
1. A simple graph with 6 vertices, whose degrees are 2, 2, 2,

3, 4, 4.
It is not possible to have one vertex of odd degree.

2. A simple graph with 8 vertices, whose degrees are 0, 1, 2,
3, 4, 5, 6, 7.
It is not possible to have a vertex of degree 7 and a vertex
of degree 0 in this graph.

3. A simple graph with degrees 1, 2, 2, 3.
Possible: v1, v2, v3, v4. Edges: (v1, v2), (v1, v3), (v1, v4), (v2, v3).

Peter Stone



Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.

Peter Stone



Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.
Ans:
Assume that the graph has n vertices.

Peter Stone



Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.
Ans:
Assume that the graph has n vertices.
Degrees are ∈ {0, 1, . . . , ..n− 1}

Peter Stone



Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.
Ans:
Assume that the graph has n vertices.
Degrees are ∈ {0, 1, . . . , ..n− 1}
Can’t have vertices with degree n-1 and 0.

Peter Stone



Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.
Ans:
Assume that the graph has n vertices.
Degrees are ∈ {0, 1, . . . , ..n− 1}
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Prove

• Every simple graph with |V | ≥ 2 has two vertices of the
same degree.
Ans:
Assume that the graph has n vertices.
Degrees are ∈ {0, 1, . . . , ..n− 1}
Can’t have vertices with degree n-1 and 0.
Thus the vertices can have at most n-1 different degrees.
Therefore at least 2 must have the same degree.

Peter Stone



Chromatic Number

Find the chromatic number k, and define a valid k-coloring
for each graph.

• G = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4)})
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Chromatic Number

Find the chromatic number k, and define a valid k-coloring
for each graph.

• G = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4)})
Chromatic number is 3, and a valid 3-coloring is v1 and v4

RED, v2 BLUE, and v3 GREEN.
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Prove by Induction

• For n > 0, suppose n star graphs are linked in a chain, such
that there is one edge connecting some vertex in the ith

graph with some vertex in the (i+1)th graph for all i where
0 < i < n. Prove that the resulting graph is 2-colorable.
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Scheduling

• The Math Department has 6 committees that meet once
a month. How many different meeting times must be used
to guarantee that no one is scheduled to be at 2 meetings
at the same time, if committees and their members are:
C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton},
C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton},
C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.
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Scheduling

• The Math Department has 6 committees that meet once
a month. How many different meeting times must be used
to guarantee that no one is scheduled to be at 2 meetings
at the same time, if committees and their members are:
C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton},
C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton},
C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.
Ans:
We can draw a graph with C1 to C6 as vertices and
an edge between the vertices if they share common
elements. The answer is again the chromatic number of
the graph - 5. Only C4 and C5 do not share any common
elements.

Peter Stone



Challenge

Suppose for directed graph G = (V,E) that no vertex has an
in-degree equal to its out-degree, all in-degrees are unique,
and all out-degrees are unique.
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Challenge

Suppose for directed graph G = (V,E) that no vertex has an
in-degree equal to its out-degree, all in-degrees are unique,
and all out-degrees are unique.Formally,
D(G) ≡ ∀v ∈ V [deg+(v) 6= deg−(v)],
I(G) ≡ ∀v, u ∈ V [deg−(v) = deg−(u)→ u = v]
O(G) ≡ ∀v, u ∈ V [deg+(v) = deg+(u)→ u = v]

• Prove that for any even number n, there exists a graph
with n vertices that has these properties.
Define: V (G, n) ≡ “graph G has n vertices”
Formally, prove: ∀k > 0,∃G[V (G, 2k) ∧D(G) ∧ I(G) ∧O(G)].
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Assignments for Tuesday

• Modules 12 and 13

Peter Stone


